10,450 research outputs found
Slices of the Kerr ergosurface
The intrinsic geometry of the Kerr ergosurface on constant Boyer-Lindquist
(BL), Kerr, and Doran time slices is characterized. Unlike the BL slice, which
had been previously studied, the other slices (i) do not have conical
singularities at the poles (except the Doran slice in the extremal limit), (ii)
have finite polar circumference in the extremal limit, and (iii) for
sufficiently large spin parameter fail to be isometrically embeddable as a
surface of revolution above some latitude. The Doran slice develops an
embeddable polar cap for spin parameters greater than about 0.96.Comment: 13 pages, 6 figures; v.2: minor editing for clarification, references
added, typos fixed, version published in Classical and Quantum Gravit
AN ECONOMIC EVALUATION OF LOW INVESTMENT SWINE PRODUCTION SYSTEMS
This publication summarizes an evaluation of smaller and lower investment swine production systems. The systems analyzed range from pasture operations with production during the warmer months to rather intense year-round use of remodeled buildings. In each case the system emphasizes use of facilities that can be constructed and remodeled by the farm operator. The report includes one section for each type of hog production: feeder pig production, farrow-to-finish operations and hog finishing.Livestock Production/Industries,
Nanowire Acting as a Superconducting Quantum Interference Device
We present the results from an experimental study of the magneto-transport of
superconducting wires of amorphous Indium-Oxide, having widths in the range 40
- 120 nm. We find that, below the superconducting transition temperature, the
wires exhibit clear, reproducible, oscillations in their resistance as a
function of magnetic field. The oscillations are reminiscent of those which
underlie the operation of a superconducting quantum interference device.Comment: 4 pages, 4 figures, 1 tabl
Lattice Black Holes
We study the Hawking process on lattices falling into static black holes. The
motivation is to understand how the outgoing modes and Hawking radiation can
arise in a setting with a strict short distance cutoff in the free-fall frame.
We employ two-dimensional free scalar field theory. For a falling lattice with
a discrete time-translation symmetry we use analytical methods to establish
that, for Killing frequency and surface gravity satisfying
in lattice units, the continuum Hawking spectrum
is recovered. The low frequency outgoing modes arise from exotic ingoing modes
with large proper wavevectors that "refract" off the horizon. In this model
with time translation symmetry the proper lattice spacing goes to zero at
spatial infinity. We also consider instead falling lattices whose proper
lattice spacing is constant at infinity and therefore grows with time at any
finite radius. This violation of time translation symmetry is visible only at
wavelengths comparable to the lattice spacing, and it is responsible for
transmuting ingoing high Killing frequency modes into low frequency outgoing
modes.Comment: 26 pages, LaTeX, 2 figures included with psfig. Several improvements
in the presentation. One figure added. Final version to appear in Phys.Rev.
On the solution of the initial value constraints for general relativity coupled to matter in terms of Ashtekar's variables
The method of solution of the initial value constraints for pure canonical
gravity in terms of Ashtekar's new canonical variables due to CDJ is further
developed in the present paper. There are 2 new main results : 1) We extend the
method of CDJ to arbitrary matter-coupling again for non-degenerate metrics :
the new feature is that the 'CDJ-matrix' adopts a nontrivial antisymmetric part
when solving the vector constraint and that the Klein-Gordon-field is used,
instead of the symmetric part of the CDJ-matrix, in order to satisfy the scalar
constraint. 2) The 2nd result is that one can solve the general initial value
constraints for arbitrary matter coupling by a method which is completely
independent of that of CDJ. It is shown how the Yang-Mills and gravitational
Gauss constraints can be solved explicitely for the corresponding electric
fields. The rest of the constraints can then be satisfied by using either
scalar or spinor field momenta. This new trick might be of interest also for
Yang-Mills theories on curved backgrounds.Comment: Latex, 15 pages, PITHA93-1, January 9
Effect of Massive Dosage of Vitamin A on the Blood Plasma Fat and Vitamin A Levels in Dairy Calves
Although the significance of vitamin A in the nutrition of the young dairy calf is well recognized, the effects of ingestion of large amounts of this vitamin, particularly as related to other blood constituents, have received comparatively little attention. Investigations with other species suggest that there may be a relationship between vitamin A intake and the level of the serum lipids. Josephs (1942) reported that the administration of large amounts of vitamin A increased total serum lipids in both normal and vitamin A-deficient rats, the effect being much greater and persisting longer in the latter. Similar results were observed in vitamin A-deficient infants (Josephs, 1945). Children with the nephrotic syndrome also displayed a marked rise in total plasma lipids following administration of vitamin A alcohol in aqueous dispersion (Kagan, Thomas, Jordan and Abt, 1950). The objective of the present study was to ascertain the effect of massive doses of vitamin A in oily and in aqueous dispersion on the blood plasma vitamin A and fat levels in dairy calves which were near the state of vitamin A deficiency
Stochastically Fluctuating Black-Hole Geometry, Hawking Radiation and the Trans-Planckian Problem
We study the propagation of null rays and massless fields in a black hole
fluctuating geometry. The metric fluctuations are induced by a small
oscillating incoming flux of energy. The flux also induces black hole mass
oscillations around its average value. We assume that the metric fluctuations
are described by a statistical ensemble. The stochastic variables are the
phases and the amplitudes of Fourier modes of the fluctuations. By averaging
over these variables, we obtain an effective propagation for massless fields
which is characterized by a critical length defined by the amplitude of the
metric fluctuations: Smooth wave packets with respect to this length are not
significantly affected when they are propagated forward in time. Concomitantly,
we find that the asymptotic properties of Hawking radiation are not severely
modified. However, backward propagated wave packets are dissipated by the
metric fluctuations once their blue shifted frequency reaches the inverse
critical length. All these properties bear many resemblences with those
obtained in models for black hole radiation based on a modified dispersion
relation. This strongly suggests that the physical origin of these models,
which were introduced to confront the trans-Planckian problem, comes from the
fluctuations of the black hole geometry.Comment: 32 page
Black holes admitting a Freudenthal dual
The quantised charges x of four dimensional stringy black holes may be
assigned to elements of an integral Freudenthal triple system whose
automorphism group is the corresponding U-duality and whose U-invariant quartic
norm Delta(x) determines the lowest order entropy. Here we introduce a
Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although
distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the
requirement that \tilde{x} be integer restricts us to the subset of black holes
for which Delta(x) is necessarily a perfect square. The issue of higher-order
corrections remains open as some, but not all, of the discrete U-duality
invariants are Freudenthal invariant. Similarly, the quantised charges A of
five dimensional black holes and strings may be assigned to elements of an
integral Jordan algebra, whose cubic norm N(A) determines the lowest order
entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a
perfect cube, for which A**=A and which leaves N(A) invariant. The two
dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde
Quantum field theory on a growing lattice
We construct the classical and canonically quantized theories of a massless
scalar field on a background lattice in which the number of points--and hence
the number of modes--may grow in time. To obtain a well-defined theory certain
restrictions must be imposed on the lattice. Growth-induced particle creation
is studied in a two-dimensional example. The results suggest that local mode
birth of this sort injects too much energy into the vacuum to be a viable model
of cosmological mode birth.Comment: 28 pages, 2 figures; v.2: added comments on defining energy, and
reference
- …