Staff Papers Series

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture. Forestry and Home Economics
St. Paul. Minnesota 55108

An Economic Evaluation of Low Investment

Swane Production Systems
by

Richard N. Weldon

Vernon R. Eidman
and

Larry D. Jacobson*

Staff Papers are published without formal review within the Department of Agricultural and Applied Economics.

Acknowledgement. Partial funding for this research was provided through a grant from Control Data Corporation, Minneapolis, Minnesota. The work was completed under Mınnesota Agrıcultural Experiment Station Project Mn14-025: "An Economic Analysis of Swine Production Systems in Minnesota."

* The authors are Research Specialist and Professor, Department of Agricultural and Applied Economics, and Extension Agricultural Engineer, Department of Agricultural Engıneering, all located at the University of Minnesota, St. Paul, Minnesota.
An Economic Evaluation of Low Investment Swine Production Systems
Page
Introduction 1
Method of Analysis 3
Basic Unit of Analysis 5
Prices 5
Rations 7
Animal Schedules 10
Space Requirements 12
Feeder Pig Production 14
Animal Flow 16
Building Systems and Investment Costs 24
Enterprise Budgets 34
Cash Flow Projections 49
Farrow-to-Finish 63
Animal Flow 64
Building Systems and Investment Costs 70
Enterprise Budgets 73
Cash Flow Projections 87
Hog Finishing 101
Animal Flow 102
Building Systems and Investment Costs 107
Enterprise Budgets 111
Cash Flow Projections 118
References 125
Appendix A - Descrıption, Layout and Materıals for Buildings and Structures 127
B - Energy Requirements and Calculations 238
C - Seasonal Index for Market Hogs and Feeder Pigs 248
D - Feeder Pig Production - Cash Flows 251
E - Farrow-to-Finish - Cash Flows 271
F - Finishing Systems - Cash Flow 293
G - Waste Production and Pollution Levels for Various Facilities 299

An Economic Evaluation of Low Investment Swine Production Systems

Introduction

Hogs are an important livestock enterprise in Minnesota. They are produced by a large number of farmers and they represent a major source of farm income in the state. Hogs were produced on 33,000 of Minnesota's 104,000 farms during 1979. Cash receipts from the sale of hogs in Minnesota totaled $\$ 651$ million in 1979 , 12 percent of the cash receipts from farm marketings. Dairy products (18 percent), soybeans (7 percent) and cattle and calves (7 percent) are the only products accounting for a larger proportion of agricultural sales in 1978. Nationwide, Minnesota ranked fourth behind Iowa, [11ınois \& Missourı, in hogs marketed that year. [19]

Swine continues to be an important livestock enterprise in Minnesota for a variety of reasons. The opportunity to productively utilize avallable facilıties and labor not required for crop production are important reasons for producing hogs on many Minnesota farms. Annual reports of the Southwestern Minnesota Farm Management Assoclation [2] indicate the average returns above feed costs for complete farrow-to-finish operations exceeded \$10 per hundred pounds in all but one of the eight years (Table 1). These data also indicate that returns were high enough to cover feed and direct costs in each of these seven years. Easy access to markets for feeder pigs and slaughter hogs also encourage more people to produce hogs in Minnesota. Looking ahead, low cost corn for feeding (relative to the rest of the country), an important factor in the profitability of swine production, and the other factors mentioned, can be expected to encourage further expansion of hog production in Minnesota.

Swine are produced with a wide varıety of production systems in Minnesota. These systems can be divided into feeder pig production, finishing of feeder pigs, and farrow-to-finish operations. The facilities used in the production of each group range from portable buildings and equipment on pasture to environmentally controlled confinement facilities.

Table 1. Average Returns of Southwestern Minnesota Farm Management Association Cooperators for Complete Farrow-to-Finish Swine Operations.

	Average Return Above Feed Cost Per Cwt. Hog Produced \qquad	Average Return Above Feed and Direct Costs Per Cwt. Hog Produced
1980	\$13.12	\$9.15
1979	\$11.38	\$8.80
1978	27.75	25.20
1977	17.72	15.86
1976	13.38	12.06
1975	24.16	22.99
1974	7.76	6.94
1973	21.34	20.58
Potential producers as well as existing producers that are evaluating		
changes in their swine production system can use comparative data across		
systems to help develop their plans. Data on the labor and capital require-		
ments, the relative profitability and the cash flows of alternative production		
systems can be used to analyze adjustments in production systems. Such planning		
data are avallable for high investment confinement systems for farrow-to-		
finish operations, feeder pig production and feeder pig finıshing in Mınnesota		
in Agrıcultural Experiment Station Bulletins 533, 534 and 535, respectively		
$[7,9,10]$. This publication summarizes an evaluation of smaller and lower		
investment swine production systems. The systems analyzed range from pasture		
operations with production during the warmer months to rather intense year-		
round use of r	buildings. In each	the system

emphasizes use of facilities that can be constructed and remodeled by the farm operator.

The report includes one section for each type of hog production: feeder pig production, farrow-to-finish operations and hog finishing.

Feeder Pig Production includes a breeding herd, the farrowing of pigs and the marketing of pigs at approximately eight weeks of age and weighing approximately 40 pounds (18.2 kg)

Farrovtofinish Operations include a breeding herd, the farrowing of pigs, feeding the pigs to approximately six months of age and selling slaughter hogs weighing $220-230$ pounds ($100-104 \mathrm{~kg}$). Swine Finishing Operations purchase approximately eight-week old feeder pigs weighing approximately 40 pounds (18.2 kg), and selling slaughter hogs weighing $220-230$ pounds (100-104 kg). Method of Analysis

The discussion for each type of production is divided into several subsections. The first subsection describes the production systems analyzed, and presents a production calendar which outlines the timing of production activities and the animal flow through the facilities. This provides the basis for the analysis.

The estimated amount of labor required for construction and remodeling of facilities as well as the total investment costs for buildings and equipment are based on the components of each system and the necessary materials. Average upper midwest material prices for mid-1980 were used in estimating investment costs. Reasonable work rates for individuals familiar with routine construction and maintenance of small farm facilities were assumed in making the hourly estimates. Actual investment costs may differ substantially among producers because of the variation in material costs and
the amount of hired labor used in building the facilities. The hours of labor required will vary based on the experience and skill of the individual in construction work.

Enterprise budgets (projected average annual costs and returns) are calculated for each system to summarize the estimated gross receipts, total operating inputs and costs, total ownership costs (depreciation, interest, real estate taxes and insurance on the investment in facilities) and net returns to the operator's labor and management. Enterprise budgets provide an estimate of the profitability of an enterprise based on projected costs and returns for the "average" year.

It is also useful to project cash receipts and expense for the start-up period when large capital outlays exceed cash income from the enterprise. The projected monthly cash flow estimates the cash receipts and the cash expenditures, both operating and investment capital, on a month-by-month basis. The projected cash flow for the first and second years indicates how much capital the operator will have to obtain from other sources to start the enterprise and the expected repayment capacity. Completing the cash flow projections for succeeding years provides information on the payback period amd the amount of time needed to repay the initial investment.

The labor requirements for establishing and operating each system are estimated [16]. The number of hours required both to construct the necessary structures and the annual requirement to operate the various systems are listed. No dollar cost is placed on the labor since this is determined by the opportunity cost for an individual's time.

Finally, estimates of energy requirements and environmental characteristics are estimated for each production system. The estimated energy required for
ventilation, heating and materials handling are made. The relative effect on air and water quality for each system are estimated and compared. Basic Unit of Analysis

A 16-sow farrowing unit is the common denominator of the systems analyzed. The size of unit is varied by increasing the number of farrowings per year. The systems analyzed range from one group of 16 sows farrowing on pasture once per year through six groups of sows with one group farrowing every four weeks (referred to as continuous farrowing) for 13 litters per year. These increasing sow and litter numbers were then matched with increasing levels of capıtal investment. The matrix in Figure 1 depicts the eleven possible systems to examine. This study will present the engineering specifications for all systems. However, the economic analyses in this study are limited to systems producing one to six litters per year. The Greene and Eldman studies $[7,9,10]$ on confinement systems provide the economic analysis of systems similar to I and K.

Prices
Investment costs for construction and remodeling are based on typical purchase prices for materials and supplies at local lumber yards. Design of the facilities is based on plans available from the Midwest Plan Service $[7,21,22]$. An additional 20 percent was added to the initial cost of materials and supplies to allow for miscellaneous items. Certain portions of these investment costs are eligible for investment tax credit. Such items as the pasture fences, paved outside aprons, feeders and waterers would qualıfy for the 10% investment credit. However, since part of the investment cost will not qualify and because the tax situation will differ widely for individuals considering these systems, no investment credit was deducted. Those individuals that can utilize investment credit

Figure 1 Matrix of Systems
may want to include the appropriate amount of investment credit in the cash flow at the time the credit would be received. Additional information is provided in the Internal Revenue Service, Farmers Tax Guide [8].

Prices for major feed inputs and livestock sales are 5-year planning prices based on discussions with Extension Agricultural Economists, at the University of Minnesota, and supported by Farm Planning Prices, October 1980 [20]. The major prices used were:

Corn - \$3.00 per bushel
Soybean Meal - \$14.50 per cwt.
Feeder Pigs - \$50.00 per head
Market Hogs - \$52.00 per cwt.
Other operating costs were based on the average cost from the 1978 and 1979 annual reports of the Minnesota Farm Management Association [2] and other current research.

Rations

Feed costs are a major cost component of raising hogs, making the assumptions in this area a very important part of the analysis. The seven basic rations used in this study to estimate feed requirements and feed costs were recommended by University of Minnesota animal scientists $[12,13,14,15]$. They are presented in Table 2.

Table 3 summarizes the feeding rates used in the analysis. The pounds of ration fed per head per day varied by season of the year and whether the animal was in pasture or drylot, as well as by the size of animal and stage in the reproduction cycle.

Other rations and feeding rates may be more economical and efficient for different prices, availability of feed ingredients and general management practices. However, these rations and feeding rates meet the nutritional requirements for the size of hogs included and can be expected to provide standard growth rates for swine in Minnesota.

Growing	Finishing	Gestation and Boars	Farrowing/ Lactation	Creep	Starter
- - - . - . - - - - - PERCENT - - - - - - - - - - - - - - - - -					
80.5	86.6	80.1	69.0	44.7	71.5
17.0	10.7	16.2	17.5	22.0	25.0
-	-	-	10.0	-	-
-	-	-	-	10.0	-
-	-	-	-	20.0	-
2.5	2.7	3.7	3.5	3.3	3.5
16.0	13.0	15.0	16.0	18.0	18.0
. 65	. 5	. 9	. 8	. 8	. 8
. 50	. 5	. 6	. 6	. 6	. 6

Table 2: RATIONS Ingredient

> Vitamin-Mineral
Supplement

Composition
\% Protein
\% Calcium
\% Phos.

Table 3: Daily Feeding Rates
Pounds PoundsPer DayPer DaySummerWinter
Market hogs and replacement gilts to prebreed
Grower ration - 40 to 110 1b. 4.3 5.3
Finishing ration - 110 to 220 lb 6.5 7.5
Sows and Gilts
Pasture Prebreed and Gestation Ration 3.3 5.5
Drylot Prebreed and Gestation Ration 4.5 5.5
Flush Gilts 6.5 7.5
Farrowing Pasture 4.0
Farrowing Drylot 5.0 5.0
Lactation Sows (summer \& winter)
3.0 plus 1 lb .per pig
nursingper day
Pigs
Creep - 1 week to 15 lb 11
Starter - 15 lbs , to 40 lbs. 1.8 1.8
Cul1 Sows
Finishing Ration 6.5 7.5
Boars 6.0 7.0

Anımal Schedules
With the exception of the one litter pasture system and the start-up years, the systems analyzed assume each sow or gilt is scheduled to farrow two times per year. Figure 2 shows the number of days required for each stage the sow goes through from one breeding period to the next. Purchased gilts are assumed to be bought 21 days prior to flushing and the flush period requires 14 days. This means new gilts are on the farm five weeks prior to breeding. The flush period for gilts is included for all systems except those utilızing pasture. The 114 days for breeding and gestation allow animals bred on the first day to farrow 114 days later. Those animals bred two weeks into the breeding/gestation phase will farrow during the maddle of the farrowing phase. The 28 days for farrowing and 14 for lactation allow the sow that farrows during the middle of the farrowing phase (the "average" sow) to lactate for four weeks. A minimum of 27 days is allowed to put the sow at the beyinning of the breeding gestation phase. During the final 14 days of this 27 day period is the flush period for the replacement gilts. This breeding, gestation, farrowing, lactation and prebred schedule is repeated twice each year to yield two farrowings per female per year. The length of the pre-breeding and lactation phases of the schedule 1 s adjusted for the pasture system in an effort to schedule the farrowings in the mildest months.

Boars are purchased thirty days prior to the beginning of breeding the first group of gilts. All systems assume a group of 3 boars - allowing one boar per ten gilts or sows plus one extra. Those boars are sold one week after they breed the last group of sows and gilts a second time. This prevents the possibility of inbreeding.

The schedule for the pigs raised can be described in relationshap to the rations fed during the various stages of growth as shown in Table 4. The analysis assumes that a pig will reach market weight at (1) 65 days for feeder pigs, or (2) 180 days for 220 pound market hogs.

Figure 2. The Schedules for Gilts and Sows in the Breeding Herd for 365 Days.

Table 4: Days on Feed for Pigs

Ration Fed	Weight of Pig		No. Days
	Begin	End	
Creep	-	15	28
Starter	15	40	37
Grower	40	110	50
Finishing	110	220	65

Market hogs are assumed to average 1.4 pounds of gain per day while on grower ration from 40 to 110 pounds and 1.7 pounds gain per day during the finishing period.

Space Requirements
The space needs per hog and the number of hogs determine the size of the facilities required. The space requirements recommended by the Midwest Plan Service $[21,22]$ were used in this study. They are summarized in Table 5.

Table 5. Space Requirements
Square Feet of Floor Space Per Hog

Open Front Housing

Sows and Boars:	15 covered, 10 outdoors	$15-20$
Sow and Litter:		
Pigs to 60 lbs: :		35
60 to 125 lbs.:	4	
125 covered, 6 outdoors	3	
12 ap $:$	5 covered, 7 outdoors	8

Pasture Space

10 gestating sows/acre
7 sows with litters/acre
50 to 100 growing-finishing pigs/acre depending on fertility

Shade Space
15 to 20 sq . ft./sow
20 to 30 sq . ft. /sow and litter
4 sq . ft./pig to 100 lbs .
6 sq . ft./pig over 100 lbs .
Feeder and Waterer Space
Self-feeders: one space per $4-5$ pigs
Supplement feeders: one space/15 pigs
Sow feeders: $1^{\prime} /$ sow se1f-fed, $2^{\prime} /$ sow all fed at once Waterers: one space/20 to 25 pigs.

FEEDER PIG PRODUCTION

Both the management skills of the operator and the environment provided are normally considered very important in farrowing and raising pigs to 40 pounds. The ability of the manager-operator to obtain and maintain high conception rates, adequate litter size and disease free hogs and pigs is crucial to the viability of the business. As the management level changes from farm to farm, so do such items as litter size that in turn changes the profitability of the swine enterprise. The environment in the farrowing and nursery facilities also play an important role in death loss and rates of gain.

In general the cleaner and more optimally controlled the environment, the lower the death loss and the higher the rate of gain. Thus a manager with given management skills would be expected to produce more pigs per litter in some facilities than others. This research is based on the same level of management skills across the systems analyzed. The feeder pig systems analyzed can be described in terms of the housing need and the number of litters farrowed per year. Systems A and B utilize portable buildings on pasture or dry lot. Systems ς_{2} and D are designed around two ways to remodel and use an existıng utilıty building. Systems E, F and G consider three alternative ways to remodel and use an old dairy stanchion barn. Finally, System H assumes new low cost buildings are constructed. More specifically, the feeder pig systems examined are:

System A - A pasture operation with the gilts farrowing in portable A-frame buildings once per year. Portable gestation facılities provide protection from the weather for the breeding herd.

System B - A pasture operation with 16 sows farrowing twice per year In portable A-Frame buildings. Both the nursery and gestation facilıtıes are portable buildings.

System C - A remodeled uninsulated building, such as an old utility building or garage is used for 2 farrowings per year and for nursery facilities. An open front remodeled shed is used as the gestation facility.

System D - The remodeled farrowing building used in System C has insulation and mechanical ventilation added to allow farrowing over more of the year. Four litters are produced per year. The breeding herd is housed in a new open front shed.

System E - A remodeled dairy barn with neither insulation nor mechanical ventilation is used to farrow two litters per year and as a nursery. A new open front shed is used for gestation.

System F - The remodeled dairy barn used in System E has insulation and mechanical ventilation added to allow four farrowings per year. The barn also includes the nursery facilities. The breeding herd is housed in a new open front shed.

System G - The major bullding in this system is the remodeled dairy barn of System E with insulation, mechanical ventilation and concrete manure storage added. The barn is used to farrow 6 litters per year and to house the nursery unit. Breeding animals are housed in a new modified, open front building.

System H - Uses a new pole building for farrowing and the nursery unit. The breeding herd is housed in another new pole bullding. Four litters are farrowed per year.

Anımal Flow
Minnesota Farm Management reports indicate the average number of pigs weaned per litter by cooperators is approximately 7.5 for farrow-to-finish operations. System G is a "mid point" of all systems ranging from pasture to total confinement. It is assumed a good manager using System G can wean an average of 7.5 pigs per litter. Using this point of reference, extension specialists familiar with alternative swine production systems developed the following weaning rates by systems which are assumed in the analysis.

System A - 7.5 pigs weaned per litter
System B - 7.0 pigs weaned per litter
System C - 7.0 pigs weaned per litter
System D - 7.3 pigs weaned per litter
System E - 7.0 pigs weaned per litter
System F - 7.3 pigs weaned per 1itter

System G-7.5 pigs weaned per 1itter
System H - 7.3 pigs weaned per litter
These litter sizes are for the normal herds made up of sows and replacement gilts retalned from the herd. The all gilt herds used during the first year of operation were assumed to wean .7 of a pig less.

The impact of conception rates, cul1ing rate and death loss on the animal flow for one group of females in the breeding herd is shown in Figure 3. This 52-week perıod begins with the initial breeding of 20 gilts. An 80 percent conception rate and 5 percent death loss 1 s assumed resulting in the sale of 3 unbred gilts and death loss of one gilt.
-17-
Figure 3. Affect of Conception Rates, Culling Rates, and Death Loss on the Breeding Herd for 52 Weeks Beginning at Start Up with all Gilts.

*Lf breeding takes place in late July or August then: (a) an all gilt herd of 23 is needed due to lower (70%) conception rate; (b) a sow-gilt herd will need 9 replacement gilts to compensate for 80% and 70% conception rate for sows and gilts, respectively.

The remaining 16 bred gilts go through gestation and farrow. Of these 16 females that have farrowed 3 sows are culled in accordance with a 20 percent culling rate and one sow dies. The 20 percent culling rate and 5 percent death loss used in the analysis results in no sow being held for more than four farrowings or two years. The 12 sows that remain are combined with 6 replacement gilts and bred. With an assumed conception rate of 90 percent for the sows and 80 percent for the gilts all but one sow and one gilt are bred leaving the prescribed 16 female unit comprised of 11 sows and 5 gilts. The only deviation in this schedule occurs when breeding takes place in 1ate July or during August. Because of the heat at that time of the year, the conception rates assumed are reduced to 80 percent for sows and 70 percent for gilts. This is the basis for the required animal numbers shown in Table 6.

System A is the only system producing 1 litter per year, and it is assumed that all sows are eulled and only gilts are maintained for breeding the following year. Systems B, C and E have one group of 16 females farrowing twice per vear to produce twn litters ner year. Systems D, F and H have 2 groups of 16 females with each group farrowing twice. System G has three groups of 16 sows and produces 6 litters per year. This requires breeding one group in late July or August which requires higher replacement numbers because of the lower conception rate.

Breeding schedules, litter size and the performance standards result in the animal flows shown in Figures 4, 5, 6 and 7 for the normal years of operation. The estimated annual sales from the animal flows for these alternatives are shown in Table 7.
Table 6: Required Number of Females Annually and Average Herd Size.

Figure 4. Production Calendar Systems A and B

Figure 5. Production Calendar for Average Year of Operation for Feeder Pig Systems C and E.

Week of:		
Jan.	3	
	10	
	17	
	24	
	31	
Feb.	7	
	14	
	21	
	28	
Mar.	7	77 Farrow
	14	$\sqrt{ }$
	21	1
	28	\square
Apr.	4	
	11	
	18	
	25	
May	2	Se11 3 cull sows
	9	106 feeder pigs
	16	\square Breed
	23	
	30	
June	6	-1
	13	
	20	1. gilt
	27	
July	4	
	11	
	18	
	25	
Aug.	1.	
	8	
	15	
	22	
	29	
Sept.	5	
	12	7 Farrow
	19	1
Oct.	26 3	4
	10	
	17	
	24	
Nov.	31	
	7 14	Sell 3 cull sows 106 feeder pigs
	21	\square Breed
	28	
Dec.	5	
	12	Sell non-breeder
	19	1 gilt
	26	1 sow

Figure 6: Production Calendar for Average Year of Operation for Feeder Pig Systems D, F and H.

Figure 7: Production Calendar for Average Year of Operation for Feeder Pig System G Groups

Building Systems and Investment Costs
Having determined the animal flow and levels of production, it is possible to establısh the facılitıes required. Several factors were considered in deslgning the necessary farrowing and gestation facilities for each sys tem.

The two major biological items considered were:

1. The buildings and structures must provide the space standards developed by Midwest Plan Service for raising hogs and feeder pigs.
2. The faclifies must be adequate to achieve the assumed performance standards with average or above average management ability.

Several additional factors were considered to meet the purpose of this study.

1. The components have to be low to medium investment relative to the larger confinement hog systems. Burldings that tend to meet this criteria are new low technology sheds and pole barns or remodeled sheds and barns.
2. Systems were designed having a low energy requirement. This was accomplished by incorporating natural ventilation whenever practical, and including insulation in buildings used for winter farrowings.
3. Facilities are kept simple enough that most of the construction and remodeling can be done by the owner operator.
4. Materials and supplies used in these buildings would be readily avallable in all areas of the state.

Tables 8 through 15 list the facilities included in the systems developed. Listed are all items that must be constructed, remodeled or purchased, with a brief description, the number of units, cost per unit

Item	Size and Description	Units	Cost	
Farrowing Huts	$\begin{aligned} & 7^{\prime} \times 7^{\prime} 11^{\prime \prime} \text { Wood } \\ & \text { A-Frame } \end{aligned}$	16	\$115	\$1,840
Waterers and	95 gallon stock tank	1	73	73
Feeders	2 ft . trough	1	11	11
	Pig cups-pans	8	8	64
Total				\$1,988
Gestation facilities 1 - Pasture System, 16 gilts, 3 boars				
Sow Shelters	8' x 16' portable	2	763	\$1,526
Boar Shelters	6' x 8' portable	1	285	285
Feeders	8 ft . trough	2	55	110
	2 ft . trough	2	14	28
Waterers	2 hole			
	frost proof	1	95	95
Plumbing- Electrical Water line, hydrant, electrical				
	for water heaters			960
Fencing \& Posts	$3240{ }^{\prime}$		1/ft.	3,240
Total				\$6,244

Equipment and Machinery

Loading and Sorting Chutes
$\$ \quad 445$
$\$ 8,677$
Total Hours of labor for construction

Table 9. The Facilities Required, The Investment Cost and The Labor Required for Construction for System B - 2 Litters Per Year

Farrowing facılities 1a-Pasture System, 16 A-Frame huts

Item	Size and Description	Units	Cost Per Un1t	Total
Farrowing Huts	$\begin{aligned} & 7^{\prime} \times 7^{\prime} \quad 11^{\prime \prime} \text { Wood } \\ & \text { A-Frame } \end{aligned}$	16	\$115	\$1,840
Waterers	95 gallon stock tank 2 ft. trough Pig cups-pans	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{array}{r} 73 \\ 11 \\ 8 \end{array}$	73 11 64
Portable Nursery Shelters	8' x 16' portable	2	785	1,572

Sow Shelters	8' x 16' portable	2	\$763	\$1,526
Boar Shelters	6' x 8^{\prime} portable	1	285	285
Feeders	8 ft . trough	2	55	110
	2 ft . trough	2	14	28
Waterers	$\begin{aligned} & \text { 2-hole } \\ & \text { frost proof } \end{aligned}$	1	95	95
Plumbing-				
Electrical	Water line hydrant, electrical for water heaters			960
Fencing \& Posts	$3240{ }^{\prime}$		1/ft.	3,240
Total				\$6,244

Equipment and Machinery
Loading and sorting chutes
$\$ \quad 445$
Total Equipment, Machinery and Facilities Investment
$\$ 10,249$
Total Hours of Labor for Construction
230 hours

Table 10. The Facılities Required, the Investment Cost and the Labor Required for Construction of System C - 2 Litters Per Year

Farrowing Facilities 2 - Remodeled Building

Item	Size and Description	Units	Cost per Unit	Total
Farrowing	Remode1	2 ¢		
House	16' x $28^{\prime} \mathrm{bldg}$.	488/sq. ft.	\$3.45/sq.ft.	\$ 3,190
Farrowing Crates	Wooden	16	\$100	1,600
Heating	250 Watt heat lamps	6	15	90
Total				\$ 4,880
Gestation Facılıtıes 2 - Remodeled Pole Buıldıng, 16 Sows, 6 Gilts, 3 Boars				
Building	Remodel			
	$32^{\prime} \times 40$ pole bldg.	1280 sq.ft.	\$. 35	\$ 448
Feeders	8 ft . trough	5	83	415
	2 ft . trough	2	11	22
Waterers	2-hole frost proof	2	95	190
	1-hole frost proof	1	75	75
Concrete, ReinforcingInside, Lot, Apron				
		2400 sq.ft.	. 58 sq.ft.	. 1,392
Fencing	Hog Panels	200 ft .	. 80	160
	Posts	25	1.75	44
Plumbing-Electric				960
Total				\$ 3,706
Equipment and Machinery				
Loadıng and sorting Chutes Manure Spreader - 100 bushel dry Used Skıd Loader				\$ 445
				2,000
				3,500
Total				\$ 5,945
Total Equipment, Machinery and Facilities Investment				\$14,531
Total Hours of Labor for Construction				200 hou

Table 11. The Facilities Required, the Investment Cost and the Labor

Farrowing Facilıties 3 - Remodeled Building with insulation and mechanıcal ventilation.

Item	Size and Description	Units	Cost per Unit	Total
Farrowing	Remodel and insulate	2 @	\$ 5.77/	
House	16^{\prime} x 28^{\prime} bullding	448 sq.ft.	sq. ft.	\$ 5,170
Farrowing				
Crates	Wooden	16	100	1,600
Heating	40,000 Btu/hr unit	2	260	520
	250 Watt heat lamps	14	15	210
Ventilation	$\begin{aligned} & 6 \text { fans (160, } 1040 \text {, } \\ & 1680 \text { CFM) } \end{aligned}$			1,500
Total				\$ 9,000

3 Boars.				
Building Concrete	16' x 64' open front	1024 sq.ft.	\$ 2.57/	\$ 2,627
	In building,		sq.ft	
	lot, apron	2816 sq.ft.	. $58 / \mathrm{s}$. 1,663
Fencing	Pen dividers	250 ft .		486
	Outside fence			250
Feeders	16-hole fence-1ine	3	325	975
	2-hole feeder	2	100	200
Feed system	3 ton bin and auger			1,625
Waterers	2-hole frost proof	4	100	400
Plumbing \& Electric				1,440

Total
$\$ 9,666$
Equipment and Machinery

Loading and sorting chutes \$ 445
Manure spreader - 100 bushel dry 2,000
Used skid loader
Total
Total Equipment Machinery and Facilities Investment
Total Hours of Labor for Construction
$\begin{array}{r}3,500 \\ 5,945 \\ \hline\end{array}$ \$24,611

464 hours

Table 12. The Facilities Required, the Investment Cost and the Labor Required for Construction of System E-2 Litters Per Year.

Farrowing Facilities 4 - Remodeled Dairy Barn.

Item	Size and Description	Units	Cost per Unit	Total
Farrowing Facilities	Remodel $36^{\prime} \mathrm{x} 38^{\prime}$ dairy barn	$1368 \text { sq.ft. }$	$\begin{array}{ll} \$ \quad & 1.81 / \\ & \text { sq.ft. } \end{array}$	\$ 2,473
Farrowing				
Crates	Steel	16	250	4,000
Heating	250 Watt heat lamps	9	15	135
Total				\$ 6,608
Gestation Facilıties 3 - New Open Front Shed with Lot, 16 Sows, 6 Gilts,				
3 Boars.				
Building	$16^{\prime} \mathrm{x} 32^{\prime}$ open front	512 sq.ft.	$\begin{array}{ll} \$ & 3.12 / \\ \text { sq.ft. } \end{array}$	\$ 1,598
Concrete	In building, lot, apron	1408 sq.ft.		823
Fencing	Pen dividers			244
	Outside fence	132 ft .	1/ft.	135
Feeders	10-hole feeders	3	200	600
	2 -hole feeders	1	100	100
Waterers	2-hole frost proof	2	100	200
Plumbing \&				1,250
Total				\$ 4,950
Equipment and Machinery				
Loadin	ting chutes			445
Manure	- 100 bushel dry			2,000
Used s				3,500
				\$ 5,945
Total Equipment, Machinery and Facilities Investment				\$17,503
Total Hours of Labor for Construction				248 hour

Table 14. The Facilities Required, the Investment Cost and the Labor Required for Construction of System $G-6$ Litters Per Year.

Table 15. The Facilities Required, the Investment Cost and the Labor Required for Construction of System $\mathrm{H}-4$ Litters Per Year.

Farrowing Facilities 7 - New Pole Building.

and total cost for each. New construction costs include all materials. Remodeling costs include the lumber, hardware, electrical supplies, plumbing supplies and concrete. Both the wooden farrowing crates that are constructed and the purchased steel crates contain waterers and feeders. In some systems certain common items, such as feeders and waterers, are used for both farrowing and gestation; these items are included as Investment costs for the gestation facilities. No labor cost or wage rates are included in these estimates; thus, $1 f$ it is necessary to hire part of the construction labor, for example, the concrete work, then that cost must be added to the investment costs. A detailed description of each system and an itemized list of materials required is given in Appendix A.

Enterprise Budgets

An annual enterprise budget is comprised of three major components. Gross receipts are an estimate of total income for the enterprise. Operating costs are a measure of the cash and non-cash expenditures during the year for variable resources. The last major component is the ownership costs which are the cash and non-cash costs related to fixed investment in the enterprise.

The gross receipts for the enterprise budgets shown in Table 16 through Table 23 list the sales that are expected based on the production calendar for an average year of operation. The prices for the culled breeding stock are based on $\$ 52.00$ per hundredweight for market hogs and the normal price differences for other classes of swine commonly paid at the South St. Paul market [18].

The annual price for feeder pigs of $\$ 50.00$ per head is seasonally adjusted for each marketing month. The feeder pig price index was calculated from the average prices paid by the "Wisconsin Feeder Pig Marketing Co-Op" [25] for 1970 through 1979. The monthly prices and the seasonal index are presented in Appendix C, Table 65.

Operating costs make up the major cost items on hog farms with the cost of feed being the largest operating cost. Total operating costs will vary as production varies, with increases in production resulting from increases in operation costs.

The production calendar provides the information on annual animal numbers over time for each system. Combining this with the rations fed and the corresponding feeding rates yields an estrmate of the amount of feed needed for each operation. Table 24 gives the calculated
-35-
TABLE 16. AVERAGE ANINAL COSIS AND RETURNS ENTERPRISE BUDGET FOR FEEDER PIG PRODUCTION, SYSTEM A IN AVEHAGE YEAR OF PRODUCTION.

-36-
TABLE 17 AVERAGE ANNUAL COSIS AND RETURN゙S ENTERPRISE BUDGET FOR FEEDER PIG PKODUCTIUN, SYSTEM B IN AVERAGE YEAR UF PRODUCTION.

ITEM WEIGHT UNIT	PRICE OR QUANTITY VALUE OR Per		
	EACH	COST/UNIT	

.1. GHUSS KELEIPTS

Ftedek pios	1:00	HD.	56.40	106.00	5978.40	
FEEDEK HIGS	1:00	HD.	43.35	106.00	4595.10	
GILT N: B .	2:90	CWT.	48.00	2.00	278.40	
SUw N: B.	3:60	CWT.	45.00	2.00	324.00	
SUW CULL	3. 70	CWT.	44.00	6.00	976.80	
BUAR	4:50	CWT.	39.00	3.00	526.50	
TOTAL					2679.20	39623

2. OHLRATINE CUSTS

CUKN	BU.	3.00	861.50
SUYBEAN MEAL	CWT.	14.50	116.00
MLNERALS	LBS.	. 05	2230.20
UATS	LBS.	. 07	125.20
WHEAT GHAN	LBS.	. 05	1120.00
SUGAR	LBS.	.17	62.60
GHINO MIX	TONS	4.50	30.00
VET \& MED.	DOL.	1.00	251.00
ELLCTKICIIY	KWH	. 05	2135.00
INS. Mive laxes	[DOL.	1.00	190.00
HAULING NKTG.	DOL.	1.00	390.00
MLSCL EXPENSE	DOL.	1.00	204.00
YUUNG BUAK	HD.	\$50.00	3.00
TRACTURS (rUEL,LUBE,REP)	OOL.		
MACHINEKY (FUEL, LUBE, REP)	DOL.		
EUUIPMENT (FUEL, LUBE, REP)	OOL.		
INTEREST UN OPER.CAP.,	DOL.		

TOTAL OPERATING COSTS
3. INCOME AGOVE OPERATING COSIS

* UNNERSHIH CUSTS

o. NEI REITINNS ABOVE GUSTS ShUWN
2043.84 6381

2 LITTHK-10 SOWS トARROWING IN PORTABLE A-FRAME RUILDINGS. PUKTABLE NUKSEGY AINO GESTAIDUN FACILITIES.
table 18. average annual cosis and returns enterprise budget for geeder pig production, system C in average year of production.

| ITEM | WEIGHI UNIT | PRICE OR |
| :--- | :---: | :--- | :--- | :--- |
| | EACH | COST/UNIT QUANTITY VALUE OR Per |

1. GRUSS KELEIPTS

FEEDE Prgs	1.00	HD.	56.40	106.00	5078.40
FEEDEK PIGS	1.00	HD.	43.35	106.00	4595.10
UHLT N: B.	2:90	CWT.	48.00	2.00	278.40
Suw N. B.	3.60	CWT.	45.00	2.00	324.00
SUW Cull	3:70	CWT.	44.00	6.00	976.80
hoar	4:50	CWT.	39.00	3.00	526.50
total					2679.20

2. uperating gusts
CURN
SUYBEAN MEAL.

MINERALS
oATS
WHEAT BKAN
SUGAR
GRIND * MIX
VET \& MEO: ELECTKLGIIY
Livs. and taxes hauling mktg. MISCL EXPENSE YUUNG BUAK TKACTUKS(FUEL, LUEGE,REP)

BU.

CWT.
LBS. $\quad 14.50$
LBS.
L'BS.
BS.
DOL.
DOL.
$\begin{array}{ll}\text { DOL. } & 1.00 \\ \text { DOL. } & 1.00\end{array}$
OOL. $\quad 1.00$
$\mathrm{HD} . \quad 450.00$

MACHINERY (FUEL, LUBE,REP)
DOL.
EWUIPNEINT (FUEL, LUBE,REP)
DOL.
INTFREST UN OPER.CAP.,
DOL.
total orerating costs
3. Incone naove operating cosis
4. Owivtrghir lusts

1NT. UN LIVESTOCK CAPITAL
DOL.
INT. UN EUUIPMENT
DOL.
INT. UN MACHINERY
DEPR ON FUUIPMENT
DOL.
DOL.
DERR. VIN MACHINERY
INS., IAXES ON EQHT., LVSTK..
AND MACH. DOL.
TOTAL OWNEPSHIH COSTS
$2651.25 \quad 8285$
b. tutal lusts shown
11670.4936470
o. det relurns above custs shumen
$1008.71 \quad 3152$
2 LITTEK-10 SOWS A REMODELEU UNINSULATEO BUILDING FOR FARROWING AND NURSFRY. UPLIN FKUVT KEMODELED SHED USED FOR GEGTATION.
table 19 average annual cosis and geturns enterprise pudget for feeder pig HKODUCTIUN, SYSTEM U IN AVERAGE YEAR OF PRODUCTION .
ITEM WEIGHT UNIT PRICE OR QUANTITY VALUE OR Per

1. GRUSS KELEIPTS

FEEDEK HIOS	1.00	HD.	56.65	111.00	6388.15
FEEOEK Higs	1:00	HD.	49.55	111.00	5500.05
FEEDEK HIGS	1.00	HD.	48.05	111.00	5333.55
FEEDEK riGs	1.00	HD.	43.35	111.00	4811.85
SOW N. B.	3:60	CWT.	45.00	4.00	648.00
GILT N: ${ }^{\text {S. }}$	2:90	CWT.	48.00	4.00	550.80
SUW CULL	3:70	CWT.	44.00	12.00	1953.60
BUAR	4.50	CWT.	39.00	3.00	526.50
TOTAL					5618.50

2. lperatlivo lusts

3. LITtER-3z gUWS A REMODELEU INSULATED ANU VENTILATED RUILDING FOR FARROWING
aLW OPEM FHUNT SHEU FOR GESIATION.
table 20 average annual cosis and retijrns enterprise budget for feeder pig phoduction, system e in average year of production.

```
1. GRUSS KECEIPTS
```

FEEDEN PIGS	1.00	HD.	56.40	1ヵセ.00	5978.40
FELDEH NIOS	1.00	HO.	43.35	106.00	4595.10
GLLT N: B.	2.90	CWT.	48.00	2.00	278.40
SOW N', B.	3.60	CWT.	45.00	2.00	324.00
SOW CULL	3.70	CWT.	44.00	6.00	976.80
BUAK	4.50	CWT.	39.00	3.00	526.50

total
12679.20396

```
L. OPERATING LOSTS
```


ט. VEI REIURNS ABOVE LOSTS SHUNN R18.73 25 59

2 LITTEK-10 SOWS REMODELED UNINSULATEO DAIRY BARN FOR FARROWING AND NURSERY. NEW OPEN FKUNT SHEU FOR GESIATION.
-40-
TABLE 21 AVERAGE AIUNUAL COSIS AND RETIIRNS ENTERPRISE RUDGET FOR FEEOER PIG PKODUCTIUN, SYSTEM F IN AVEKAGE YEAR OF PRODUCTION.

ITEM	WEIGHT EACH	UNIT	PRICE OR COST/UNIT	QUANTITY	$\begin{aligned} & \text { VALUE OR } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { Litter } \end{aligned}$

1. GRUSS RELEAPTS
FEEDEK HIGS
FEEDEK HIGS
FEEDEK HIGS
HELDEK RIGS
SUN N. G.
UNL N. H.
SUW CULL
BUAR

1.00	HO.
1.00	$H O$.
1.00	$H O$.
1.00	HD.
3.60	$C W T$.
2.90	$C W T$.
3.70	$C W T$.
4.50	$C W T$.

26.65
49.55
48.05
43.35
45.00
48.00
44.00
39.00
111.00
111.00
111.00
111.00
4.00
4.00
12.00
3.00
6288. 15
4.50 CWT .
COST/UNIT

QUANTITY COST Litter

TOTAL

2. OPERATINO LOSTS

TABLF 22 AVLRAGE ANNUAL \cos 'S AND RETURNS ENTERPRISE BUDGET FOR FEEDER PIG Production, system g in average year of production.

$1 \mathrm{IEM}^{\text {M }}$	WEIGHI EACH	UNIT	PRILE OR COST/UNIT	QUANTITY	VALUE OR COST	$\begin{aligned} & \text { Per } \\ & \text { Litter } \end{aligned}$

```
1. GRUSS KECEIPTS
```

retnek rios	1.00	HD.	52.55	111.00	5833.05
FEEDEK HIUS	1:00	HD.	58.50	114.00	0669.00
FELDEM rios	1.00	HD.	49.55	114.00	5648.70
rtadej ragos	1:00	HD.	48.55	114.00	5534.70
reEDek rius	1:00	HD.	46.95	114.00	5352.30
retuek rios	1.00	HD.	43.35	114.00	4941.90
suw in. b.	3.60	CWT.	45.00	7.00	1134.00
GHLT N. B.	2:90	CWT.	48.00	8.00	1113.60
suw cull	3:70	CWT.	44.00	18.00	2930.40
buar	4:50	CWT:	39.00	3.00	526.50
total					9684.15

```
a. OFERAT&M, LUSTS
```


b. TOIAL UUsTS SHOWN
34143.1335566
?. inet kelmars above custs shuwn
$5541.92 \quad 5772$
ts Litttr-40 sons kemodeled linsulated vent llated dairy rarn with manure
GTUKAI, -UK FARRUNLING AND UUKSERY.NEN MUDIFIED OPEN FRONT SHEN FOR GFGTATION
－42－
TAELE 23 AVERAGE ANNUAL COSIS AND FETUKNS ENTERPRISE BUDGET FOR FEECFR PIG PHODUCTIUN，SYSTEM H IN AVEHAGE YEAR UF PRODUCTION．

ITEM	WE IGHI EACH	UNIT	PRICE OR COST／UNIT	QUANTITY	$\begin{aligned} & \text { VALUE OR } \\ & \text { COST } \end{aligned}$	Per Litter

1．GRUSS RELEIPTS

－heder pros	$1: 00$	HD．	56.65	111.00	0248．15
FEEDEK HIOS	1.00	HD．	49.55	111.00	5500.05
rLGUEK rIob	1.00	HD．	48.05	111.00	5333.55
Fteloth rigs	1.00	HD．	43.35	111.00	4811.85
SuW N． 3.	3.60	CWT．	45.00	4.00	546.00
ง⿴囗⿱一一儿丶 T N．J．	2.90	CWT．	48.00	4.00	556.80
SUW CULL	3.70	CWT．	44，00	12.00	1953.60
GUAR	4.50	CWT．	39.00	3.00	526.50
TOTAL					5618.50

2 OHERATINO LOSTS

LURN
SUYEEAN MEAL
VINERALS
GRAIV
NHEAT GKAN
SUGAK
UKIND＊M1x
VET \＆Mt－U．
LIVS．AIVU IAXES
HAULING MKTG．
－${ }^{\text {a }}$ GA
ELECTKILITY
11SCL Exptinsé
YUUNG TiUAK
TKACTUKS（FUEL，LUEL，REP）
MACHINEKY（FUEL，LUEE，REP）
EWUIPVENT（FUEL，LUEE，HEP）
INTERES।

BU．	3.
CWT．	14.
LBS．	
LBS．	
LBS．	
YONS	4
DOL．	1
DOL．	1
DOL．	1
GAL．	1
KWH	150
DOL．	
HD．	
DOL．	
DOL．	
DOL．	
DOL．	

1727.90	5183.70	
234.00	3393.00	
4478.30	223.92	
261．60	18.31	114441
2293.30	114.67	
130.90	22.24	
63.60	236.20	
444.00	444.00	
290.00	290.00	
718.00	718.00	
664.00	604.00	
13316.00	732.38	$\} 10607$
264.00	204.007	
3.00	1300.00	
	$12+4.47$	
－	33.32	
	＋29．13	
	419.43	

3．IIVLGME ABOVE OPERATING COSIS
4．GNINERSHIH COSTS

U．1．EI hFIMris，ABOVE COSTS SHUNN
L LITrEM－3 \angle SOWS NEW POLE BUILDING FUD FARKOWING AND NURSERY．
ide role dUILGING FOR GESTAIION．
annual amounts of corn, soybean meal (48.5\%) and total pounds of feed necessary for each system. These reflect winter feeding between November and March, increased replacement numbers for summer breeding, and reduced feed for pasture systems. Thus, even though Systems B and C represent similar animal numbers, the nutrient value of the pasture replaces some of the corn and soybean meal requirements for System B.

Table 24. Annual Feed Requirement for Feeder Pig Production Systems

System	Bushels of Corn	Cwt. of 48.5\% Mea1	Tons of Total Feed
A	603.9	76.0	21.8
B	861.5	116.0	30.0
C	917.5	122.4	33.4
D	1727.9	234.0	63.6
E	918.6	122.6	33.6
F	1727.9	234.0	63.6
G	2671.9	363.9	97.2
H	1727.9	234.0	63.6

Three types of energy consumption are estimated as operating costs for the low to medium investment hog operations analyzed. They are (1) electricity for lighting and ventilation; (2) L.P. gas (or natural gas) for space heating, and (3) gasoline and diesel fuel to run machinery and equipment for such things as manure handling and disposal.

The level of energy consumption on a livestock operation is a function of many varıables including anımal numbers, inside-outside temperature and size of equipment. In this study the requirements for KWH of electricity are derived from estimates of KWH usage per month for the varıous electrical equipment [5], lights and ventilation fans used in a given system.

The heating calculations take into consideration the number of animals in the building, the ventilation rate, expected building heat loss, a desired insade temperature of $70^{\circ} \mathrm{F}$ in the farrowing house and $80^{\circ} \mathrm{F}$ in the nursery, and the expected outside temperature based on historical temperature data for Minnesota. The gasoline and diesel fuel requirements for manure handling reflects the level of manure the system is expected to produce, the type of manure handling system and size of tractor.

The estimated $\mathrm{KWH} /$ month for various electrical items is given in Appendix B. Also provided in Appendix B are the equations used to calculate the supplemental heat requirements and the temperature data.

Table 25 lists the estimated levels of energy consumption for the various systems. The pasture systems A and B require the least energy per litter because they do not require fuel for heating, manure loading and manure hauling. The calculated energy cost $1 s \$ 5.03$ per litter with System B and $\$ \mathbf{1 0 . 0 5}$ per 1 itter with System A. The energy costs for the other systems range from $\$ 26.65$ to $\$ 39.50$ per litter. The four litter systems D, F and H require the most energy per litter, $\$ 39.50, \$ 37.45$ and $\$ 37 \times 45$, respectively.

The other operating cost items are based on actual farm accounts, research findings and mid-1980 prices. These cost items are listed in each enterprise budget. The "Hog Producers Planning Guide" by the Agricultural Extension Service contains annually updated operating cost information [1]. The miscellaneous expense includes the cost of bedding, livestock supplies, small tools, office expenses and other minor items that can be attributed to the hog enterprise.

Table 25. Energy Requirements Per Year for the Feeder Pig Production Systems.

System	KWH of Electricity	```Ga1. of L.P. Gas for Heating```	Gallons of Fuel	Annual System Cost 2 /	Cost per Litter
A	2135	--	29	\$ 160.87	\$ 10.05
B	2135	--	29	160.87	5.03
C	8432	--	330	984.06	30.75
D	15700	664	633	2,527.70	39.50
E	6044	--	330	852.72	26.65
F	13316	664	633	2,396.58	37.45
G	19440	851	537	2,754.20	28.69
H	13316	664	633	2,396.58	37.45

1/ Other forms of energy, such as natural gas, may be used One gallon of L.P. yields $73,600 \mathrm{BTU}$ of heat based on $92,000 \mathrm{BTU} / \mathrm{gallon}$ and an 90 percent efficiency.

2/
Assumed prices: Electricity $\$.055 / \mathrm{KWH}$
L.P. Gas $1.00 / \mathrm{Ga}$. Diesel Fuel 1.50/Gal. Gasoline $\quad 1.60 / \mathrm{Ga}$.

Ownersh1p costs measure the annual cash and non-cash costs for the investment in the hog system. They include depreciation, interest on the money invested, real estate taxes and insurance. This includes interest on the investment at an annual rate of 12 percent which reflects cash interest expenditures and/or the opportunity cost of owner equity. The main ownership cost is depreciation on the facılities. The remodeled facılities were assumed to have a useful life of seven years while new
facilities are expected to be fully depreciated over 12 years. The livestock investment was calculated on an average investment of $\$ 160$ for gilts, $\$ 200$ for sows and $\$ 300$ for boars. These prices are the average of their assumed purchase price and salvage value. Insurance on the investment for buildings, machinery and livestock is estimated to be $.6 \%$ of average investment. Taxes are estimated as one percent of the average investment in buildings.

Net returns above costs shown is a measure of the profit of the individual enterprise and is the residual return to labor, management and land. Table 26 compares receipts, costs and net returns for the various systems. The net returns above costs shown range from a low of $\$-906.43$ for System A annually to a high of $\$ 5,541.02$ for System G. Systems E, C, B, D, H and F are ordered from low to high returns between the extremes.

The hours of labor required annually by each system also are shown in Table 26. System F which had the second highest net returns above costs shown has the highest net returns per hour, \$5.45. The other four 1 」.ter systems, D and H show net returns per hour just below that of

System	Total Gross Receipts	Total Operating Costs	\qquad	Net Returns Above Costs Shown	Total Labor Hours	Net Returns Per Hour	Net Returns Per Litter
A	\$ 7,374.30	\$ 6,004.38	\$ 2,276.35	\$-906.43	304	\$-2.98	\$-56.65
B	12,679.20	7,893.93	2,741.38	2,043.89	485	4.21	63.87
C	12,679.20	9,019.24	2,651.25	1,008.71	480	2.10	31.52
D	25,618.50	16,233.18	4,800.75	4,584.57	882	5.20	71.63
E	12,679.20	8,877.20	2,983.27	818.73	480	1.71	25.59
F	25,618.50	16,059.86	4,751.62	4,807.02	882	5.45	75.11
G	39,684.15	23,376.91	10,766.23	5,541.02	1264	4.38	57.72
H	25,618.50	16,030.76	4,929.69	4,658.05	882	5.28	72.78

System F. System G, the six litter system, which had the highest annual returns has substantially lower net returnsper hour than Systems D, F and H. The net return per hour of $\$ 4.38$ for System G results from two factors: 1) System G requires more labor than the other systems and 2) the high investment cost, particularly the $\$ 8,944$ for the concrete manure storage tank and $\$ 6,000$ for the liquid manure spreader increase ownership costs. Systems E, C and B with net returns per hour of $\$ 1.71$, $\$ 2,{ }^{1} 0$ and $\$ 4.21$ are substantially below the four litter systems. The low returns to these three systems reflect farrowing just two litters per year. The infrequent facility use does not generate enough gross income relative to the fixed ownership costs. For example, System F, which has higher net returns, has ownership costs of 19 percent of gross income, whereas System E's ownershıp costs are 24 percent of gross receipts.

Similar results are evident with net returns per litter. The four litter systems are again the most profitable and the one litter system least profitable. The two litter pasture system, however, is more profitable than the six litter System G on a per litter basis. This again reflects the high ownership cost of System G.

The lack of profit for System A $1 s$ the result of two items. First, the annual ownership cost for A is just slightly below that of the two litter systems; however, System A has substantially lower gross receipts. Secondly, total operating costs are high due to the year around feeding of the gilt breeding herd that produces Just one litter annually.

Table 27 gives a comparison of the change in net returns of the various systems as the price of energy inputs increase. Net returns are recalculated for energy price double and triple those used in the enterprise budgets. It is clear that the low energy use Systems A and B are little affected by the increase in energy prices and note that with tripled prices, System B is the only system that continues to show a positive net return. The more profitability of the energy intensive Systems D, F, G and Haredrastically reduced by the price increases. With a doubling of energy price and other costs held constant, the net returns of these systems are cut to less than one half. Increasing energy prices to triple current levels results in negative net returns. It may be argued that the price of all enerry items may not go up proportionally, particularly that electricity may not increase as rapidly as the other energy inputs. Assuming that the cost of electricity does not increase as rapidly would change the size of the net returns of Table 27 but not the relationship of the various systems since the low energy Systems A and B use mostly electricity, while the high energy use systems consume, proportionally to total energy use, less electricity.

Cash Flow Projections

Average annual enterprise budgets provide a great deal of information about the average profitability of an enterprise over a period of several years. However, they do not indicate how much cash is required during the first several years of operation to get the business established. Projected cash flows were prepared to analyze the amount of capital a farmer must provide from his own and borrowed capital during the first two years to operate each of these systems.

Table 27. Affect of Increased Energy Costs on Net Returns Per Litter for the Feeder Pig Production Systems.

The projected cash flows are based on:
(1) The construction and investment calendar for getting equipment and buildings in place and functioning on the farm, and
(2) The production schedule for purchasing the breeding stock and farrowing the first litter.

Obviously, these two time schedules are inter-dependent. The breeding stock cannot be purchased until the gestation facilities are ready for use and the farrowing facilities must be ready before the first farrowing.

Figures 8 through 12 depict the construction and production schedule for the first and second years of operation. These schedules form the basis for the cash flow analysis of the systems. The analysis assumes that no construction of new structures takes place until early spring when the frost has left the ground, but that remodeling of existing structures start somewhat earlier. Payment for construction materials are assumed to be made when the materials are used. Purchases of livestock and machinery are also assumed to be made when those items are scheduled to be placed in service or used on the farm. For example, Figure 11 indicates the first group of gilts are purchased after onehalf of the gestation building is completed.

Having established the schedule of construction and investment and determined the animal flow for the system, it is possible to generate a detailed monthly cash flow. Table 28 shows the detalled cash flow for System D during the third year of operation. The first section describes the monthly cash inflows of receipts to the feeder pig operation. The second section lists the cash expenditures for both operating inputs and the capital investments. The third section is the flow of funds summary. The first line of this section, cash balance beginning, indicates the monthly cash balance

Figure 8: Construction and Production Calendar for Farst Two Years of Operation for One-Litter Feeder Pig System A

Figure 9: Construction and Production Calendar for First Two Years of Operation for Two-Litter Feeder Pig System B

Figure 10. Construction and Production Caleñar for first Two years of Operation for Two-Litter Feeder Pig System C and E.

Figure 11. Construction and Production Calendar for First Two Years of Operation for Four-Litter Feeder Pig Systems D, F and H.
-55-

Figure 12. Construction and Proauction Calendar for First Iwo Years of Operation for Six-Litfer Feeder Pig System G.

on hand at the beginning of the month. Line 2, the cash difference between recelpts and expenses, is added to line 1 to give the current cash balance at the end of each month (line 3). If expenditures are greater than receipts and borrowing is necessary, the amount borrowed is shown in line 4. If recelpts are greater than expenditures and the difference is greater than the cash balance assumed, payments are made first on the interest accrued (1ine 6) at the specified interest rate (9 percent) and then on the loan principal (line 5). The cash balance at the end of the month (line 7) is at least equal to the assumed minimum cash balance. The cash balance ending for one month (1ine 7) 1s the cash balance beginning for the succeeding month. The fourth section is the current loan summary. The first, third, and fifth lines of this section show the accumulated borrowing, the accrued interest, and accumulated total debt (borrowing plus interest) carried over from the previous year of operation, respectively. The second, fourth, and sixth lines indicate the monthly accumulated borrowing, accured interest, and accumulated total debt which the enterprise accrues during the given year.

IIEM UNDIS	JhN	+ E H	mak	AHK	MA ${ }^{\text {r }}$	Jun	JUL	Aug	SEP	$0{ }^{1} 1$	nuv	DEC	TOTAL
LASH RtCEIHIS													
HEEDJKKIGS 1.U	u	0	6268.	0	0	0	0	0	0	0	\cup	n	6288.
retuek pios 1.0	u	0	0	0	0	5500.	0	0	0	0	0	0	5500.
retoen higs 1.0	u	0	u	0	0	0	0	0	5334.	0	0	0	5334.
tetutk pios 1.0	u	0	0	0	0	0	0	- 0	0	0	0	4812.	4812.
sum N.B. 1.0	162.	0	0	162.	0	0	162.	0	162.	0	0	0	648.
GILT N. B. 1.0	139.	0	159.	0	0	- 0	139.	0	139.	0	0	0	557.
SUW CULL 1.0	u	0	488.	0	0	488.	0	0	488.	0	0	488.	1954.
BUAR 1.0	\checkmark	0	0	027.	0	0	0	0	0	0	u	0	527.
TOTAL	501.	0	0916.	089.	0	5988.	301.	0	6123.	0	0	5300.	25619.
cash expledses													
LUKN 1.0	402.	587.	373.	<70.	bis.	343.	348.	595.	329.	338.	030.	417.	5184.
SUYtitaiv Meal 1.0	248.	409.	228.	167.	397.	212.	215.	425.	197.	204.	441.	251.	3393.
MINEHALS 1.0	18.	25.	16.	12.	24.	15.	15.	26.	14.	15.	27.	18.	224.
Uats 1.0	5.	0	0	4.	0 .	0	5.	0	0	5.	0	0	18.
WHEAI UKAN 1.0	19.	10.	0	16.	13.	0	18.	11.	0	17.	12.	0	115.
SUGAK 1.0	6.	0	0	5.	0.	0	6.	0	0	6.	0	0	22.
GKIND \times MIX 1.0	23.	32.	20.	15.	31.	18.	20.	33.	18.	19.	35.	22.	286.
VEI * MED. 1.0	51.	30.	30.	51.	30.	30.	51.	30.	30.	51.	30.	30.	444.
INS. AIVL TAXES 1.0	u	0	0	0	0	0	330.	0	0	0	0	0	330.
HATRING ${ }^{\text {MikSG. } 1.0}$	9.	0	166.	27.	0	166.	9.	0	175.	0	0	166.	718.
LH GAS 1.0	213.	153.	80.	14.	0	0	0	0	0	0	53.	153.	664.
KLECIKICIT 1.0	15.	180.	15.	15.	186.	15.	15.	186.	15.	15.	180.	15.	864.
$\begin{array}{ll}\text { M1SLL EXPENSE } & 1.0 \\ \text { YOUNG BOAR } & 1.0\end{array}$	21.	21.	21.	21.	21.	21.	1350.	21.	21.	21.	21.	210	$\begin{array}{r} 252 . \\ 1350 . \end{array}$
IKACIOK(FULL.LUB, KER)	u	0	311.	0	0	311.	0	0	311.	0	0	311.	1244.
MACHINE (FUEL OUAOREH)	u	0	8.	0	0	8.	0	0	8.	0	-	8.	33.
EGUIP. (FUELPLUBOEF)	50.	56.	56.	56.	Sf.	56.	56.	56.	56.	56.	56.	56.	667.
TOTAL	1083 .	1509.	1323.	673.	1310.	1195.	2458.	1382.	1173.	746.	1490.	1467.	15808.
Fluw of runus summaky	DOLLARS												
Cabh balanct begining	-	-0	-0	-0	-0	-0	2157 ${ }^{-0}$	${ }^{-0}$	4950	-0	-1490	303\% ${ }^{-0}$	
+CASH UIFFERENLE	-782.	-1509.	5593.	16.	-1311.	4793.	-2157.	-1382.	4950.	-746.	-1490.	3833.	9810.
-LURKEINT CASH BALANCE	-782.	-1509.	4593.	16.	-1310.	4793.	-2157.	-1382.	$4950 .$	-746.		$3833 .$	
+MONEY BUHROWEU	782 。	1509.	${ }^{0}$	0	1310.	${ }^{0}$	2157.	1382.	4039.	746.	1490		
-harmeint un loan	${ }^{4}$	0	4563.	0	0	3865.	0	0	4039.	0	0	2964.	
-hingerest raid ar .la	u	0	1030.	16.	0	928.	0	0	911.	0	0	869.	
= LASH BALARCE ENUINO	-u	-0	-0	-0	-0	-1)	-0	-0	-0	-0	-0	-0	
CURTENT LOAN SUmmaky					DOLLAKS								
3330 D . OULOAN OUT-JAN 1													
accumulaite burkumiligo - Uaclrued iNIERE	$\begin{aligned} & S 4087 . \\ & S Y-J A N \end{aligned}$.	31033.	31035.	32343.	28478 .	30035.	32016.	27978.	28724.	30214.	27249.	
ALCHUEU INIEREST AI • 12 333Us. 11 ACCUREU lUTAL	$333 .$ He日T		0	<94.	6uh.	0	285.	591.	0	280.	567.	0	
accumulatel lotal didit	34420 .	30270.	31033.	31527.	32944.	28478.	30919.	32608.	27978.	29004.	30781.	27249.	

The detailed cash flow projections for year one through the average year for all systems are presented in the Appendix D, Tables 67 through 85. These cash flow projections assume that average annual prices remain constant over the years analyzed. However, the base price of $\$ 50$ per head for feeder pigs is seasonally adjusted during the year based on the monthly price index presented in the Appendix. Withdrawals for family living expenses, labor, and income taxes are not included in the projected cash flows. These cash outflows depend on the individual and factors beyond the scope of this study. As including a simple labor charge of $\$ 5.00$ per hour indicates these items will increase the maximum debt levels and lengthen the debt repayment periods that are indicated by this study.

Figure 13 shows the monthly accumulated total debt for Systems B, C, D, and G for the first three years of operation. This provides a comparison of the maximum total debt for these four systems and the rate at which the debt is being retired from earnings generated. The maximum debt for B of $\$ 18,886$ occurs in October of the first year, while the maximum accumulated debt of $\$ 24,955$ for System C occurs in Aprı1 of the second year. System D has a maximum accumulated debt of $\$ 40,855$ in February of year two whereas the maximum for G of $\$ 82,047$ happens in March of the second year. Systems F and H are not shown here because the level of debt, its timing and reduction are almost identical to System C. Likewise, System E resembles System C. System A has similar characteristics as B, except it shows little net reduction in debt from year to year.

Figure 13 Monthly Total Accumulated Debt Levels for Feeder Pig Production Systems B, C, D and G.

Table 29 includes an estimate of the time required to repay the total accumulated debt for the various systems, first if there is no charge for 1abor and then if labor costs $\$ 5.00$ per hour. With no labor charge, and average annual prices held constant, System A is estımated to eliminate its debt after 17 years, whereas System B, the two litter pasture operation with its low investment, would retireits debt in $5 \frac{1}{4}$ years. The other two litter systems (C and E) take 10 to 15 years to repay the accumulated debt. The four litter Systems D, F and H need $6-3 / 4,6-1 / 2$ and $7-1 / 2$ years, respectively. The s1x litter system requires $8-1 / 2$ years. With a $\$ 5.00$ per hour charge for labor withdrawn, the shortest payback period is $10-3 / 4$ years for System F. Systems A, C, and E are estimated to require 75 years or more to retire the debt when a $\$ 5.00$ per hour labor charge is withdrawn. In these situations the cash difference is barely enough to cover annual interest cost leaving 1ittle money to apply to principal payments.

Table 29. Approximate Number of Years Required to Repay the Total Investment with Earnings From the System.

With Labor
System Labor Charge
Charges of $\$ 5.00$ Per Hour
A
17
5-1/4
10-1/4
C
10
**
D
6-3/4
$11-1 / 4$
E
15
F
6-1/2
10-3/4
G
8-1/2
15
H
$7-1 / 2$
14
** Over 75 years

The farrow-to-finish enterprise integrates both the production of feeder pigs and the feeding of the pigs produced to a slaughter weight of 220-230 pounds. The other types of swine production, the feeder pig operation and the finishing operation, can be thought of as components of farrow-to-finish operations.

The production systems used for farrow-to-finish enterprises can be described in terms of the housing used and the number of litters farrowed per year. Many production systems can be used for farrow-to-finish operations, these being combinations of the types of feeder pig operations and finishing operations. The feeder pig systems A through H analyzed in the previous section of this report provide the basis for the farrow-to-finısh systems examined here. Finishing facilities are added to each of these feeder pig systems to develop the following farrow-to-finish operations:

System A - A pasture operation with 16 gilts farrowing in portable A-frame buildings once per year. Portable gestation facilıties are used to house breeding stock. Hogs are finished in a remodeled permanent building.

System B - A pasture operation with 16 sows farrowing twice per year in portable A-frame buildings. Portable buildings are also used for nursery and gestation facilities. Finishing is in a remodeled building such as an old utility shed or garage.

System C - An uninsulated remodeled building, such as a utilıty building or garage, is used for two farrowings per year. An open front remodeled shed is used to house the breeding herd. Another remodeled building is used to finish slaughter hogs.

System D - The remodeled farrowing bullding has insulation and mechanical ventilation added to allow farrowing over aore months of the year. Four litters are produced per year. The breeding herd and hogs belng finished are housed in new open front sheds.

System E - A remodeled uninsulated dairy barn is used for farrowng two litters per year. A new open front shed is used to house the breeding herd, and a remodeled building is used to finush hogs.

System F - Insulation and mechanical ventilation are added to the renodeled dairy barn used in System E to allow four farrowings per year. Sew open front sheds are used for gestation and finishing facilities.

System G - The remodeled darry barn with insulation and mechanical ventilation for farrowing used in system F provides farrowing facilities. A nursery and concrete manure storage are added so the building can be used for six litters per year. The breeding herd is housed in new modified open front facilities. Finishing is done in a new open front shed. shed.

System H - A new pole building is used for farrowing and houses the nursery unit, which is large enough to hold the pags during the early growing phase during winter months. The breeding herd is housed in another new pole building. A new open front shed is used for finishing the four litters produced annually.
Animal Flow
Given that the same facilities are used for farrowing and gestation in the farrow-to-finish operations as in the feeder plg systems, and assuring the same breeding schedules and management level, it follows that the number of pigs weaned per litter should also be the same. The following weaning rates used for the farrow-to-finish systems are identical to those for the corresponding feeder pig systems:

System A - 7.5 pigs weaned per litter
System B -7.0 pigs weaned per litter
System C -7.0 pigs weaned per litter
System D - 7.3 pigs weaned per litter
System E - 7.0 pigs weaned per litter
System F - 7.3 pigs weaned per litter
System G - 7.5 pigs weaned per litter
System H -7.3 pigs weaned per litter
These litter sizes are for the normal herds made up of both sows and gilts. The all gilt herds used during the first year of operation were assumed to average . 7 of a pig less.

Assuming 90 percent and 80 percent conception rates for sows and gilts, respectively, (except during July and August when these rates are reduced 10 percent), and a culling rate of 20 percent, results in similar anımal flows for the breeding herds in the farrow-to-finish systems as were shown in Figure 3 for the feeder pig systems. With these systems, however, the 40 pound feeder pigs are moved to the finishing facilities where they begin the growing-finishing process. A 3 percent death loss is assumed during the growing and finishing period. The animal flows shown in Figures $14,15,16$ and 17 for the normal years of operation are based on these assumptions. Table 30 gives the estimated number of animals sold annually for each of the elght systems.

Figure 14. Average Year of Operation for Farrow-to-Finish Systems A and B

	A	B	
Week of:		Weeh of:	
Jan. 3		Jan. 3	
10		10	
17		17	
24		24	
31		31	
Feb. 7		Feb. 7	
14		14	
21		21	
28		28	
Mar $\quad 7$		Max. 7	Sell 103 markel
14	Sel1 89 market	14	hell 103 hogs
21	hogs	21	
28		28	\square Farrow
Apr. 4		Apr. 4	$\sqrt{ }$
11		11	1
18		18	L
25		25	
May 2		May 2	
9	\longrightarrow Breed	9	
16	Breed	16	Sell 3 cul
23		23	sows
30		30	
June 6		June 6	-1
13	Se11 non-breeder $\$$	13	Sell non-breeders
20	3 gilts	20	1 gilt
27		27	1 sow
July 4		July 4	
11		11	
18		18	
25		25	
Aug. 1		Aug. 1	
8		8	
15		15	
22		22	
29		29	
$\text { Sept. } 5$	$\square^{\text {Farrow }}$	Sept. 5	$7{ }^{\text {Earrow }}$
12	$\sqrt{1}$	12	$\sqrt{ }$
19	,	19	$1 /$
26	\square	26	\checkmark Sel1 103
$\text { Oct. } 3$		Oct. 3	market ho
10		10	- market
17		17	
24		24	
31	Sell 15 Cull Sows	31	
Nov. 7	Sell 15 Cull Sows	Nov. 7	Sell 3 cujl sows
14		14	
21		21	
28		28	
Dec. 5		Dec. 5	Breed
12		12	Sc11 non-br
19		19	1 gilt
26		26	1 Sow

Figure 15. Average Year of Operation for Farrow-to-Finish Systems C and E

Week of:		
Jan.	3	
	10	
	17	
	24	
	31	
Feb.	7	
	14	
	21	
	28	
Mar.	7	
	14	$\sqrt{\text { Sell } 103}$
	21	market
	28	hogs
Apr.	4	
	11	
	18	
	25	Sell 3 cull sows
May	2	
	9	Breed
	16	Breed
	23	
	30	
June	6	
	13	Se11 non-breeders
	20	1 gilt
	27	1 sow
July	4	
	11	
	18	
	25	
Aug.	1	
	8	
	15	
	22	
	29	
Sept.	5	
	12	$7 \begin{aligned} & \text { Farrow } \\ & \text { Sell } 103\end{aligned}$
	19	- $\begin{aligned} & \text { market }\end{aligned}$
	26 3	\intmarket hogs
Oct.		
	17	
	24	
	31	
Nov.	7	Sell 3 cull sows
	14	Breed
	21	
Dec.	5	
	12	
	19	
	26	$\underline{1} 1$

Figure 16. Average Year of Operation for Farrow-to-Finish Systems D, F and H

Groups

Figure 17. Average Year of Operation for Farrow-to-Finish System G

Table 30. Number of Animals Sold Annually

System	Slaughter Hogs	Cul1 Sows	Nonbred Sows	Nonbred Gilts	Boars A	89

Building Systems and Investment Costs
There are many types of bualding facilıties that can be employed to finish hogs in a farrow-to-finish operation. The appendix contalns a detalled description and an itemized list of materials for five alternative finıshing facilıtıes ranging from very low to high investment facilities that were consldered in this study. Briefly they are:

Finishing Facility 1 is a pasture system, with 130 hog capacity. Portable sun shades allow for finishing one group of hogs per year during the summer months.

Finishing Facility 2 has a remodeled building or garage with 130 hog capacity. This building is uninsulated and has natural ventilation.

Finishing Facility 3 is a new open front shed with concrete lot and a capacity of 280 hogs.

Finishing Facility 4 is a modified open front building with partial pit and has a capacity of 280 hogs.

Finishing Facility 5 is a totally confined structure with partially slotted floor and flush system to move manure to lagoon storage and treatment with a 440 hog capacity.

The objective of this study is to develop low to medium investment hog production systems with relatively low energy requirements for heat and ventilation. Furthermore, the facilıties are to be of simplistic design so that most of the construction and remodeling can be done by the owner-operator from readily available materials and supplies.

In addition, all facilities must: (1) provide the space requirements as developed by Midwest Planning Service as given in Table 5, and (2) be designed to allow achievement of the performance standards with average or above average management. Finishing Facilities 4 and 5 with their high investment and complex technology do not meet these requirements for low investment farrow-to-finish operations. On the other hand Finishing Facilities 1, the pasture operation, cannot be used because it does not allow for finishing during the winter months, which all the farrowing operations used in this study require. Thus, Finishing Facllities 2 and 3 are combined with the farrowing, gestation and nursery facilities for feeder pig systems A through H to form the farrow-tofinish systems analyzed in this study. Finishing Facility 2 has a capacity for 130 hogs and is used for the one and two litter farrow-to-finish systems. Finishing Facility 3 is added as a component of the systems that farrow 4 and 6 litters per year. Table 31 describes these two facilities, and gives the Investment cost and labor requirements for remodeling and construction. The resulting investment costs and construction labor requirements for farrow-to-finish systems A through H are given in Table 32.

Table 31. The Investment Costs and Labor Required to Construct Finishing Facilities Used in the Farrow-to-Finish Swine Systems.

Finishing Facılities 2 - Remodeled Building, 130 hog capacıty. Insulated, naturally ventilated building with concrete floor.

Item	Size and Description	Units	Cost Per Unit	Total
Remodel Building ${ }^{1}$	$36^{\prime} \times 48^{\prime}$	$1728 \mathrm{ft.}^{2}$		1,782
Concrete and Reinforcing		$1728 \mathrm{ft}.{ }^{2}$		1,031
Feeders	8 hole fence line	4	250	1,000
Waterers	2 hole	4	25	100
TOTAL				3,913

TOTAL HOURS OF LABOR FOR CONSTRUCIION - 72 hours

Finishing Faclifies 3 - New open front shed with lot, 280 hog capacıty.

Item

Open Front Building ${ }^{2}$	$16^{\prime} \times 96^{\prime}$	$1536 \mathrm{ft} .^{2}$		4,544
Concrete and Reinforcing	$56^{\prime} \times 96^{\prime}$	5376 ft. ${ }^{2}$	\$ $.58 / \mathrm{ft} .^{2}$	3,127
Pen Dividers	Wooden planks			562
Fencing	Hog panels	352 ft .	. $80 / \mathrm{ft}$	282
	Posts	23	5.00	115
Feeders	10 hole feeder	3	500	1,500
Waterers	2 hole frost proof	3	100	300
Feed System	14.7 ton			2,808
TOTAL				13,238

TOTAL HOURS OF LABOR FOR CONSTRUCTION - 480 hours

1/ Includes electrical, plumbing and pen partitions.
2/ Includes construction materials, plumbing, and electrical.

Table 32. Total Investment Cost and Labor Requirement for Construction of Farrow-to-Finish Systems

Syster	Total Investment in Machinery, Equipment and Facilities	Total Hours of Labor Required for Construction
A	$\$ 12,590$	238
B	14,162	302
C	18,444	272
D	37,849	944
E	21,416	728
F	37,616	864
G	72,040	1,008
H	42,242	1,080

Enterprise Budgets
The enterprise budgets for the farrow-to-finish operations shown in Tables 33 through 40 are based on the average year production calendars shown in Figures 14 through 17. The gross receipts assume an average annual price of $\$ 52.00$ Der hundredweight for a 220 pound market hog. This price is seasonally adjusted for each marketing month based on the seasonal index presented in Appendix C, Table 66. This andex was calculated using monthly prices from seven major U.S. hog markets [L].

Operating cost is the major cost component of the farrow-to-finash operations, and feed costs are the largest portion of operating cost. The production calendar provides the anformation on annual anmal numbers for the various systems. The feeding rates for the breeding herd of the farrow-tofınish systems are identical to those used vith the feeder pig production

TAULE 33 AVERAGE ANNUAL COS 15 AND RETIJRNS ENTERPRISE BUDGET FOR FARROW-TOFINISH. SYSTEM A IN AVERAGE YEAR OF PRODUCTION.

	ITEM WEIGHT EACH	UNIT	PRICE OR COST/UNIT	QUANTITY	$\begin{aligned} & \text { VALUE OR } \\ & \operatorname{COST} \end{aligned}$	Per Cwt Pork Sold
1. GROSS kELEIPTS						
	SLAUGHTEH HOGS 2.20	EWT.	51.17	99.00	10018.69	
	GILT N.B. 2.90	CWT.	48.00	3.00	417.60	
	SUW CULL 3:70	CWT.	44.00	15.00	2442.00	
	HOAR 4\%50	CWT.	39.00	3.00	526.50	
	TOTAL				13404.79	4901
2. OFERAT CNG LOSTS						
	CUKN	BU.	3.00	1672.30	5016.907	
	SUYbean meal.	CWT.	14.50	169.30	2454.85	
	MINERALS	LBS.	. 05	3375.10	168.76	
	UATS	LBS.	.07	62.f0	4.38 \}	2904
	WHEAT BKAN	LBS.	. 05	672.00	33.60	
	SUGAR	L8S.	.17	31.30	5.32	
	GRIND M M	TONS	4.50	57.50	258.75	
	VET MED	DOL.	1.00	178.00	178.00	
	ELECTKLCITY	KWH	. 05	2415.00	132.82	
	INS. ANU TAXES	DOL.	1.00	115.00	115.00	
	MKTG \& HAULING	DOL.	1.00	350.00	350.00	
	MISCL EXPEINSE	DOL.	1.00	306.00	306.00	1372
	YOUNG DUAK	HD.	450.00	3.00	$1350.00\}$	
	I RACTUKS (FUEL, LUBE, REP)	DOL.			237.45	
	MACHINTHY (FUEL L LUUE,REP)	DOL.			13.36	
	LUUIPMENT (FUEL LUBE,REP)	DOL.			719.70	
	INTERESI UN OPER.LAP..	DOL.			351.39	
	TOTAL OPERATING COSTS				11695.28	4276
3 '.	INCOME ADOVE OPERAIING COSTS				$170^{9} .51$	625
4.	OWNERSHIP COSTS					
	INT, UN LIVESTOCK CAPITAL	DOL.	. 12	3200.00	394.00	
	ITT. UN EUUIPMENT	DOL.	.12	0295.00	755.40	
	INT. UN MACHINERY	DOL.	. 12	752.12	90.25	
	LLHR. UIV EJUIPMENT	OOL.			1772.08	
	ULHK. UN MACHINEKY	DOL.			89.62	
	INS..IAXES ON EQRT., LVSTA.,					
	AND MACH.	DOL,			124.43	
	TOTAL OWNERSHIP COSTS				3215.79	1176
5.	TUTAL LUSTS SHOWN				14011.07	5452
b.	NET REIUKNS ABOVE COSTS SHUWN				-1506.28	- 551
	1 LITrERー10 GILTS トARROWING I fOKtable gestation facilitats	10 POR . REM	Le A-FRAME	UILDINGS. T BUILDING	OR FINISHIN	NC.

TABLE 34 AVERAGE ANIVUAL COSIS AND RETURNS ENTERPRISE BUDGET FOR FARROW-TOFLNISH, SYSTEM B LN AVERAGE YEAR OF PKODUCTION.

$1 T E M$	WEIGHI EACH	UNIT	PRICE OR COST/UNIT	QUANTITY	VALUE OR COST	Per Cwt Pork Sold

1. GKUSS KLLEIPTS

SLAUGHTER HOGS	2.20	CWT.	51.17	103.00	11544.67	
SLAUGHTER HOGS	2:20	CWT.	52.62	103.00	11924.60	
GILT N.B.	2.90	CWT.	48.00	2.00	278.411	
Sow N.B.	3.60	CWT.	45.00	2.00	324.00	
SÚw cull	3:70	CWT.	44.00	6.00	976.80	
SUAR	4:50	CWT.	39.00	3.00	526.50	
TOTAL					25624.97	5106

C. JHERATLNG LOSTS

LUKN	BU.	3.00	3122.60	9367.80	
SUYREAN MEAL	CWT.	14.50	308.00	4466.00	
MLINERALS	LBS.	. 05	5850.70	292.53	
UATS	LBS.	. 07	125.20	8.76	2924
WHEAT OKAN	LBS.	. 05	1120.00	56.00	
SUOAR	LBS.	.17	62.60	10.64	
GNIND M MAX	TONS	4.50	105.00	472.50	
VLT MED	DOL.	1.00	347.00	347.10	
CLECTHICIIY	KWH	. 05	2695.00	148.23	
INS. MivU taxes	DOL.	1.00	215.00	215.00	
MKTG HAULING	OOL.	1.00	628.00	628.00	
MISCL EXPENSE	OOL.	1.00	306.00	$306.00\}$	941
YUUNG BUAK	HD.	450.00	3.00	1350.00	
JHACTUKS(rUEL, LUBE, REP)	DOL.			377.39	
MAChiNEKY(FUEL, LUEt, Rtp)	DOL.			23.61	
EWUIPMENT (FUEL, LUUE,REP)	DOL.			808.53	
INTEREST ON OPER.LAP.,	UOL.			521.16	
TOTAL OHERATING COSTS				19399.17	3865
Income abuve operating cosis				6225.80	1240
Owithrshir Costs					
IHP. UN LIVESTOCK LAPITAL	DOL.	. 12	4260.00	511.20	
1VI. UN EWUIPMENT	DOL.	. 12	7081.00	849.72	
ITT. UN MACHINERY	DOL.	. 12	1119.41	134.33	
LLHR, UN EUUIPMENT	DOL.			1996:65	
DEHR. UIN MACHINEKY	DOL.			133.60	
LNS., IAXES ON EQPY'., LVSTK.,					
ANT MACH.	DOL.			145.57	
TOTAL UWINFRSHIP LOSTS				3771.07	751
TUIAL LUSTS SHOWN				23170.24	4617
NET REIUHNS ABOVE COSTS SHUWN				2454.73	489

2 LIITEK-IO SOWS +ARROWING IN PORTABLF A-FRAME BUILDINGS. PORTABLE NURSERY ANU GESTATLON FACILITIES. KEMODELED PERMANENT HUILDING FOR FINISHING.

TAELE 35 AVERAGE ANNUAL COSIS AND RETURNS ENTERPRISE BUDGET FOR FARROW-TOFINISH, SYSTEM C LN AVERAGE YEAR OF PRODUCTION.
ITEM WEIGHI UNIT PHICE OR QUANTITY VALUE OR PER CWT

1. Gruss keleipts

SLAUGHIEK HOGS	$2: 20$	CWT.	51.17	103.00	11594.67
SLAUGMER HOGS	2.20	CWT.	52.62	103.00	11924.60
GILT N.B.	$2: 90$	CWT.	48.00	2.00	278.40
SUW N.B.	$3: 60$	CWT.	45.00	2.00	324.00
SUW CULL	$3: 70$	CWT.	44.00	6.00	976.80
BUAR	$4: 50$	CWT.	39.00	3.00	526.50
					-25624.97
TOTAL					

2. OPGRATLNG LOSTS
CURN
SUYEEAN MEAL
MINFRALS
$\left.\begin{array}{lrrr}\text { BU. } & 3.00 & 3176.10 & 9528.30 \\ \text { CWT. } & 14.50 & 299.10 & 4336.95 \\ \text { LBS. } & .05 & 6328.40 & 316.42 \\ \text { LBS. } & .07 & 125.20 & 8.76 \\ \text { LBS. } & .05 & 1120.00 & 56.00 \\ \text { LBS. } & .17 & 62.60 & 10.64 \\ \text { LBS. } & 4.50 & 108.50 & 488.25 \\ \text { DOL. } & 1.00 & 322.00 & 322.00 \\ \text { KWH. } & .05 & 8984.00 & 494.12 \\ \text { OOL. } & 1.00 & 185.00 & 185.00 \\ \text { DOL. } & 1.00 & 629.50 & 629.50 \\ \text { OOL. } & 1.00 & 342.00 & 342.00 \\ \text { HD. } & 450.00 & 3.00 & 1350.00 \\ \text { BOL. } & & & 931.37 \\ \text { DOL. } & & & 41.01 \\ \text { DOL. } & & & 585.30 \\ \text { DOL. } & & & 560.39\end{array}\right\}$
560.39

OATS
WHEAT BRAIV
SUGAK MIX
.17
VET \& MED
ELECTKICITY
LiNS. ANL 1 AXES
1.00
84.00
629.50

MISCL EXPENSE
1.00
3.00
342.00

1084
YUUNG BUAK
TKACTUKS (FUEL, LUBL, REP.)
MACHIJERY (FUEL, LUBE, REP) DOL.
EUUIPNENT (FUEL, EUGE, REP)
DOL.
TOTAL UPERATING COSTS
3. Iivcume above operating costs
$20186.08 \quad 40.22$
4. OWIVERSHIH COSTS

INT. UN LIVESTOCK CAPITAL
.12

4260.00	511.20
6472.00	776.64
1708.55	205.03
	1822.65
	201.97
	139.36

INT. UN EGUIPMENT
OOL.
.12
.12
.12
$5438.89 \quad 1084$

INT. UN MACHINEKY 이․
ULPR. UN MACHINERY DOL.
INS.. IAXES ON EOH7.. LVSTK..
AND MACH. DOL.
TOTAL OWNERSHIH COSTS
36b6. 85729
5. TOTAL LUSTS SHOWN
$23942.93 \quad 4751$
O. NET REIURNS ABOVE COSTS SHUWIN
1782.04

355

2 LITTEK -16 SOWS A KEMODELEU UNINSULATED EUILDING FDR FARROWING AND NURSFRY. OHEN FKONT REMODELED SHED FUR GESTATIDN: KEMODELED BUILDING FOR FINISHING.
table 36 average annual cosis and returns enterprise budget for farrow-tom FINISH, SYSTEM D iN AVERAGE YEAR OF pRODUCTION.

1. Gruss ktceipts
SLAUGHILK HOGS
SLAUGHTEK HOGS
SLAUGHIER HOGS
SLAUGHIER HOGS
GLLT IV.U.
SUW IV.B.
SUW CULL
GUAR

2.20	$C W T$.
2.20	$C W T:$
2.20	$C W T$.
$2: 20$	$C W T$.
2.90	$C W T$.
3.60	$C W T$.
3.70	$C W T$.
4.50	$C W T$.

51.17
51.95
52.62
60.34
48.00
45.00
44.00
39.00

107.00	12044.95	
107.00	12228.56	
107.00	12387.69	
107.00	11849.09	
4.00	556.80	
4.00	648.00	
12.00	1953.60	
3.00	526.50	
		52195.19

<. OPERATANU lOSTS

CURNSUYBFAN MEALMINERALSUATSWHEAT GRANSUGARGRINTVEI MIX MEUINS. ANU IAXESMKIG HAULING

BU. 3.00
$\left.\begin{array}{rr}6393.00 & 19179.00 \\ 625.60 & 9071.20 \\ 12600.20 & 630.01 \\ 261.40 & 18.30 \\ 2293.30 & 114.66 \\ 130.70 & 22.22 \\ 219.00 & 905.50 \\ 689.00 & 689.00 \\ 380.00 & 330.00 \\ 1289.50 & 1299.50 \\ 664.00 & 604.00 \\ 20500.00 & 1127.50 \\ 378.00 & 378.00 \\ 3.00 & 1350.00 \\ & 1804.24 \\ & 74.33 \\ & 944.78 \\ & 1052.73\end{array}\right\}$

LHGAS
ELECTKIしIIY
MISCL ExpeivSE
CWT. 14.5
SUYBEAN MLAL
LBS. . 0
.05
LBS.
LBS.

YUUNG BUAK
LBS
TONS
.1
4.5
.17
.50
DOL. $\quad 1.00$
380.00
1289.50
$\begin{array}{ll}\text { DOL. } & 1.00 \\ \text { GAL. } & 1.00\end{array}$ HACTUKSG
$\begin{array}{lr}\text { DOL. } \quad 1.00 \\ \mathrm{HD} . & 450.00\end{array}$
20500
9.51

UEL,LUBE,REP)
DOL.
MACHINEKY (FUEL, LUHE,REP) OOL:
EWUIPMENT (FUEL, LUBE, REP)
DOL:
LINTERESI UN OPER.CAP.,
DOL.
1052.73

TUTAL OHERATING COSTS
د. INLOME AGOVE OPERATING COSIS
$12420.22 \quad 1211$
4. OWINERSHIP LOSTS

INT. UN LIVESTOCK CAPITAL
$\begin{array}{ll}\text { INT. UN EWUIPMENT } & \text { OOL } \\ \text { INT. UIW MACHINERY } & O O L\end{array}$
OOL.
OOL.
INI. UIW MACHINERY
UERHR UI EQUIFMENY
OOL:
UEHK. UIN MACHINEKY
INS. I IXES ON EOHT. LVSTK.
AND ${ }^{\prime} A C H$. DOL.
TOTAL UWNERSHIH COSTS
$\begin{array}{rrr}.12 & 7620.00 & 014.40 \\ .12 & 10219.50 & 1946.34 \\ .12 & 3171.56 & 380.59\end{array}$
3238.96
UER'R. UI EUUIPMENY
ULHR. UI MACHINEKY
2. TOIAL GSTS SHOWN
$40033.73 \quad 4579$
u. Mel fflurivs above lusts shuwn
$5241.46 \quad 511$
4 LITTER-3」 SOWS A REMODFLEU INSULATEI ANU VENTILATED RUILOING FOR FARROWING
f.EW OPE: FRUNT SHEU FOR GESIATIO AND FOR FINISHING.
-78-
TAGLE 37 AVERAGE ANNUAL COSIS AND RETIURNS ENTERPRISE BUDGET FOR FARROW-TOFINISH, SYSTEM E IN AVERAGE YEAR OF PRODUCTION:

1. Gross receipts
SLAUGHFER HOGS
SLAUGHIER HOGS
GILT N.B.
SUW NAB.
SUW CULL
BUAR

$2: 20$	CWT.	51.17
$2: 20$	CWT.	52.62
2.90	CWT.	48.00
3.60	CWT.	45.00
3.70	CWT.	44.00
4.50	CWT.	39.00

103.00	11594.67	
103.00	11924.60	
2.00	278.40	
2.00	324.00	
6.00	976.90	
3.00	526.50	
		25624.97

2. OPEKATING LOSTS

CURN	8 B .		3.00	3176.10	9528.30	
Suybean meal	CWT.		14.50	299.10	4336.95	
MINERALS	LBS.		. 05	6328.40	316.42	
UATS	LBS.		. 07	125.20	8.76	2938
wheat bran	LBS.	-	. 05	1120.00	56.00	
SUGAR	LBS.		. 17	62.60	10.64	
UKIND * MIX	LBS.		4.50	108.50	488.25)	
VET * VED	DOL.		1.00	347.00	347.017	
ELECTKICITY	KWH		. 05	6604.00	363.22	
MKTG \% hauling	DOL.		1.00	629.50	629.50	
LiNS. Aivu taxes	DOL.		1.00	16R.00	108.00	
MISCL EXPLENSE	DOL.		1.00	330.00	$330.00\}$	1054
YOUNG BUAK	HD.		450.00	3.00	$1350.00\}$	10 S
PRACTURS(rUEL, LUBE.REP)	OOL.				931.37	
VACHINERY(FUF.L.LUBE.REP)	DOL.				41.01	
EQUIPMEINT (FUEL, LUBE, REP)	DOL.				508.86	
INTERESI UN OPER.CAP..	DOL.				563.40	
total oferating costs					20037.69	3992
incume aduve operating costs					5587.28	1113
Ownership losts						
int. un livestuck capital	DOL.		. 12	4260.00	511.20	
lint. un equipment	DOL.		. 12	7958.00	954.96	
INT. UN MACHINERY	OOL,		.12	1708.55	205.03	
OEPr. OiN EQUIPMENT	DOL.				1952.58	
DEPR. UN MACHINEHY	DOL.				201.97	
INS., IAXES ON EQrt.. LVSTK.,						
ANO VACH.	OOL.				103.14	
TOTAL OnNERSHIH COSts					3988.88	95
TUTAL LUSTS SHONN					24026.56	4737
Wel krilurvs abouf costs shumn					1598.40	318

2 LITTEK-10 SOWS KEMODELED UNINSULATE \cap DAIRY BARN FOR FARROWING AVD NURSFRY. AEW OUEN FKONT SHEU FOR GESIATION. REMODELED BUILDING FOR FINISHING.
-79-
table 38 average annual cosis and returns enterprise budget for farrow-toFINISH. SYSTEM F IN AVERAGE YEAR OF PRODUCTION:


```
1. GRUSS RELEIPTS
```

SLAUGHTER HOGS
SLAUGHIER HOGS
SLAUGHTER HOGS
SLAUGHTER HOGS
UILT N.B.
SUW N:
SUW.
BUAR

2.20	CWT.
$2: 20$	CWT:
$2: 20$	CWT.
2.20	CWT.
$2: 90$	CWT:
$3: 60$	CWT:
3.70	CWT.
4.50	CWT.

51.17	107.00	12044.95
51.95	107.00	12228.56
52.62	107.00	12387.69
50.34	107.00	11849.09
48.00	4.00	556.80
45.00	4.00	648.00
44.00	12.00	1953.60
39.00	3.00	526.50
		-
		52195.19

50.90
2. orphating losts
CURN
SUYBEAN MEAL
MINERALS
BU.

0393.00	19179.00
625.60	9071.20
12600.20	630.01
261.40	$18.30\}$
2293.30	114.66
130.70	22.22
219.00	985.50
689.00	689.00
328.00	328.00
1289.50	1289.50
664.00	664.00
18116.00	996.38
396.00	396.00
3.00	1350.00
	1804.24
	74.33
	957.27
	1048.72

MINERALS
BU
3.00
14.50
.05
.07
.05
.17
4.50
1.00
1.00
1.00
1.00
.05
1.00
450.00

WHEAT GKAN
sugar
GKIND * M1X
CWT.
39618.34
3. incume adove operating cosis
4. OWNERSHIH COSTS

.12	7620.00	914.40
.12	16103.00	1932.36
.12	3171.56	380.59
		3205.68
		374.21
		322.40

TOTAL OWNERSHIT COSTS
b. roial busts SHOWN
46747.97
4559
0. isel returins above costs shumn

4 LITTEK-3 SOWS KLMODELED LINSULATED VENTILATED DAIRY BARN FOR FARROWING AIVL NUIKSLRY. NEW UHEN FRONI SHED FOR GESTATION AND FOR FINISHING.
-80-
TABLE 39 AVERAGE ANNUAL COSIS AND RETURNS ENTERPRISE BUDGET FOR FARROW-TOFINISH. SYSTEM G LN AVERAGE YEAR OF PHODUCTION:

ITE ${ }^{\text {W }}$	WEIGHT	UNIT	PRICE OR	QUANTITY	VALUE OR	Per Cwt

```
1. GKUSS RECEfPTS
```

SLAUGHIER HOGS
SLAUGHIER HOGS
SLAUGHIER HOGS
SLAUGHIER HOGS
SLAUGHIER HOGS
SLAUGHIER HOGS
GILT N.B.
SUN N.E.
SUW CULL
BUAR

2.20	CWT.
$2: 20$	CWT.
2.20	CWT.
$2: 20$	CWT.
2.20	CWT.
$2: 20$	CWT.
$2: 90$	CWT.
3.60	CWT.
3.70	CWT.
4.50	CWT.

54.86	110.00
48.78	110.00
51.95	107.00
56.11	110.00
50.96	110.00
50.34	110.00
48.00	7.00
45.00	8.00
44.00	18.00
39.00	3.00

13276.12
11803.79
12228.56
13578.14
12332.32
12181.31
974.40
1296.00
2930.40
526.50
-81127.54
2. orenkat divg costs

CJKN
SOYBEAN MLAL
MINERALS
UATS
WHEAT GKAN
$\begin{aligned} & \text { SUGAR } \\ & \text { GKIND * MIX } \end{aligned}$
fins. Aivu laxes
IMKTG HAULING
LP GAD
ELECTKILIIY
MISCL EXPENSE
YUUNG BOAM
YKACTUKS (FUEL, LUEE, REP)
MACHINENY (FUEL, LUNE, REP)
EJUIDNEN「(FUEL, LUBE,REP)

BU.
CWT.
LBS.
LBS.
LBS.
LBS.
TONS
OOL.
DOL.
QOL.
GAL.
KWH
3.00
14.50
.05
.07
.05
.17
4.50
1.00
1.00
1.00
1.00
.05
1.00
450.00
9707.20
954.30
19124.50
400.40
3492.00
200.20
331.20
942.00
512.00
1969.50
851.00
24240.00
414.00
3.00

3. INLUME AOOVE OPERATING COSTY
4. Owiversitr costs
INI. UN LIVESTOCK CAPITAL
IMT, UN EUUIPMENT

DOL.

. 12	10980.00	1317.50
. 12	30315.00	3637.913
. 12	2272.70	632.73
		6541.25
		643.04
		5d2. 56

 UEPR. UN EGUIPMENT
 UEPK. UIN WACHINERY
UEPK. UN WACHINERY
IMS.. IAXES ON EOHT.. LVSTK..
AND WACH. OOL.
TOTAL ONNERSHIH COSTS
b. TUTAL LISTS SHOWN
C. JEI REllMiNS ADOVE LOSTS SHUNW
13354.03 8.
71913.4245 r
9314.1259.
E LITTEK-4O SOWS KEMOOELED UI.SULATED VENTILATED OAIRY RARN FOR FARROWING AND
NUNSERY WITH MANUHE STORAGE. NEW MOOIFIED OPEN FRONT SHED FOR GESTATION.
Rew Optiv FRONT SHEW FOR FINDSAING.
-81-
TABLE 40 AVERAGE ANNUAL COSIS AND RETURNS ENTERPRISE BUDGET FOR FARROW-TOFINISH, SYSTEM H IN AVERAGE YEAR OF PRODUCTION:
ITENI WEIGHI UNIT PKICE OR QUANTITY VALUE OR Per Cwt
EACH COST/UNIT COST Pork Sold

```
1. GruSS KELEIPTS
```

SLAUGHTER HOGS
SLAUGHIER HOGS
SLAUGRIER HOGS
SLAUGRIER HOGS
GLLT W.H. 2.20 CW

SUW N'.d.	3.60	CWT
SUW CULL	$3: 70$	CWT

BUAR

2.20	CWT.
2.20	CWT.
2.20	CWT.
2.20	CWT.
2.90	CWT.
3.60	CWT.
3.70	CWT.
4.50	CWT.

51.17	107.00	12044.95
51.95	107.00	12228.56
52.62	107.00	12387.69
50.34	107.00	11849.09
48.00	4.00	556.80
45.00	4.00	648.00
44.00	12.00	1953.60
39.00	3.00	526.51

total

\therefore OHERATINO LOSTS

O. EI REITHNS AGOVE LOSTS SHUWN
5321.79
systems given in Table 3. The feeding rates and days on feed for the slaughter hogs as they go through growing and finishing are:

$$
\begin{array}{ll}
\text { Grower ration from } 40-110 \text { pounds } & 4.3 \mathrm{lbs} . / \text { day }-50 \text { days } \\
\begin{array}{l}
\text { (winter) }
\end{array} & 5.3 \mathrm{lbs} / \mathrm{day} \\
\text { Finishing ration from } 110-220 \text { pounds } & 6.5 \mathrm{lbs} . / \text { day }-65 \text { days } \\
\begin{array}{c}
\text { (winter) }
\end{array} & 7.5 \mathrm{lbs} / \mathrm{day}
\end{array}
$$

These feeding rates and animal numbers combined with the rations presented in Table 2 provide the basis to calculate the amounts of corn, 48.5% soybean meal and feed required annually shown in Table 41. Using the projected prace of $\$ 3.00$ per bushel for corn and $\$ 14.50$ per cwt. for soybean meal yields the feed cost indicated in the enterprise budgets.

Three types of energy consumption are estimated as operating costs for the low to medium investment hog operations. They are: 1) electricity for lighting and ventilation; 2) L.P. gas for space heating; and 3) gasoline and diesel fuel for manure handing and disposal.

The levels of electricity consumed listed in Table 42 are based on KWH usage per month for the various electrical equipment, lights and ventilation fans used in each system. The estimated requirements of L.P. gas are based on the animal numbers, the ventilation rates, expected building heat loss, desired inside temperature and expected outdoor temperature for the various systems. The gallons of gasoline and diesel fuel are functions of the level of manure produced by the hogs and the type of manure handling system employed by a particular system. Table 42 provides the estimated annual cost of energy for the farrow-to-finish systems.

The other operating cost items are based on farm accounts, research findings and current prices. These cost items are listed on the individual

Table 41. Annual Feed Requirements for the Farrow-to-Finish System.

System	Bushe1s of Corn	Cwt. of 48.5\% Soybean Meal	Tons of Total Feed
A	$1,672.3$	169.3	57.5
B	$3,122.6$	308.0	105.0
C	$3,176.1$	299.1	108.5
D	$6,393.0$	625.6	219.0
E	$3,176.1$	299.1	108.5
F	$6,393.0$	625.6	219.0
G	$9,707.2$	954.3	
H	$6,393.0$	625.6	231.2

Table 41. Energy Requirements Per Year for the Farrow-to-Finish Systems.

System	KWH of Electricity	Gal. of L . Gas for $1 /$ Heating	Gallons of Fuel	Annual System Cost	Cost Per Cwt. Pork Sold
A	2,415	--	119	\$ 314.53	\$1.15
B	2,695	--	189	438.03	. 87
C	8,984	--	472	1,233.82	2.46
D	20,500	664	915	3,227.40	3.15
E	6,604	--	472	1,102.92	2.20
F	18,116	664	915	3,096.28	3.02
G	24,240	851	885	3,548.90	2.25
H	18,116	664	915	3,096.28	3.02
	Other forms of energy, such as natural gas, may be used. One gallon of L.P. gas was assumed to yield 73,600 BTU.				
2/	Assumed prices:	Electricity L.P. Gas Diesel Fuel Gasoline	$\$.055 / \mathrm{Kwh}$. $1.00 / \mathrm{Gal}$. $1.50 / \mathrm{Gal}$. $1.60 / \mathrm{Gal}$.		

enterprise budgets. The miscellaneous expense items include the cost of bedding, supplies, small tools, office expenses and other minor items that can be attributed to the hog enterprise.

Ownership costs measure the annual cash and non-cash costs for the Investment in the hog system. The largest ownership cost is depreciation on the equipment and facılities. The investment in the remodeled finishing bullding is assumed to have a useful life of seven years, the new open front shed is expected to have a useful life of 12 years. Depreciation on the other facilities are calculated in an identical manner as used in the feeder pig systems. The interest on investment is at 12 percent of the average investment. Insurance and taxes are 1.6 percent of the average investment.

Net returns above costs shown, total ownership costs, total operating costs and total gross receipts are given for the various systems in Table 43. Gross receipts range from $\$ 13,404.79$ for System A to $\$ 81,127.54$ for System G. Similarly, A has the lowest operating cost and G the highest, $\$ 11,695.28$ $\$ 58,458.44$ respectively. Ownershıp costs reflect the differences in facılities for A and G. Subtracting ownership costs and operating costs from gross receipts results in net returns above costs shown of $-\$ 1,506.28$ for System A (costs actually exceed gross receipts by this amount). Thls loss reflects the high costs of using facilities for just one litter annually. The two litter systems; B, C and E have estimated returns of $\$ 2,454.73, \$ 1,782.04$ and $\$ 1,598.40$ respectively. And the four litter operations; D, F and H yield returns of $\$ 5,241.46, \$ 5,447.22$ and $\$ 5,321.08$ respectively. System G, the six litter operation, has the highest net returns above costs shown of $\$ 9,314.12$ annua11y.

$$
\text { Table } 43
$$

Systems.

System

$$
<
$$

$$
\leftrightarrow \quad \infty
$$

The net returns per hour rank the systems in the same order as the net returns above costs shown. System G with net returns of $\$ 5.55$ per hour has the highest hourly returns. It is the only system with net returns of more than $\$ 5.00$ per hour. Systems D, F and H have net returns ranging from $\$ 4.21$ to $\$ 4.37$ per hour of labor used. Systems A, B, C and E have substantially lower net returns per hour of labor utilized.

It 1 s evident that as the systems get larger in terms of litters produced per year, profitability increases. This 1 s a reflection of two factors; 1) the pigs weaned per litter increase with the better facılıties used in these systems, and 2) the systems that produce more pigs have more units of output over which to spread the annual fixed ownership cost. These - irtors result in a lower ownership cost per hundred pounds of pork produced.

Table 44 shows the imnact increased energy prices have on the varinus systems. With a doubling of energy prices the two litter pasture system, System B, 1 s more profitable on a per cwt. of pork sold basis, and woulhave similar net returns above costs as the four litter systems. System G still has the highest net returns above costs. With triple the energy cost, Systems B and G are the only systems to show positive net returns per cwt. 1. porl. so1d

Cash Flow Projections

Cash flow projections indicate the amount of cash that is required during the first two years to operate each farrow-to-fin1sh system. Like the feeder pig systems, the first year is characterized by large capital outlays for facilities, equipment and livestock. Due to the length of time required to get a pig to market weight, the farrow-to-finish systems have no large cash inflows in the first year, whereas all of the feeder pig systems experience

Table 44. Affect of Increased Energy Costs on Net Returns Per Cwt. of Pork Sold for Farrow-to-Finish Systems.

System	Net Returns Per Cwt. Pork Sold	Net Returns When Energy Costs Doublel/	$\begin{aligned} & \text { Net Returns } \\ & \text { When Energy Costs Trip1e }{ }^{-/} \end{aligned}$
A	\$-5.51	\$-6.73	\$-7.95
B	4.89	3.97	3.05
C	3.55	. 94	-1.67
D	5.11	1.77	-1.57
E	3.18	. 85	-1.48
F	5.31	2.11	-1.09
G	5.92	3.54	1.15
H	5.19	1.99	-1.21

1/ Prices at: | Electricity | $\$.11 / \mathrm{Kwh}$. | |
| :--- | :--- | ---: |
| | L.P. Gas | $2.00 / \mathrm{Gal}$. |
| | Diesel Fuel | $3.00 / \mathrm{Gal}$. |
| | Gasoline | $3.20 / \mathrm{Gal}$. |

2/ Prices at: | Electricity | \$. $165 / \mathrm{Kwh}$. | |
| :--- | :--- | :--- |
| | L.P. Gas | $3.00 / \mathrm{Gal}$. |
| | Diesel Fuel | $4.50 / \mathrm{Gal}$. |
| | Gasoline | $4.80 / \mathrm{Gal}$. |

-89-
Figure 18. Construction and Production Calendar for the First Two Years of Operation for the One-Litter Farrow-to-Finish System A

Figure 19. Construction and Production Calendar for the First Two Years of Operation for the Two-Litter Farrow-to-Fin1sh System B

Figure 20. Construction and Production Cakendar for the First Two Years of Operation for the Two-Litter Farrow-to-Finish Systems C and E

Figure 21. Construction and Production Calendar for the First Two Years of Operation for the Six-Litter Farrow-to-Finish System G.

Figure 22. Construction and Production Calendar for the First Two Years of Operation for the Four-Litter Farrow-to-Finish Systens D, F and H.

sales of feeder pigs during the first year. The combination of the higher investment for the farrow-to-finish facilities (resulting from the fanlshing facilities) and the lack of sales during the first year means that more capital is required for the farrow-to-finish systems than for the feeder pig systems.

The projected cash flows are based on: 1) the construction and investment schedule and 2) the schedule for purchasing the breeding stock and farrowing the first litters. Figures 18-22 indicate the basic time sequence used for construction of the facilities, purchase of the equipment, purchase of the gilts, breeding, and farrowing for farrow-to-finish systems. The calendars show the interrelationship of the construction of facilities and the animal flow during the start-up year. Figure 22 indicates one-half of the gestation facilities must be constructed prior to the purchase of the all gilt breeding herd. The finishing facilities are constructed later in the year, within four weeks after the first litter of pigs are farrowed and prior to the startup winter. Payment for the construction materıals, livestock and machinery are assumed to be made when these items are placed in service on the farm.

After establishing the schedule for construction and investment and determining the animal flow for each system for the first two years, it is possible to estimate the projected monthly cash flows for years one and two. Tables 45 and 46 give the detailed cash flow for years one and two for System D. The first section shows the cash receipts or cash inflows, the second section details the cash outflows or expenses. The flow of funds summary gives the beginning and ending cash balance, month1y cash difference and the resultant borrowing or loan repayment. The last section, current loan summary, provides the information on the accumulation of debt and the accrual of interest on the borrowing. Thus, for example, a negative cash difference of $\$ 7,507$ in September of year one for System D would require an equal amount of
-56-
$\begin{array}{ll}\text { TAMLE } 45 \\ & \text { MUNIHLY ENTEKHRISE CASH FLOW PRUJECTION FOR FARROW- } \\ & \text { TUAINISH. SYSTEM D IN FIRST YEAR OF OPFRATION. }\end{array}$

ITEM	UNTIS	JAN	FEB	MAR	Ark	MAY	JUN	Jut	Aug	SFP	OCT	NOV	Des	TOTAL
CASH KECEIFTS	1.0	u	0	0	0	0	- 0	0	0	0	0	0	162.	162.
GILT N. H .	1.1)	\cup	0	0	0	0	0	418.	0	418.	0	0	139.	974.
Sow Cull	1.0	u	0	0	0	0	0	0	0	0	0	0	488.	488.
rotal		u	0	0	0	u	0	418.	0	418.	0	0	790.	1625.
LASH EXPENSES														
COKN	1.0	u	0	0	0	123.	152.	120.	234.	241.	273.	539.	100.	2684.
SUYBEAN MEAL.	1.0	u	0	0	0	67.	84.	65.	125.	132.	174.	392.	570.	1608.
MINERALS	1.0	u	0	0	0	5.	7.	5.	10.	10.	13.	24.	33.	107.
vais	1.0	U	0	0	0	0	0	0	0	0	4.	0	0	4.
WHEAT BRAN	1.0	u	0	0	0	0	0	0	0	0	18.	11.	n	29.
sugate	1.0	0	0	0	0	0	0	0	0	0	5.	0	3^{0}	5.
GTEIND A MIX	1.0	u	0	0	0	6.	8.	6.	12.	13.	16.	30.	53.	144.
VEI 8 MED.	1.0	u	0	0	0	30.	30.	30.	30.	30.	51.	30.	44.	275.
INS. AIND IAXES	1.0	u	0	0	0	0	0	285.	0	0	0	0	20^{0}	285.
HAULING \& MKTG:	1.0	U	0	0	0	0	0	11.	0	11.	0	${ }^{0}$	24.	47.
LH GAS	1.0	0	0	0	0	0	0	0	0	0	$15{ }^{0}$	53.	$15 \times$.	205.
theciricily	1.0	v	0	0	0.	".	15.	15.	15.	15.	15.	208.	37.	320.
MISCL EXPENSE	1.0	U	0	0	0	21.	21.	21.	21.	21.	21.	21.	24.	171.
GILIS	1.0	U	0	0	0	37010	0	0	3700.	0	1110.	0	0	8510.
YOUNG BOAK	1.0	0	0	0	0	1351\%	0	0	0	0	0	0	n	1350.
GESTATION SHEO	1.0	0	0	0	4033.	0	4833.	0	0	0	0	0	n	9666.
-ARHOW-REMOUEL	1.0	u	0	0	0	0	0	4500.	4500.	0	0	0	0	${ }^{0} 0000$.
LUAUING CHUTE	1.0	U	0	0	0	0	0	0	0	300.	0	0	0	300.
SURTING CITUIE	1.0	U	0	0	0	0	0	0	0	145.	0	0	0	145.
FINISH-O.F. SHED	1:0	u	0	0	0	0	0	0	0	6619.	0	6619.	0	13238.
MANURE SPHIEADEK	1.0	u	0	0	0	0	$2000 \cdot$	0	0	0	0	0	0	2000.
USED SKID LOADK	1.0	u	0	0	0	0	$3500 \cdot$	0	0	0	0	0	$7{ }^{0}$	3500.
EUUIr-LUBAREPAIR	1.0	u	0	0	18.	14.	29.	42.	55.	68.	68.	79.	79.	456.
IHACTOH(FUEL, LUA	, REP ${ }^{\text {P }}$	u	0	0	0	0	156	0	0	311.	0	0	381.	848.
MACHINE (FUELOLUA	, KEP 1	U	0	0	0	0	4.	0	0	8.	0	0	13.	26.

ITEM	untis	JAN	reb	MAR	ArH	MAY	JUN	Jul.	AUG	Sep	OCl	Nov	DEC	TOTAL
CASH KfCEIFTS														
SLAUGHTER HOGS	1.0	u	0	10694.	0	0	0	0	0	0	0	0	0	10694.
SLAUGHTER HUGS	1.0	U	0	0	0	0	10857.	1	0	0	0	0	0	10857.
SLAUGHTER HUGS	1.0	u	0	0	0	0	0	0	0	12388.	0	0	0	1238月.
SLAUGHIER MOGS	1.0	4	0	0	0	0	0	0	0	0	0	0	11849.	11840.
GILT N.B.	1.0	u	0	139.	0	0	0	139.	0	139.	0	0	0	418.
Sow N.B.	1.0	u	0	162.	0	0	0	162.	0	162.	0	0	0	486.
SUW CULL	1.0	U	0	488.	0	0	4R8.	0	0	488.	0	0	489.	1954.
BUAR	1.0	U	0	0	527.	0	0	0	0	0	0	0	0	527.
TOTAL		u	0	11484.	327.	0	11346.	301.	0	13177.	0	0	12337.	4017?.
CASH EXPENSES														
CORN	1.0	1181.	1482.	2038.	467.	1478.	1687 .	1072.	1597.	1866.	1094.	1730.	2177.	18378.
SUYBEAN MEAL	1.0	608.	693.	925.	494.	719.	774.	563.	763.	834.	558.	809.	992.	8732.
Minerals	1.0	40.	51.	64.	33.	52.	53.	36.	55.	5 \%.	37.	6 n .	69.	606.
UAIS	1.0	4.	0 .	0	4.	11.	0	5.	0	0	4.	0	0.	18.
WHEAT URAN	1.0	20.	9.	0	17.	12.	0	17.	12.	0	17.	0	12.	115.
SUGAR	$1: 0$	5.	0	0	5.	0.	0	6.	0	0	5.	0.	0	22.
GKIND * Mİ	1.0	62.	76.	103.	51.	76.	85.	56.	82.	94.	62.	89.	110.	945.
VEI \& MEU	1.0	65.	58.	44.	65.	58.	44.	65.	53.	65.	65.	58.	44.	689.
INS. AND IAXES	1.0	0	0	0	0	0	0	380.	0	0	0	0	0	380.
MkIg hauling	1.0	u	0	284.	16.	0	276	9.	0	318.	0	0	309.	1212.
LP GAS	1.0	213.	153.	80.	17.	0	0	0	0	0	0	53.	153.	664.
LLECTRICITY	1.0	37.	208.	37.	37.	208.	37.	37.	208.	37.	37.	208.	37.	1127.
MISCL EXPENSE	1.0	$32 \cdot$	32.	32.	32.	32.	32.	32.	32.	32.	32.	32.	32.	378.
GILTS	1.0	u	0	1110.	0	0	0	0	0	0	0	0	32	1110.
YUUNG BOAK	1.0	u	0	0	1350.	0	0	0	0	0	0	0		1350.
	- KEt	u	70.	381.	0	71.	381.	0	70.	381.	0	70.	381.	1804.
MACHINE SFUEL L L	-KEP)	U	5.	13.	0	5.	13.	0	5.	13.	0	5.	13.	74.
EUUIP. IFUELILUB	, KE +	70.	79.	79.	79.	74.	79.	79.	79.	79.	70.	79.	70.	945.

borrowing since there is no cash balance to draw from to meet this difference. The $\$ 7,507$ that is borrowed is added to the accurulated borrowing level from the previous month resulting in $\$ 41,903$ of accumulated borrowing at the end of the month. The accrued interest of $\$ 961$ is added to the total accumulated borrowing resulting in an accumulated total debt of $\$ 42,864$ at the end of September. The accumulated debt for System D reaches a maximum of $\$ 62,848$ May of the second year. It is reduced to $\$ 51,851$ by the end of the second year. This cash flow assumes no money is withdrawn for family living or for tne payment of income taxes. Including these in the cash flow will lead to higher debt levels and longer repayment periods.

Figure 23 graphs the total accumulated debt for System C, a two litter system; System D, a four litter system and the six litter System G, for the first three years of operation. This comparison indicates that System G reaches a maximum debt of $\$ 110,136$ in May of the second year, while System C has a maximum debt level of $\$ 35,253$ in August of year two. The other four litter systems, F and H have a debt accumulation similar to System D. Systems B and E are similar to the two litter System C. Appendix E, Tables 86 through 106 contain the detailed cash flows for the various systems.

Having established the maximum debt level and the average annual cash flow, it is possible to estimate the length 0° time necessary to repay the debt. Using the assumption that prices remain constant in future years, Table 47 gives the estimated years required to reduce the accumulated debt to zero. As expected, the length of time required for repayment of the debt is directly related to the profit generated by the particular system and its level of investment. The entries in the first column indicate the number of years required for debt repayment assuming no charge for labor. Under this situation, Syster A, the one litter pasture
-98-
Figure 23 Monthly Total Accumulated Debt Levels for Farrow-to-Finish Systems C, D and G.

Table 47. Approximate Number of Years Required to Repay the Total Investment with Earnings from the System.

With NoWith Labor
System
A $\dot{*} *$
B 6-3/414
C9-3/4**
D 7-1/2 15
E 10-3/4 **
F 7-1/4 15
G 7-3/4 12
H 8 18
** Over 75 years
system would require more than 75 years to repay the debt. This is consistent with the lack of profit its enterprise budget showed. The four litter systems, D and F, indicate a slightly faster payback than the six litter System G because of the higher maximum debt level for G. The other systems require 8 to $10-3 / 4$ years to repay the maximum debt level. When an amount equal to $\$ 5.00$ per hour of 1 abor 1 s withdrawn for hired labor and/or an operator withdrawal, more time is required to repay the debt. The entries in Table 47 indicate System A does not generate a large enough cash difference to pay $\$ 5.00$ per hour for 1 abor and provide money to repay the debt. The total accumulated debt continues to rase from year to year for System A under this assumption. System G, the six litter system, has the shortest loan payback of 12 years, followed by 14 years for System B. The four litter systems have a payback period under 20 years, whereas the two litter Systems C and E have a payback length of more than 75 years.

The hog finishing operation begins with the purchase of feeder pigs that weigh 40 to 50 pounds and ends with the sale of 220 pound slaughter hogs. Swine finishing normally requires fewer management decisions and less labor per hundred pounds of pork sold than the other two types of hog production. However, finishing enterprises are considered to be relatively capital intensive requiring more operating capital per hour of labor than other types of swine production. However, operating capital is invested for a shorter period before hogs are sold than with either feeder pig production or the farrow-to-finish operation. From start-up to the first major inflow of cash is usually about 8 months for a feeder pig producer and 11 to 12 months for a farrow-to-finish operation. The finishing operation takes about 4 months from the time feeder pigs are purchased to the sale of 220 pound slaughter hogs.

Feeder pigs can be finished in Minnesota in various facılities rangang from sheds on pasture during the summer months to an environmentally controlled confinement operation.

The analysis by Eidman and Greene [7], examines three medium and high investment confinement systems, an open front shed with a concrete apron, a modified open front shed with partially slotted floors and the total confinement totally-slotted floor operation. Three low investment finishing systems that would typically be found on small farms are analyzed here.

System A - Is a pasture system with 7 acres of high quality pasture and sun shades for shelters. This sytem has a capacity to finish 140 pigs.

System B - Is a dirt lot system with two acres and sun shades for finishing 140 pigs.

System C - Is a remodeled building that has a small outside lot for summer finishing of 140 pigs and allows 140 pigs to be finished inside during the winter.

This report is intended to analyze these operations from the perspective of someone starting a finishing operation with very limited capital. These finishing systems were developed for the feeder pig producer who is thinking of finishing out his feeder pigs or would like to have the option to feed them out occasionally.

Animal Flow
The anımal flow for a finishing operation is relatively simple - a certain number of feeder pigs are purchased, on average a small percent die and the remainder are sold as slaughter hogs after a prescribed feeding period. This study assumes that feeder pigs weighing 40 pounds are purchased in groups of 140 and a 3 percent death loss results in 136 220 pound slaughter hogs being sold.

The difference between systems is the length of time for the purchased feeder pigs to reach market weight. The feeding period is divided into two stages, growing (40 pounds to 110 pounds) and finishing (110 pounds to 220 pounds). The length of time to complete each stage 1 s estimated based on the composition of the rations fed, feeding rates, and the type of facılities. It is assumed, as shown in Table 48, that a hog finished in the remodeled building is fed 4.3 pounds per day of a 16 percent protein grower ration for 50 days and 6.3 pounds of a 13 percent finisher ration for 70 days. The 120 day feeding period is assumed to be the same during the summer months when the hogs are on the dirt lot as during the winter

Table 48. Feeding Rates, Days on Feed and Percent Protein of Rations by Type of System for Growing and Finishing Swine.

		Percent
Pounds/	Days	Protein in
Day/P1g	on Feed	Ration

Remodeled Building

Growing	4.3	50	16
Finishing	6.3	$\frac{70}{120}$	13

Dirt Lot

Growing	4.3	50	16

Finishing
6.3
$\frac{70}{120}$

Pasture
Growing
3.8
55
14
Finushing
5.8
75
11
130
months when the hogs are confined in the building and protected from the weather. The same feeding assumptions are made for the dirt lot system with 120 days needed to finish the pigs.

Research indicates good legume pasture will reduce the amount of feed required as well as the protein level needed to finish hogs to market weight. This analysis assumes that grazing good alfalfa pasture at the rate of 20 pigs per acre will reduce the feeding rate for the grower ration to 3.8 pounds per pig per day, and the rate of feeding the finıshing ration to 5.8 pounds per day (as compared to 4.3 and 6.3 for the other systems) [6]. The protein level for pigs on good legume pasture can be reduced to 14 percent and 11 percent, respectively, for growing and finishing rations. Feeding these pasture rations will add approximately 5 days to the feeding period for each stage.

The feeding rates assume that mınımum waste and proper feed management are maintained. The 16 percent and 14 percent grower rations, and the 13 percent and 11 percent finıshing rations used in this study are presented in Table 49.

The three systems are designed for 140 head capacity. The analysis assumes the remodeled building is used twice a year and the pasture and dirt lot system finish one group annually during the summer months. Purchases of feeder pigs are timed so that sales occur during months of seasonally high hog prices. The production calendar is shown in Figure 24. The Pasture System A, and the dirt lot System B purchase 140 feeder pigs in mad-April. The pasture system sells 136 slaughter hogs in the latter part of August, approximately 10 days after the sale of 136 hogs from the dirt lot system. System C, the remodeled building, assumes a summer

Table 49. Growing and Finlshing Rations

Feed Ingredient	Ration			
	$\begin{aligned} & 16 \% \\ & \text { Grower } \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \% \\ & \text { Grower } \\ & \hline \end{aligned}$	$\begin{gathered} 13 \% \\ \text { Finıshing } \end{gathered}$	$\begin{gathered} 11 \% \\ \text { Finishing } \end{gathered}$
Ground Yellow Corn ${ }^{1}$	$\overline{\overline{-} \overline{5}}$	$83 . \overline{6}$	$-\overline{-7.6}$	$-\overline{---}$
Soybean Meal $(48.5)^{2}$	17.0	13.8	10.7	6.7
Dicalcium Phosphate ${ }^{3}$	1.0	1.3	1.2	1.4
			-	
Ground Limestone	. 9	. 7	. 9	. 7
$\text { Salt }{ }^{4}$. 3	. 3	. 3	. 3
$\underset{\text { Pre Mix }}{\text { Vitanium }}$ Mineral	. 3	. 3	. 3	. 3
Composition				
Protein	16	14	13	11
Calcıum ${ }^{3}$. 65	. 62	. 50	. 58
Phosphorus	. 50	. 55	. 50	. 55

1
Ground milo can replace corn in the rations on a 1 to 1 basis. If ground barley is used to replace the corn, then the quantity of soybean meal must be reduced by 10 percent and replaced by an equal amount of ground barley the feeding of ground barley will not affect the level of feed intake by the hogs, but will reduce the rate of gain by up to 10 percent.

2
If 44 percent rather than 48.5 percent soybean meal is fed, increase the amount of soybean meal and reduce the amount of corn by 12 percent.
3
Less calcium $1 s$ included in the 14 percent and 11 percent rations than the 16 percent and 13 percent rations because of the high level of calcium in alfalfa pasture.
4 The trace mineralized salt should contain at least . 008 percent iodine.
-106-
Figure 24. The Production Calendar, the Rations Fed and Sales During
the Average Year of Operation for the Three Finishing Systems.

schedule identical to the dirt lot system, and a second group of feeder pigs purchased in October and sold in February of the following year.

Building Systems and Investment Costs
Facilities for the pasture operation include enough fencing to enclose 7 acres, sun shades that provide a minimum of 6 square feet per finished hog, feeders, waterers, and a loading chute. A description of the items included, the quantity and the estimated investment cost for these items are shown in Table 50. No machinery is assumed to be needed for this system. However, occasionally machinery may be needed for pasture maintenance including clipping to control pasture growth and harrowing to spread manure.

The dirt lot system is 2 acres of fenced pasture with 70 pigs per acre. Little, if any, feed value is expected from the pasture due to the high concentration of pigs and the associated difficulty in maintaining the pasture. Equipment included is three sun shades, waterers, feeders and a loading chute. No machinery is required. A description of each 1tem, the number of units, the investment costs and total hours of labor required for construction are given in Table 51.

The remodeled facility could be a pole barn, machinery shed or possibly even a dairy barn. Finishing during the summer months the hogs will be fed and watered in the small outside dirt lot adjacent to the barn. This lot is added to reduce manure handling. For winter months, the hogs are finished inside. This building is uninsulated and naturally ventilated with a concrete floor sloped to a wide gutter. Table 52 contains a description of the facilıties, the investment cost and the labor required for remodeling this system.

Table 50. Finishing Facilities for Pasture Finishing System A 140 Hog Capacity

Item	Size and Description	Units	$\begin{aligned} & \text { Cost Per } \\ & \text { Unit } \\ & \hline \end{aligned}$	Total
Fencing	Fence and Post	2210 ft .	\$ 1.00	\$2,210
Sun Shades	$16^{\prime} \times 20^{\prime}$	3	390	1,170
Feeders	12 opening - round	2	250	500
Waterers	95 gallon fountain	3	150	450
Loading Chute				300

total Investment
$\$ 4,630$

Total hours of labor for construction: 100 hours

Table 51. Finishing Facilities for Dirt Lot Finishing System B 140 Pig Capacity

Item	Size and Description	Units	Cost Per Unit	Total
Fencing	Fence and Posts	1207 ft .	\$ 1.00	\$1,207
Sun Shades	$16^{\prime} \mathrm{x} 20^{\prime}$	3	390	1,170
Feeders	12 opening - round	2	250	500
Waterers	95 gallon fountain	3	150	450
Loading Chute				300
TOTAL INVE	MENT			\$3,627

Total hours of labor for construction: 56 hours

Table 52. Remodeled Finishing System C - 140 Pig Capacity

Finishing Facilities:

Item	Size and Description	Units	Cost Per Unit	Total
Remodel Building	$36^{\prime} \times 48^{\prime}$	$1728 \mathrm{ft} .^{2}$		\$1,782
Concrete \& Reinforcing	$36^{\prime} \times 48^{\prime}$	$1728 \mathrm{ft} .^{2}$		1,031
Fencing	Fence and Posts	$100 \mathrm{ft}$.	1	100
Feeders	8 hole fence line	4	\$250	1,000
Waterers	2 hole	4	25	100
Loading Chute				445

TOTAL INVESTMENT
$\$ 4,458$

Machinery and Equipment:

Manure Spreader 125 bushel . \$2,000

Used Skid Loader 3 3,500
TOTAL $\$ 5,500$

Total Facilıtıes and Machınery $\$ 9,958$

Total hours of labor for remodeling - 72 hours

No labor charge is included in the investment cost since it is assumed that the operator will do the construction and remodeling. A more detailed description of each system is given in the appendix.

Enterprise Budget

Enterprise budgets which list the estimated average annual net returns for the three finishing systems are presented in Tables 53, 54 and 55. The budgets provide itemized receipt and cost information for an average year of production.

The gross receipts from the marketing of slaughter hogs are based on the production calendar given for each system in Figure 24 and reflect the 3 percent death loss. The annual price for slaughter hogs, based on the five year planning price ! 20], is $\$ 52.00$ per hundred pounds. This price is seasonally adjusted for the month that the sales take place.

The purchase of feeder pigs for the three systems is based on the production calendar in Figure 24 and an annual average price of $\$ 50.00$ per pig. The annual price is seasonally adjusted by the monthly price index 1 n the appendix for feeder pigs. The cost of hauling the feeder pigs to the farm is assumed to be $\$.30$ per head.

Feed quantities for each system are based on the annual anımal flow, and the corresponding feeding rates from Table 48. The feed quantity calculations assume that the death loss occurs when the pigs are changed from the grower ration to the finishing ration. Table 56 gives the annual amounts of corn, soybean meal (48.5\%) and the total pounds of feed required by each system.
-112-
TAULE 53. AVERAGE ANNUAL COSIS AND RETURNS ENTERPRISE RUDGET FOR HOG FINISHING, SYSTEM A IN AVERAGE YEAR OF PRODUCTION.

ITEM WEIGHT UNIT | ERICE OR |
| :---: |
| |
| EACH |

```
L. GRUSS Krleipts
```

SLAUGHIER HOGS 2:20 CWT.
56.11
$136.00 \quad 16788.11$

TOTAL
2. OHERATING CUSTS
LOKN
SOYEEAN MEAL
MINERALS
GRIND \& MIX
VET \& MEU.
INS. ANU IAXES
HAULING \& MKTG:
MISCL EXPENSE

BU.	3.00
CWT.	14.50
LBS.	.05
TONS	4.50
DOL.	1.00
DOL.	1.00
CWT.	1.25
DOL.	1.00
HO.	28.50
HD.	.30
DOL.	

$\begin{array}{r} 1394.00 \\ 80.10 \end{array}$	$\left.\begin{array}{l} 4182.00 \\ 1101.45 \end{array}\right)$	23.27
2358.00	$117.90\}$	236
44.20	198.90	
74.00	74.007	
85.00	85.00	
290.20	374.007	
40.00	40.00	
140.00	3190.00 .	3368
140.00	$\left.\begin{array}{r} 42.00 \\ 166.57 \end{array}\right\}$	294
	506.47)	
	15138.29	65.25
	1649.82	678
2315.00	277.80	
	643.57	
	37.04	
	958.41	394
	10096.71	6619

b. TUIAL LUSTS SHOWN
10096.71
O. NET REIUNNS ABOVE COSTS SHUWN
691.41
2.84

SEVEV ACRES PASTUKE (20 P[OS/ACRE FOR 140 HOG CAPACITY).
FEED: 14 HERCENT GROWER RAIION - 11 PERCENT FINISHER RATION,
-113-
tahle 54 average annual cosis and returns enterprise budget for hog FINISHING, SYSTEM B IN AVERAGE YEAR OF PRODUCTION.

ITEM | WEIGHT |
| :---: | :---: | :---: | :---: | :---: |
| EACH |\quad UNIT \quad PRICE OR QUANTITY VALUE OR Per Cwt

1. Gross kelespts

table 55. average annual cosis and returns enterprise buoget for hog FLiNISHING, SYSTEM $ᄂ$ IN AVERAGE YEAR OF PROOUCTION.

Table 50́. Annual Feed Requarements for Finishing Systems

System	Bushels of Corn		
A	1394	Cwt. of 48.5% Soybean Meal	Tons of Total Feed
B	1360.1	80.1	44.2
C	2720.1	115.4	45.0

System A, the pasture system requires more corn but less soybean meal than System B, the dirt lot operation for the same number of hogs. The pasture available with System A provides part of the feed but results in a slower rate of gain than feeding hogs in drylot.

Prices of $\$ 3.00$ per bushel for corn and $\$ 14.50$ per hundredweight for soybean meal were used to obtain the feed costs shown in the annual enterprice budgets.

It is assumed that the feed is custom ground and mixed at a cost of $\$ 4.50$ per ton. Other operating costs including medical expenses, insurance, taxes, marketing costs and other items are based on the average costs from the 1978 and 1979 annual reports from the Minnesota Farm Management Associations.

Ownership costs assume an interest charge of 12 percent on the average investment for equipment and machinery. Depreciation is calculated on a straight line basis and assumes a useful life of 12 years for new construction and 7 years for remodeled items. Insurance and taxes on the equipment are 1.6 percent of the average investment. Machinery ownership costs are based on a 10 year ownership. Notice that no land charge is included for either the dirt lot or pasture finishing system. While it would be appropriate to include a land charge in the ownershjp cost section of the enterprise budget, the appropriate charge to include depends on the alternative uses for the land, and varies widely from one situation to another. Given
this difficulty in estimating a land charge, a later section estimates the return to land for use in swine finishing. This value can be compared to returns from alternative uses to decide if land should be devoted to swine finishing systems A and B.

Net returns above costsshown are a measure of the profit and represent the residual return to labor, management and land. A comparison of total receipts, costs and net returns is provided in Table 57. Total gross receipts for System A, the pasture system and System B, the dirt lot, are identical. System C, which finishes two groups of feeder pigs, has total receipts approximately double that of the other systems. System A has the lowest operating cost, while System B has the lowest ownership cost. System C has the highest ownership and operating cost as would be expected.

System C is estimated to have substantially higher net returns than the other two operations, with System B showing lower net returns than System A under the stated assumptions. System C's relative profit over System B is the result of its advantage in both operating costs and ownership costs. System C has lower costs per hog finished for such operating inputs as veterinary and medicine expense, insurance, mascellaneous expense, fuel and equipment repairs. System C also has lower annual ownership costs than either System A or B, per hog finished. System A shows a higher net return than System B because A requires less protein feed. Net returns per hour and net returns per hundred pounds of gain follow a similar pattern as net returns above costs shown. However, notice that System C does not enjoy quite the advantage over System A and B on a per hour basis because of the labor required by System C to handle manure.

Table 57. Summary of Average Annual Enterprise Budgets for the Three Finishing Systems

System

	$\begin{array}{r}\text { A } \\ \text { Pasture } \\ \hline\end{array}$	B Dirt Lot	C Remodeled Building
Total Gross Receipts	\$16,788.11	\$16,788.11	\$33,202. 22
Total Operating Costs	15,138.29	15,645.41	29,548.90
Total Ownership Costs	958.41	746.92	1,082.75
Net Returns Above Costs Shown	691.41	395.78	2,570.57
Total Labor Hours	100 hours	100 hours	228 hours
Net Return Per Hour	6.91	3.96	11.27
Net Return Per Cwt. of Gain	2.84	1.63	5.28

The net return above costs shown is the return to land, labor and to management. The net returns are $\$ 395.78$ for the dirt lot system, \$691.4] for the pasture system, and $\$ 2,570.57$ for finishing in the remodeled building. The remodeled structure requires a negligible amount of land for production. On the other hand, the dirt lot system and the pasture system require two and seven acres of pasture, respectively. This land will have uses other than raising hogs and this cost will affect the profit of these operations. Furthermore, the two systems use different amounts of land, suggesting the cost of land will affect their relative profitability. Figure 25 illustrates the effect of differing land costs on the net returns of the pasture system and the dirt lot operation. The analysis indicates the returns for the pasture system exceed the returns to a dirt lot operation when the land charge is less than $\$ 59$ per acre. At a land charge above $\$ 59$ per acre the dirt lot is more profitable then the pasture system.

The net returns of the dirt lot and pasture systems are not affected by energy prices since these systems will require little, if any, energy. System C, on the other hand, requires 490 KWH of electricity, 59.4 gallons of gasoline, and 72.6 gallons of diesel fuel; at a total annual cost of $\$ 230.89$ under the assumed prices. If energy costs are doubled and tripled the net returns for System C would be reduced approximately $\$ 244.74$ and $\$ 489.49$ respectively, leaving net returns for System C still substantially above returns for systems A and B.

Cash Flow Projections
Cash flows were projected to analyze the amount of capital that must be provided during the first years of operation for each system. These projected cash flows are based on Figure 26 which gives:

Figure 25. Net Returns for the Pasture System and Dirt Lot System at Various Prices for Land.

(1) the construction and remodeling schedule for the three systems, and
(2) the production schedule for purchasing the feeder pigs and feeding them to market weight.

These schedules are interrelated, but much less complicated than the farrow-to-finish operations and the feeder pig production systems. The production calendar of Figure 24 indicates that the first group of feeder pigs for all systems is purchased in mid-April. Consequently, the construction of fences and sun shades for the dirt lot system and the pasture system are assumed to be completed by mid-April. Likewise the building for System C is remodeled in late March and early April. The manure handing equipment is purchased when it is time to use the items after the first group of hogs are sold for System C. Payment for materials are assumed to be made when those items are used.

Based on this schedule for construction and investment and the production calendar in Figure 26 , detailed monthly cash flows are generated for the three finishing systems. Table 58 gives the projected cash flow for System C during its start up year. The first section of the cash flow shows gross receipts from the sale of slaughter hogs while section two records cash outlays for both operating expenses and investments in building and machinery investment.

Following the cash expense section is the flow of funds summary which determines the level of borrowing required monthly or the amount of loan repayment possible. If the current cash balance, derived from the beginning balance and cash difference, is positive, this money is used first to repay interest and the remaining amount is used to repay the loan principal. A negative current cash balance means that money must be borrowed to meet cash expenses. The first five months have expenses and no income. This results in borrowing each of these months. During August the slaughter hogs are sold providing funds for both interest and principal payments.

CURTEFNT LOAN SUMMAKY

Borrowing and loan repayment are reflected in the current loan summary. The first line is the accumulated borrowing which is the sum of any accumulated debt from the previous month plus any additional borrowing for this month. The accrued interest is calculated based on an annual percentage rate of 12 percent. The sum of the accumulated borrowing for the month plus the accrued interest for the month gives the total accumulated debt at the end of the month.

The detailed cash flow projections for year one and year two for the three systems are given in Appendix F, Tables 107 through 111 . Table 58 provides a comparison of the maximum accumulated debt levels for the three systems. The pasture system and dirt lot system obtain the maximum accumulated debt of $\$ 17,911$ and $\$ 17,722$, respectively, in July of the start-up year. The remodeled building system, which finishes two groups per year has the maximum debt of $\$ 21,881$ at the end of January of year two. After all three systems reach these maximum debt levels there is a gradual decrease in the loan balance during the following years. Assuming no charge for labor, all systems completely retire the debt and accumulate enough cash balance to pay for the purchase of a group of feeder pigs without borrowing funds. System C reaches this point in approximately 6 years. Systems A and B reach this point after $12 \frac{1}{3}$ and 19 years, respectively. Subtracting a $\$ 5.00$ per hour charge for the labor increases the length of payback to $9 \frac{1}{2}$ years for System C, to 30 years for System A and over 75 years for System B.

Table 59. The Total Accumulated Debt and the Approximate Number of Years Required to Repay the Total Investment with Earnings from the System.

| | System |
| :---: | :---: | :---: | :---: |
| Total Accumulated Debt | |
| Maximum Amount | |

REFERENCES

[1] "Agricultural Prices - Annual Summary", Crop Reporting Board; Economics, Statistics and Cooperatives Service, U.S. Department of Agriculture, Washington, D.C.
[2] "Annual Reports of the Southwestern Minnesota Farm Management Association", Department of Agricultural Economics, University of Minnesota, St. Paul, Minnesota, 1974-1980.
[3] Babcock Swine, Inc., Confinement Swine Manager's Training Notebook, Rochester, Minnesota, 1978.
[4] Bache, D. H. and J. R. Foster, "Pork Production Systems Wıth Business Analyses: The Low-Investment Low-Intensity Confinement System (Farrow-toFinish)," Cooperatıve Extension Service, Purdue University, West Lafayette, Indiana, 1976a.
[5] Bates, D. W. and H. A. Cloud, Energy Requirements of Electrical Equipment, Agricultural Engineering Fact Sheet No. 1, University of Minnesota, 1977.
[6] Car1isle, G. R., "How Much Is Pasture Worth?", National Hog Farmer, Swine Information Service, Bulletin No. A26, May 1966.
[7] Eidman, V. R. and D. D. Greene, "An Economic Analysis of Three Confinement Hog Finishing Systems", Station Bulletin 535, Agricultural Experiment Station, University of Minnesota, St. Paul, Minnesota, 1980.
[8] "Farmers Tax Guide", Publication 225, Internal Revenue Service, Department of the Treasury, Washington, D.C., October 1979.
[9] Greene, D. D. and V. R. Eidman, "An Economic Analysis of Three Confinement Farrow-to-Finlsh Production Systems", Station Bulletin 533, Agricultural Experiment Station, University of Minnesota, St. Paul, Minnesota, 1979.
[10] Greene, D. D. and V. R. Eidman, "An Economic Analysis of Three Confinement Feeder Pig Production Systems", Station Bulletin 534, Agricultural Experiment Station, Unıversity of Minnesota, St. Paul, Minnesota, 1980.
[11] Hasbargen, P. R., et al., "Hog Producers Planning Guide", Farm Management Service, FM-503, Agricultural Extension Service, University of Minnesota, St. Paul, Minnesota, December 1980.
[12] Hawton, J. D. and C. J. Christians, "Herd Boar Management", Extension Folder 279, Agricultural Extension Service, Unıversity of Minnesota, St. Paul, Minnesota, 1973.
[13] Hawton, J. D. and R. J. Meade, "Feeding and Managing Baby Pigs", Extension Bulletin 370, Agricultural Extension Service, University of Minnesota, St. Pau1, Minnesota, 1972a.
[14] Hawton, J. D. and R. J. Meade, "High Lysine Corn for Swine", Animal Science Fact Sheet, Number 25, Agricultural Extension Service, University of Minnesota, 1973.
[15] Hawton, J. D. and R. J. Meade, "Nutrition of Bred Sows and Gilts", Animal Science Fact Sheet, Number 14, Agricultural Extension Service, University of Minnesota, St. Paul, Minnesota, 1972 b .
[16] Hinton, R. A., "The Economics of Labor and Choice of Swine Housing", unpublished Ph.D. thesis, University of Minnesota, 1968.
[17] "Livestock and Waste Facilities Handbook", Midwest P1an Service-18, Iowa State University, Ames, Iowa, February 1976.
[18] "Livestock-Meat-Wool", Market News, Weekly Summary and Statistics, Livestock, Poultry, Grain and Seed Division, Agricultural Marketing Service, U.S. Department of Agriculture.
[19] 'Minnesota Agricu1tural Statistics 1979", Minnesota Crop and Livestock Reporting Service, U.S. Department of Agriculture, Economics, Statistics and Cooperative Service in cooperation with Minnesota Department of Agriculture, June 1980.
[20] 'Minnesota Farm Planning Prıces', Department of Agricultural and Applied Economics, University of Minnesota, October 1979 (mimeo).
[21] "Structures and Environment Handbook", Midwest Plan Service-1, Iowa State University, Ames, Iowa, September 1977.
[22] "Swine Handbook: Housing and Equipment", Midwest Plan Service-8, Iowa State Unıversity, Ames, Iowa, Aprı1 1976.
[23] Van Arsdall, Roy N., "Resource Requirements, Investments, Costs, and Expected Returns from Hog Production Systems in Illinois", AE-4074, Illino Experiment Station in cooperation with ERS, USDA, 1965.
[24] White, R. K. and D. L. Forester, 'Evaluation and Economic Analysis of Livestock Waste Management Systems", EPA-600/2-78-102, National Technical Information Service, May 1978.
[25] "Wisconsin Feeder Pig Marketing Co-op Litter-ature", Wisconsin Feeder Pig Marketing Cooperative, Francis Creek, Wisconsin.

APPENDIX A

Description, Layout and Materials
for Buildings and Structures

Farrowing System la

This farrowing setup will be a pasture system. The pasture should be selected in an area to provide adequate drainage, shade and water. . Two pasture areas will be fenced off and will be used in a rotation to help prevent soil vegetation from becoming destroyed. The pasture will be fenced as shown in Figure 2, to provide rotation space, a boar pen and an area for extra sows and replacement gilts. Shelter for the sows during farrowing will be provided by individual A-frame huts set in the pasture. Sixteen huts will be required.

Space required for 18 sows $=3$ acres
Fencing required: 3240 feet, this fence should be $36^{\prime \prime}$ to $42^{\prime \prime}$ high. posts are needed every 8^{\prime}; therefore, at least 405 are required.

Waste Handling

There will be no floor in the huts and they will be dragged to a new location between farrowings.

A-frames must not be located on low ground; good drainage should be provided.
Runoff from the pasture area should be controlled in compliance with Pollution Control Agency regulations.

A harrow may be used to groom the pasture between litters.
Ventilation - natural ventilation

Feeders

32 feet of trough space must be provided for the sows (@ $\$ 55=\$ 110$). This can be accomplished with $2-8 \mathrm{ft}$. double trough feeders. 2-2 ft. trough feeders are required for the boars and extra pen (@ $\$ 14=\$ 28$).

Waterers

Sows -- 2 feet of water space needed; use a 95 gallon stock tank ($2^{\prime} \mathbf{x} 2^{\prime} \quad x 4^{\prime}$) @ $\$ 73$ Extra pen -- use a 2-foot trough @ \$11 Piglets -- 8 pig cups or pans are required for piglets after weaning ($@=\$ 8=\$ 64$)

All of these waterers will only be used during warm weather so they do not need to be frost-proof.

List of Materials - Portable A-Frame Building (MWPS 72630) (No floor plywood or floor joists)

Item	No.	Description
Skid	2	$4^{\prime \prime} \times 4^{\prime \prime} \times 8^{\prime}$
Rafter	4	$2^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime} 91 / 4^{\prime \prime}$
Purlin	4	$2^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime \prime}-11^{\prime \prime}$
Ridge	1	$2^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime \prime}-73 / 4^{\prime \prime}$
Stud	4	$2^{\prime \prime} \times 4^{\prime \prime} \times 35^{\prime \prime}$
Guard Rail	2	$2^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime \prime}-11^{\prime \prime}$
	4	$2^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$
Ventilator	4	$2^{\prime \prime} \times 2^{\prime \prime} \times 18^{\prime \prime}$
Blocking Under Guard Rail	4	$2^{\prime \prime} \times 6^{\prime \prime} \times 8^{\prime \prime}$
Ridge Roll	Metal	8 ft .
Plywood	4 sheets	3/8' $\times 4^{\prime} \times 8^{\prime} \mathrm{C}-\mathrm{C}$, Ext.
Cost $=$ \$115		

Farrowing System 1b

This farrowing setup will be a pasture system. The pasture should be selected in an area to provide adequate drainage, shade and water. Two pasture areas will be fenced off and will be used in a rotation to help prevent soil vegetation from becoming destroyed. The pasture will be fenced as shown in Figure, to provide rotation space, a boar pen and an area for extra sows and replacement gilts. Shelter for the sows during farrowing will be provided by individual A-frame huts set in the pasture. Sixteen huts will be required. Provide 2 portable nursery shelters for the fall piglets.
Space required for 18 sows $=3$ acres
Fencing required: 3240 feet, this fence should be $36^{\prime \prime}$ to $42^{\prime \prime}$ high posts are needed every 8^{\prime}, therefore at least 405 are required

Waste Handling

There will be no floor in the huts and they will be dragged to a new location between farrowings.

A-frames must not be located on low ground; good drainage should be provided.
Runoff from the pasture area should be controlled in compliance with Pollution Control Agency regulations.

A harrow may be used to groom the pasture between litters.

Ventilation - natural ventilation

Feeders

32 feet of trough space must be provided for the sows (@ $\$ 55=\$ 110$). This can be accomplished with $2-8 \mathrm{ft}$. double trough feeders. $2-2 \mathrm{ft}$. trough teeders are required for the boars and extra pen ($@ 14=\$ 28$).

Waterers

Sows -- 2 feet of water space needed; use a 95 gallon stock tank (2'x2'x4') @ \$73 Extra pen -- use a 2-foot trough @ \$ll
Piglets -- 8 pig cups or pans are required for piglets after weaning ($\$ 8=\$ 64$)
All of these waterers will only be used during warm weather so they do not need to be frost-proof.

List of Materials - Portable A-Frame Building (MWPS 72630)
(No floor plywood or floor joists)

Item	No.	Description
Skid	2	$4^{\prime \prime} \times 4^{\prime \prime} \times 8^{\prime}$
Rafter	4	$2^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime} 91 / 4^{\prime \prime}$
Purlin	4	$2^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime \prime}-11^{\prime \prime}$
Ridge	1	$2^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime \prime}-73 / 4^{\prime \prime}$
Stud	4	$2^{\prime \prime} \times 4^{\prime \prime} \times 35^{\prime \prime}$
Guard Rail	2	$2^{\prime \prime} \times 4^{\prime \prime} \times 7^{\prime}-11^{\prime \prime}$
	4	$2^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$
Ventilator	4	$2^{\prime \prime} \times 2^{\prime \prime} \times 18^{\prime \prime}$
Blocking Under	4	$2^{\prime \prime} \times 6^{\prime \prime} \times 8^{\prime \prime}$
Ridge Roll	Metal	8 ft .
Plywood	4 sheets	$3 / 8^{\prime \prime} \times 4^{\prime} \times 8^{\prime} \mathrm{C}-\mathrm{C}$

Cost $=\$ 115$

C-C Ext. Plywood

Farrowing Systom 2

An old building will be remodeled and used for farrowing. This building will be an uninsulated shell such as a grainery or garage. The building may have a concrete floor making manure removal easier. Operator made, wooden farrowing crates will be used since they are more space efficient than pens. If desired, a farrowing pen $41 / 2^{\prime} \times 10^{\prime}$ may be used. .

Building Dimensions

Most old garages and poultry buildings would be too small to house 16 sows, so two buildings will be remodeled to hold 8 sows each. These will have dimensions of $16^{\circ} \times 28^{\prime}$.

Nursery - with 2 litters/yr the farrowing room can be used for the nursery.

Waste Handling

Bedding will be used and the waste will be handled as a solid with a shovel and wheel barrow. A loader may also be used to move wastes to a solid manure spreader.

Ventilation

This building will be naturally ventilated. Air circulation fans may be needed during hot weather. No supplemental heat will be required.

Remodeling Costs per Builcing

Plywood will be added 4^{\prime} up the walls to protect the walls from the animals.
12 sheets of $3 / 4^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$ plywood will be needed for each building @ $\$ 22.75=\$ 273$.
8 wooden farrowing crates @ $\$ 100=\$ 800$. These crates have feeders and waterers.
Heating - 6-250 Watt heat lamps at $\$ 15.00=\$ 90$

Electrical-wiring

3-100 Natt 1 ights, enclosed fixtures @ $\$ 8.50=\$ 25.50$
30 amp , main switch - fuse box - $\$ 6.50$
nonmetallic, dust and water tight outlets - $10 @ \$ 10.00=\$ 100$
Use type U.F. cable for inside circuits $\approx(100 \mathrm{ft})(\$ 350 / 1000 \mathrm{ft})=\$ 35$
Use AWG 8 feeder circuit cable: type SE, style R with XHHW conductors 220 ft or type PWC with THW conductors $\approx(220 \mathrm{ft})(\$ 786 / 1000 \mathrm{ft})=\$ 173$

Trenching to buy lines - Iines will be buried with water ilne, $1^{\prime \prime}$ plastic condult (\$42/100 ft)(220 ft) - \$92.4 Total a $432.4+202=\$ 519$

Plumbing
This bullding will have a frost-proof water hydrant--3/4" hydrant costs approximately $\$ 42.00$. 6^{\prime} deep, 200 ft . trench @ $\$ 3.00 / \mathrm{ft} .=\$ 600$. 280^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe @ $\$.10 / f t .=\$ 28.00$

```
Total = 670 + 20% = $804
```


List of Materials - Farrowing Crate

Farrowing System 3

This will be the same building as system 2 with the addition of insulation and mechanical ventilation.

Building Dimensions

Farrowing - 2 modeled buildings at $16^{\prime} \times 28^{\prime}$
Nursery - with 4 litters/yr. The farrowing room can be used for the nursery.

Remodeling Costs per Building

```
Wall area \(=704 \mathrm{ft}^{2}\)
    from remodeling costs sheet (Page ) - remodeling walls \(=\$ .89 / \mathrm{ft}^{2}\)
        cost for walls \(=\$ 626.56\) per building
Ceiling area \(=448 \mathrm{ft}^{2}\)
    from remodeling costs sheet - remodeling ceilings \(=\$ .82 / \mathrm{ft}^{2}\)
        cost for ceiling \(=\$ 367.36\)
                Total cost for ceiling and walls \(=\$ 993.92\)
Optional concrete slab: \(16^{\prime} \times 28^{\prime}=448 \mathrm{ft}^{2}\)
    from remodeling costs sheet \(-4^{\prime \prime}\) slab \(=\$ .48 / \mathrm{ft}^{2}\)
        reinforcing costs \(=\$ .10 / \mathrm{ft}^{2}\)
```

 Total cost \(=\$ 44.8\)
 8 wooden farrowing crates @ $\$ 100=\$ 800$
Electrical - wiring
3-100 Watt, enclosed light fixtures @ $\$ 8.50=\$ 25.50$
30 amp , main switch fuse box 6.50
nonmetallic dust and water tight outlets - 10 @ $\$ 10=\$ 100$
Use type U.F. cable for inside circuits $\approx 100 \mathrm{ft}=\$ 35.00$
Feeder circuit cable: Use ANG 8, type PWC with THW conductors 220 ft @ $\$.79 / \mathrm{ft}$
Trenching to bury lines - bury electric lines with plumbing lines $=\$ 174$
220^{\prime} of $1^{\prime \prime}$ plastic conduit @ $\$.42 / \mathrm{ft}$. $=\$ 92.40$

$$
\text { Total cost }=\$ 433.40+20 \%=\$ 520
$$

Plumbing - must have frost proof lines, the main line must be buried 6 ft below grade.
cost for trenching 6 ft . deep by 200 ft . long trench @ $\$ 3 / \mathrm{ft}=\$ 500$
3/4" plastic pipe 220 ft @ $\$.10 / \mathrm{ft}=\$ 22$
3/4" hydrant @ $\$ 42.00$

$$
\text { Total }=664+20 \%=\$ 810
$$

Ventilation (recommendations for nursery pigs since this ventilation rate is greater than required for farrowing and farrowing room will be used as a nursery)

Ventilation rates: winter minimum $=160 \mathrm{cfm}$
winter normal $=1200 \mathrm{cfm}$
summer $=2880 \mathrm{cfm}$

Farrowing System 3-Continued
fans required: $1-160 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ static pressure @ $\$ 200$

1. - 1040 cfm at $1 / 8^{\prime \prime}$ S.P. @ $\$ 235$
$1-1680 \mathrm{cfm}$ at $1 / 8^{\prime \prime} \mathrm{S} . \mathrm{P}$. @ $\$ 315$
Total $=\$ 750$
slot inlets: summer - provide 21 ft of $1^{\prime \prime}$ slot along both 28^{\prime} sides winter - provide 9 ft of $1^{\prime \prime}$ slot along both 28^{\prime} sides
louver area: $6 \mathrm{ft}^{2}$, cover with $1^{\prime \prime}$ mesh screen to keep birds out

Supplemental Heat

$3000 \mathrm{BTU} / \mathrm{hr}$ are required per sow and litter therefore, a $24,000 \mathrm{BTU} / \mathrm{hr}$ unit is needed a $40,000 \mathrm{BTU} / \mathrm{hr}$ unit costs $\$ 260$

Creep heat - provided by 7-250 Watt heat lamps @ $\$ 15=\$ 105$
Waste Handling
Bedding will be added so the waste can be handled as a solid. Scrape manually to alleys, use a wheel barrow to remove waste from the building, A dry manure spreader will be used to spread manure onto the fields.

FARROWING BUILDING 2 \& 3

List of Materials - Farrowing Crate

Farrowing System 4

An old dairy barn will be converted into a farrowing facility. The building will have a concrete floor and be equipped with a gutter cleaner.

Building Dimensions

overall dimensions of the barn are $36^{\prime} \times 60^{\prime} \times 80^{\prime}$
farrowing - $36^{\prime} \times 38^{\prime} \times 8^{\prime}$
Nursery - the farrowing room can be used as the nursery

Remodeling Costs

To protect the walls add $3 / 4^{\prime \prime}$ plywood up $4^{\prime}-14$ sheets needed @ $\$ 22,75=\$ 318,50$
Partition cost $-8^{\prime} \times 36^{\prime}$ stud wall, $2^{\prime \prime} \times 4^{\prime \prime}, 2^{\prime}$ O.C.
Materials: $19-2 \times 4 \times 8^{\prime} @ \$ 1.90=\$ 36.10$
$6-2 \times 4 \times 12^{\prime}$ @ $\$ 3.50=21$
9 sheets $3 / 4^{\prime \prime}$ plywood @ $\$ 22.75=\$ 204.75$

Total $=\$ 261.85$
Steel farrowing crates will be used -16 crates @ $\$ 250=\$ 4000$
Electrical - wiring
6 - 100 Watt enclosed light fixtures @ $\$ 8.50=\$ 51$
100 amp circuit breaker load center @ $\$ 52.00$
6 circuit breakers @ $\$ 3=\$ 18$
nonmetallic dust and water tight outlets - 14 @ $\$ 10.00=\$ 140$
Use type U.F. cable for inside circuits $400 \mathrm{ft} @ \$.35 / \mathrm{ft}=\$ 140$
Use AWG 3 feeder circuit cable, THW moisture resistant conductor 220 ft @ $\$ 1.88 / \mathrm{ft} .=$
Trenching to bury lines - lines will be buried with water line $\$ 413.60$ 220° of $1^{\prime \prime}$ plastic conduit @ $\$.42 / f t=\$ 92.40$ Total $=907+2 \%=\$ 1088.40$

Plumbing

This building will have a frost-proof water hydrant
$3 / 4^{\prime \prime}$ hydrant costs $\$ 42.00$
6^{\prime} deep, 200 ft . trench @ $\$ 3.00 / \mathrm{ft}=\$ 600$
280^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe @ $\$.10 / f t=\$ 28.00$
Total $=670+20 \%=\$ 804$

Ventilation

This building will be naturally vetnilated. Air circulation fans may be needed in the summer.

Creep heat will be provided with 9-250 Watt heat lamps @ $15=\$ 135$

Waste Handling

Bedding will be used so the waste will be handled as a solid. The gutter cleaner will convey wastes to an outside stack or manure spreader.

FARROWING SYSTEM 4

Far: owing System 5
This will be the same building as System 4 with the addition of insulation and mechanical ventilation.

Builaing Dimensions - overall dimensions of the barn are $36^{\prime} \times 60^{\prime} \times 8^{\prime}$
Farrowing $-36^{\prime} \times 38^{\prime} \times 8^{\prime}$
Nursery - the farrowing room can be used as the nursery

Remodeling Costs

Stud
wall partition $-8^{\prime} \times 36^{\prime}, 2^{\prime \prime} \times 4^{\prime}, 2^{\prime}$ O.C.
Framing cost: $19-2 \times 4 \times 8^{\prime} @ \$ 1.90=\$ 36$
$6-2 \times 4 \times 12^{\circ}$ @ $\$ 3.50=\$ 21$
Total $=\$ 57$
Wall area $=1184 \mathrm{ft}^{2}$ (includes partition)
from remodeling cost sheet - wall remodeling costs $=\$.89 / \mathrm{ft}^{2}$ therefore wall cost $=\$ 1053.76$

Celling - if the celling is good and hay is stored above, no remodeling is needed.
Plywood for other side of partition - 9 sheets of $3 / 4^{\prime \prime}$ plywood @ $\$ 22,75=\$ 204.75$ Total $=\$ 1315.51+20 \%=\$ 1578.61$

16 steel crates @ $\$ 250=\$ 4000$

Plumbing

Cost to install new water line:
6^{\prime} deep water lines trench $200 \mathrm{ft} . \approx \$ 600$
220^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe @ $\$.10 / \mathrm{ft}=\$ 22$
3/4" frost proof hydrant $=\$ 42$
200^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe for inside building @ $\$.10 / \mathrm{ft}=\$ 20$
Total cost $=\$ 684+20 \%=\$ 821$

Rewiring

$6-100$ Watt enclosed light fixtures @ $\$ 8.50=\$ 51$
100 amp main switch circuit breaker - $\$ 52,6$ breakers $@ \$ 3=\$ 18$
nonmetallic dust and water tight outlets - 14 @ $\$ 10=\$ 140$
Use type U.F. cable for inside circuits $\approx 400 \mathrm{ft}$. @ $\$.35 / \mathrm{ft}=\$ 140$
Use AWG 3, feeder circuit cable, THW moisture resistant conductor $220 \mathrm{ft} @ \$ 1.88 / \mathrm{ft}$

$$
=\$ 413.60
$$

Trenching - bury line with plumbing line
220° of $1^{\prime \prime}$ plastic conduit @ $\$.42 / \mathrm{ft} .=\$ 92.4$

$$
\text { Total }=\$ 907+20 \%=\$ 1088.4
$$

Farrowing System 5-Continued

Ventilation

Since the farrowing room will be used as a nursery and nursery ventilation rates are higher than for farrowing, use nursery ventilation rates.

Ventilation Rates:
winter minimum - 320 cfm
winter normal - 2400 cfm
summer - 5760 cfm
Fans required:
$1-320 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. @ $\$ 200$
$1-2808 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. © $\$ 285$
$1-3360 \mathrm{cfm}$ at $1 / 8^{\prime \prime} \mathrm{S} . \mathrm{P} . @ \$ 290$
Total $=\$ 775$
Slot inlets: summer - run a $2^{\prime \prime}$ slot, $22^{\prime \prime}$ long along both 38^{\prime} sides winter - run a $1^{\prime \prime}$ slot, 18^{\prime} long along both 38^{\prime} slides
louver area: provide at least $12 \mathrm{ft}^{2}$ of louver area cover with $1^{\prime \prime}$ mesh screen to keep birds out

Supplemental Heat

Each sow and litter requires $3,000 \mathrm{Btu} / \mathrm{hr}$. supplemental heat, therefore a 48,000 Btu/hr. unit is needed.
This facility requires $1-60,000 \mathrm{Btu} / \mathrm{hr}$. unit @ $\$ 300$
Creep heat will be provided by $9-250$ Watt heat lamps @ $\$ 15=\$ 135$

Waste Handling

Bedding will be used so the waste will be handled as a solid. The gutter cleaner will convey wastes to an outside stack or manure spreader.

FARROWING SYSTEM 4

Earrowing System 6

This will be the same building as System 5 with the addition of a nursery facility and concrete liquid manure storage tank. No bedding will be used, waste will be handled as a liquid. A liquid waste handling system is used to handle the larger volumes of waste encountered with the 6 litter/yr. system.

Building Dimensions - overall dimensions $36^{\circ} \times 60^{\prime}$
Farrowing - $36^{\circ} \times 38^{\prime} \times 8^{\prime}$
Nursery $-36^{\prime} \times 22^{\prime} \times 8^{\prime} \quad$ (160 piglet capacity)

Remodeling Costs

Wall area $=1536 \mathrm{ft}^{2}$
from remodeling costs sheet - wall remodeling costs $=\$, 89 / \mathrm{ft}^{2}$ therefore wall cost $=\$ 1367$

Ceiling - if the ceiling is good and hay is stored above, no remodeling is needed.
Partition $-36^{\prime} \times 8^{\prime}, 2^{\prime \prime} \times 4^{\prime \prime}$ stud wall
Framing cost: $19-2 \times 4 \times 8^{\circ} @ \$ 1.90=\$ 36$
$6-2 \times 4 \times 12^{\prime}$ @ $\$ 3.50=\$ 21$
Total $=\$ 57$
Insulation, vapor barrier, plywood cost $=\$ 468.75$

$$
\text { Total }=\$ 1892.75+20 \%=\$ 2271
$$

Resloping of floor with $4^{\prime \prime}$ of concrete: $36 \times 60=2160 \mathrm{ft}^{2}$ @ $\$.58 / \mathrm{ft}^{2}=\$ 1253$
16 wooden farrowing crates @ $\$ 100=\$ 1600$ or 16 steel crates @ $\$ 250=\$ 4000$ (with feeder and waterer)
nursery pens: $2^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime}$ stacked 3 high for solid section
4 sets of 3 needed $=12 @ \$ 8=\$ 96$
for open sections $2^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime}$ stacked 3 high with $4^{\prime \prime}$ spaces 10 sets of 3 needed $=30 @ \$ 3.12=\$ 93.60$

$$
\text { Total }=\$ 96+\$ 93.60+10 \%=\$ 209
$$

Plumbing

Cost to install new water 1 ine:
6^{\prime} deep water lines $200 \mathrm{ft} .=\$ 600$
220^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe © $\$.10 / f t=\$ 22$
$3 / 4^{\prime \prime}$ frost proof hydrant $=\$ 42$
300^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe for inside of building @ $\$.10 / \mathrm{ft}=\$ 30$

```
Total cost = $694 + 20% = $832.8
```


Farrowing System 6-Continued

Rewiring

12-100 Watt enclosed light fixtures © $\$ 8.50=\$ 102$
100 amp main switch circuit breaker $-\$ 52.00,6$ breakers @ $\$ 3=\$ 18.00$
nonmetalic dust and water tight outlets - 22 @ $\$ 10.00=\$ 220$
Use type U.F. cable for inside circuits $\times 500 \mathrm{ft}$. @ $\$.35 / \mathrm{ft} .=\$ 175$
Use AWG 3, Feeder circuit cable, THW moisture resistant conductor - 220 ft . @ $\$ 1.88 / \mathrm{ft} .=\$ 413.6$

Trenching to bury lines 2 ft . deep -100 ft . long \longrightarrow run with water line 220° of $1^{\prime \prime}$ plastic conduit @ $\$.42 / \mathrm{ft}$. $=\$ 92.4$

$$
\text { Tota1 }=\$ 1073+20 \%=\$ 1288
$$

Ventilation

The farrowing and nursery areas will be ventilated independently. Solid wall partition.
Farrowing Section: winter (minimum) $=320 \mathrm{cfm}$ winter normal $=1288 \mathrm{cfm}$ summer $=3360 \mathrm{cfm}$

Fans required: $1-320 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. $=\$ 200$
$1-960 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. $=\$ 235$
$1-2080 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. $=\$ 285 \quad$ TOTAL $=\$ 720$
Slot inlets: for summer provide $1^{\prime \prime}$ slot 25^{\prime} long along both 38^{\prime} sides for winter provide $1^{\prime \prime}$ slot 10^{\prime} long along both 38^{\prime} sides
Louver area: provide at least $6 \mathrm{ft}^{2}$ of louver area just for farrowing section, cover with $1^{\prime \prime}$ mesh screen.

Nursery Section: winter (minimum) $=320 \mathrm{cfm}$ winter normal $=2400 \mathrm{cfm}$ summer $=5760 \mathrm{cfm}$

Fans required: $1-320 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. $=\$ 200$
$1-2080 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. $=\$ 285$
$1-3360 \mathrm{cfm}$ at $1 / 8^{\prime \prime}$ S.P. $=\$ 290 \quad$ TOTAL $=\$ 775$
Slot inlets: summer - run at $2^{\prime \prime}$ slot 22^{\prime} long along both $22^{\prime \prime}$ sides winter - run at $1^{\prime \prime}$ slot 18^{\prime} long along both 22^{\prime} sides
Louver area: provide at least $12 \mathrm{ft}^{2}$ of louver area for nursery Total louver area needed $=12+6=18 \mathrm{ft}^{2}$
(farrowing and nursery)

Supplemental Heat Required

For farrowing: ($3000 \mathrm{BrU} / \mathrm{hr} / \mathrm{sow}$ and 11tter) (16) $=48,000 \mathrm{BTU} / \mathrm{hr}$ unit $60,000 \mathrm{BTU} / \mathrm{hr}$ unit $\approx \$ 300$
Creep heat $=9-250$ Watt heat lamps @ $15=135$
For Nursery: ($300 \mathrm{BUT} / \mathrm{hr} / \mathrm{pig}$) $(160)=48,000 \mathrm{BTU} / \mathrm{hr}$ unit $60,000 \mathrm{BTU} / \mathrm{hr}$ unit $\approx \$ 300$

Farrowing System 6-Continued
--Feeders for nursery - need $6-5$ hole feeders © $\$ 84=\$ 504$
or $2-5$ hole, 2 troughs $+2-5$ hole feeders $=(2)(130)+(2)(84)=\$ 428$
--Waterers - 6-cup waterers @ $\$ 12.00=\$ 72$

Waste Handling

Waste will be collected in the gutters and the gutter cleaner will convey the manure to an outside storage pit.

Cost of below-grade concrete storage pit:
Total volume required for 180 days of storage $=3250 \mathrm{ft}^{3}$
Thank size required $=22^{\prime} \times 22^{\prime} \times 8^{\prime}$
This will give 7^{\prime} of storage 3 depth.
Cost of tank $=\left(3872 \mathrm{ft}^{3}\right)\left(\$ 1.56 / \mathrm{ft}^{3}\right)=\$ 6,040$
Concrete cover (designed for vehicle traffic) $=\left(484 \mathrm{ft}^{2}\right)\left(\$ 6 / \mathrm{ft}^{2}\right)=\$ 2,904$ Total $=\$ 8,944$

An agitation pump will be required; it must be 8^{\prime} long. Cost $=\$ 3,500$
A tank wagon will be needed to haul wastes from the pit to the fields, 2,000 gallon
tanker. Cost $=\$ 6,500$

Alternative Waste Handling Component for Farrowing System 6

Remodeled dairy facility with no gutter cleaner, install a gravity flush gutter that conveys waste out of barn to an outdoor storage facility.

Slope gutters $1^{\prime \prime} / 25 \mathrm{ft}$. toward the storage facility.

At the end of each gutter will be a plug that will be opened when the gutter becomes full. This will flush the gutter in a batch flow and freezing will not be a problem. From the plug the waste will flow through an $8^{\prime \prime}$ diameter PVC pipe to the storage tank. The storage tank will have a prestressed concrete top that will support vehicle traffic.

FARROWING - NURSERY SYSTEM 6

ALTERNATIVE FLOOR PLAN

FARROWING SYSTEM 6

Farrowing System 7

New pole building used for farrowing. This is for the operator who has no buildings to remodel, doesn't want the high investment of farrowing systems $8,9,10$ and doesn't want to use a pasture system. A concrete floor will be added to the building.

Building Dimensions
Farrowing - $24^{\prime} \mathrm{x} 48^{\prime}$ pole building
Nursery - with 4 litters/yr. the farrowing room can be used for the nursery.

Waste HandIIng
The animal waste will be handled as a solid with a shovel and wheel barrow. Bedding will probably be used with this system.

Farrowing System 7 - Continued

Item	Description	No.	Unit Cost	Total
Concrete	Cu . feet	8	\$40/27 ft^{3}	\$ 12.00
Poles	$5^{\prime \prime}$ top $\times 16^{\prime \prime}$ press treated	8	\$20.00	160.00
	$4^{\prime \prime}$ top $\times 16^{\prime}$ press treated	11	\$12.80	140.80
Girders	$2 \times 8 \times 16^{\prime}$	7	\$10.03	70.21
Bracing	1/2' $\times 4^{\prime \prime} \times 8^{\prime}$ C-C Ext. Plywood	3	\$10.72	32.16
	$2 \times 4 \times 14^{\prime}$	6	\$ 4.04	24.24
	$2 \times 6 \times 6^{1}$	4	\$ 2.34	9.36
	$2 \times 6 \times 7{ }^{1}$	4	\$ 2.73	10.92
Trusses ${ }^{1}$				600.00
Girts	$2 \times 4 \times 16^{\prime}$	21	\$ 4.62	97.02
	$2 \times 4 \times 18^{\prime}$	21	\$ 5.20	109.20
	$2 \times 6 \times 16^{\prime}$	23	\$ 6.24	143.52
Skirt	$2 \times 6 \times 16^{\prime}$ pressure treated	12	\$ 8.32	99.84
Siding	ft_{2}^{2}	1530	\$19/32 ft ${ }^{2}$	908.44
Roofing	ft^{2}	1344	\$19/32 ft ${ }^{2}$	798.00
	Ln. feet eaves trough (gutters)	96	\$3.80/10 ft	36.50
Louver	$2 \times 4 \times 6{ }^{\prime}$	4	\$ 1.42	5.68
	$1 \times 6 \times 10^{\prime}$	10	\$ 1.84	18.40
	$1 \times 2 \times 12^{\prime}$	2	\$ 3.36	6.72
	ft^{2} screen	30	\$.12/ft ${ }^{2}$	3.60
Man Door	$4^{\prime \prime} \times 4^{\prime \prime} \times 12{ }^{\prime \prime}$	2	\$10.40	20.80
	$2 \times 6 \times 2^{\prime}$	1	\$ 9.78	. 78
	$1 \times 6 \times 10^{\prime}$	11	\$ 1.84	20.24
				\$3328

1^{1} Trusses are 4^{\prime} O.C. 35 lb . load, 24^{\prime} span.

Farrowing System 7 - Continued
Cost of Concrete Floor
$24^{\prime} \times 48^{\prime} \times 4^{\prime \prime}=384 \mathrm{ft}^{3}=14.2 \mathrm{yds} @ \$ 39 / \mathrm{yd}=\$ 553.80$
Reinforcing (1152 ft^{2}) ($\$.10 / \mathrm{ft}^{2}$) $=\$ 115.2 \mathrm{a}$
Total $=\$ 679$

Ventilation

Since the farrowing room will be used as a nursery and nursery ventilation rates are higher than for farrowing, use nursery rates.
winter minimum $=320 \mathrm{cfm}$
winter normal = 240 cfm
summer $=5760 \mathrm{cfm}$
Farn required: $1-320 \mathrm{cfm}$ at $1 / 8^{\prime \prime} \mathrm{S} . \mathrm{P},=\$ 200$ 1-2080 cfm at $1 / 8^{\prime \prime}$ S.P. $=\$ 285$ 1-3360 cfm at $1 / 8^{\prime \prime}$ S.P. = $\$ 290$

Total $=\$ 775$
Slot inlets: summer - run a $1^{\prime \prime}$ slot 44^{\prime} long along both 48^{\prime} sides winter - run a $1^{\prime \prime}$ slot 18^{\prime} long along both 48^{\prime} sides
Louver area: provide at least $12 \mathrm{ft}^{2}$ of louver area, cover with $l^{\prime \prime}$ mesh gcreen to keep birds out.

Supplemental heat required
$3000 \mathrm{BTV} / \mathrm{hr}$ are required per sow and litter
therefore, a 48,000 BTU/hr unit is needed
A $60,000 \mathrm{BTU} / \mathrm{hr}$ unit costs $\approx \$ 300$
Creep heat provided by $10-250$ Watt heat lamps @ $\$ 15=\$ 150$
Insulation: wall area $=1440 \mathrm{ft}^{2}$

```
wall area = 1440 ft
```

In walls use $2^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$ sheets polystyrene ($R=8.4$), cover with $3 / 4^{\prime \prime}$ plywood insulation - $1440 \mathrm{ft}^{2} \times \$ 8.88 / 32 \mathrm{ft}^{2}=\$ 400$ plywood - $1440 \mathrm{ft}^{2} \times \$ 22.75 / 32 \mathrm{ft}^{2}=\$ 1023.75$
vapor barrier - $1440 \mathrm{ft}^{2} \times \$.02 / \mathrm{ft}^{2}=\$ 28.80$
In ceiling use $1 / 2^{\prime \prime}$ plywood with $6^{\prime \prime}$ blown insulation ($R=20$)
insulation - $1152 \mathrm{ft}^{2} \times \$ 8.00 / 32 \mathrm{ft}^{2}=\$ 307.20$
plywond $-1152 \mathrm{ft}^{2} \times \$ 16.00 / 32 \mathrm{ft}^{2}=\$ 576$
vapor barrier - $1152 \times \$.02 / \mathrm{ft}^{2}=\$ 23.04$
Total cost for insulation $=\$ 2,359$
Farrowing System 7 - Continued
Plumbing
Cost to install new water line:
6^{\prime} deep water line trench 200' @ \$3.00/ft $=\$ 600$$220^{\prime}$ of $3 / 4^{\prime \prime}$ plastic pipe @ $\$.10 / \mathrm{ft}=\$ 22$
$3 / 4^{\prime \prime}$ frost proof hydrant $=\$ 42$
200^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe for inside building @ $\$.10 / \mathrm{ft}=\$ 20$
Total cost $=\$ 684+20 \%=\$ 821$
Wiring
6-100 Watt enclosed light fixtures @ $\$ 8.50=$ \$51
100 amp main switch-circuit breaker - \$52, 6 breakers @ $\$ 3=$ \$18
nonmetallic dust and water tight outlets - 16 @ $\$ 10=\$ 160$Use type U.F. cable for inside circuits $\approx 400 \mathrm{ft} @ \$.35 / \mathrm{ft}=\$ 140$Use AWG 3, feeder circuit cable, THW moisture resistant conductorTrenching - bury line with plumbing line$\$ 413.6$
220^{\prime} of $1^{\prime \prime}$ plastic conduit © $\$.42 / f t=$ \$92.4
Total cost $=\$ 927+20 \%=\$ 1112$

FARROWING SYSTEM 7

Farrowing System 8

New building. Totally confined, partially slatted farrowing room and totally slatted nursery with an 8^{\prime} manure storage pit.

Farrowing - partially slatted, 16-sow capacity
Nursery - totally slatted, 160-piglet capacity :
This will be a turn-key facility complete with crates, feeders, waterers, heaters, ventilation equipment, etc.

$$
\text { Cost }=\$ 2000 / \text { sow }+\$ 100 / \text { piglet }
$$

Water and electric service must be brought to the building,

Plumbing Installation

6^{\prime} deep water lines $200 \mathrm{ft}=\$ 600$
220^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe @ $\$.10 / f t=\$ 22$
Total $=\$ 622$

Electric Service

AWG 3, feeder circuit cable, THW moisture resistant conductor 220° @ $\$ 1,88 / \mathrm{ft}$ 220^{\prime} of $1^{\prime \prime}$ plastic conduit @ $\$.42 / f t=\$ 92.4=\$ 413.6$

Total $=\$ 506$
Waste Handling
An agitation pump 8 ft . long $(\$ 3500)$ and a liquid manure spreader (2,000 gallon - $\$ 6500$) will be needed to empty the manure pit.

Farrowing System 9

Same facility of Farrowing System 8 except it will be used for 8 litters per year.
-172-

Farrowing System 10

New facility. Totally confined, partially slatted floor with a flush system to convey wastes to a lagoon. This system will have a 280 piglet' nursery.

This will be a turn-key facility complete with crates, feeders, waterers, heaters, ventilation equipment, etc. Cost $=\$ 2,000 /$ sow $+\$ 100 /$ piglet

The cost to run a water 1 Ine and electrical servie is the same as for system $8-\$ 1128$
Lagoon Design - see page
An irrgation system will be used to empty the lagoon. Irrigation System Cost - see page

FARROWING CROSS SECTION

FARROWING 8^{\prime} SLATS

Gestation System 1 - Pasture System, 18 sows, 8 gilts, 2 boars

Portable shelters will be provided for shade and wind protection. Two pasture areas will be fenced and used in yearly rotations.

Construction Costs

Feeders:

Trough space needed (2'/sow) (18 sows) $=36 \mathrm{ft}$ trough space
OR 1 '/sow self-feed $=18 \mathrm{ft}$ self-feed space

Provide for the sows:
Two 10-hole feeders @ $\simeq \$ 190-280=\$ 380-560$

- OR metal trough for sows 9 at $4 \mathrm{ft}=36 \mathrm{ft} 9$ @ $\$ 17=\$ 153$

OR Two 8-ft 2-sided troughs (32 ft feed length) $2 @ \$ 55=\$ 110$

For boars and extra pen:
Two 2-ft feeders @ \$13.75 = \$27.50

Waterers:

1 foot or cup/ 10 sows \therefore need 2 ft of trough space
1 foot or cup/3 boars \therefore need 1 ft of trough space
(these waterers must be frost-proof)

Provide for the sows and boars:
One 2-hole frost-proof waterer at $\$ 95$
Optional 95 gallon stock tank waterer for warm weather use at $\$ 75.25$
2 ft trough in extra pen $\$ 11.00$
220 ft of $3 / 4^{\prime \prime}$ plastic pipe @ $.10 / \mathrm{ft}=\$ 22$
Approximate cost to run 6^{\prime} deep water lines 200 ft @ $3.00 / \mathrm{ft}=\$ 600$ 200^{\prime} of electric line will also have to be run to heat the waterer:

Conduit 220^{\prime} @ . $42 / \mathrm{ft}=\$ 92.40$
220^{\prime} @ $.20 / f t=\$ 44.00$
$3 / 4^{\prime \prime}$ frost proof water hydrant $\simeq \$ 42.00$
Plumbing \& Electric $=22+600+92.4+44+42=800+20 \%=960$

Waste Handling:

Bedding will be used so waste will be handled as a solid.
Bedding and manure will have to be removed from the shelters with a shovel. A loader may be used to remove wastes from around the waterers and feeders. A dry manure spreader may be needed to spread the waste onto fields.

Note: the spreader and laoder may not be necessary.

Fencing Needed:

3240 ft @ . $80 / \mathrm{ft}=\$ 2592$
post every $8 \mathrm{ft}=405$ posts at $1.75=\$ 709$
This approximately $=\$ 1 / \mathrm{ft}$

Item	Description	No.	Unit Cost	Total
Skids	$4^{\prime \prime} \times 4^{\prime \prime} \times 9^{\prime} \text { (pres- }$ sure treated)	2	\$ 7.25	\$14.25
Rafter	2" $\times 4^{\prime \prime} \times 9^{\prime \prime}$	4	2.15	8.60
Stud	2' $\times 4^{\prime \prime} \times 2{ }^{\prime \prime}-51 / 8^{\prime \prime}$	4		3.50
	$2^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime}$	2		1.89
	2' $\times 4^{\prime \prime} \times 4^{\prime \prime}-41 / 2^{\prime \prime}$	3		3.78
	$2^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}-81 / 8^{\prime \prime}$	1		. 71
Plate	$2^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime \prime}$	2	1.42	2.84
Nailing Girts	$2^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$	1		. 71
	$2^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime}$	2		1.89
Joist	$2^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime}$	5	1.42	7.10
Sill	$2^{\prime \prime} \times 4^{\prime \prime} \times 8^{\prime \prime}$	2	1.89	3.78
	$2^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime}$	2	1.42	2.84
Blocking	$2^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime}$	1	1.42	1.42
Facia	$1^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime}$	1	. 90	. 90
Plywood $\begin{aligned} & \text { sides } \\ & \text { top } \\ & \text { bottom }\end{aligned}$	$3 / 4^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$	3	22.75	68.25
	$3 / 4^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$	2	22.75	45.50
	$3 / 4^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$	2	22.75	45.50
Insulation (roof)	$1^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$	2	12.00	24.00
			.	\$237.71
			+ 20\% mis	\$285.25

Remodeling:

Line the interior of the building up to 4^{\prime} with $3 / 4^{\prime \prime}$ plywood to protect the walls from the sows.

6 sheets needed @ $\$ 22.75=\$ 136.50$
partitions inside building ($2^{\prime \prime} \times 8^{\prime \prime}$ by 4 boards high)
need 72 linear feet \therefore we need (4)(72) $=288 \mathrm{ft}$
need $36-8^{\prime} \times 2^{\prime \prime} \times 8^{\prime \prime}$ @ $\$ 4.20=\$ 151.20$
This lumber must be pressure treated.

Fencing Needed:

200 ft of hog pane1 @ . 80/ft $=\$ 160$
Posts every $8 \mathrm{ft}=25$ posts $@ 1.75=\$ 43.75$

Feeders:

40^{\prime} of wooden trough for sows and gilts: 5 @ \$82.50/8 ft
For boars: two 2-ft steel troughs @ $\$ 11.00=\$ 22.00$

Waterers:

Two 2-hole waterers @ $\$ 95=\$ 190$ (frost-proof)
PLUS One 1-hole frost-proof waterer $=\$ 75$
3/4" frost-proof water hydrant $\simeq \$ 42$
Approximate cost to run 6^{\prime} deep water lines $220 \mathrm{ft} @ 3.00 / \mathrm{ft}=\$ 600$
$220 \mathrm{ft} 3 / 4^{\prime \prime}$ plastic pipe $=\$ 22.00$
Electrical line for water heaters 220° @ . $42 / \mathrm{ft}=\$ 92.40$
Conduit 220' @ . 20/ft $=\$ 44.00$

Waste Handling:

Bedding will be used so waste will be handled as a solid. A shovel or loader will be used to remove wastes from building, around waterers and feeders and the lot area.

Ventilation:

The building will be naturally ventilated with an open ridge. Two circulation fans in the building may be needed during the summer. Cut windows in rear section.

Gost of Concrete:

Inside area: $40^{\prime} \times 32^{\prime}=1280 \mathrm{ft}^{2} @ \$.58 / \mathrm{ft}^{2}=\$ 742.40$
Outside lot area: $40^{\prime} \times 20^{\prime}=800 \mathrm{ft}^{2} @ \$.58 / \mathrm{ft}^{2}=\$ 464.00$
Apron: $40^{\prime} \times 8^{\prime}=320 \mathrm{ft}^{2} @ \$.58 / \mathrm{ft}^{2}=\$ 185.60$

Doors:
Front: 2" x 4" framing, 1/2" plywood, doors come down 4 ft
Need Five 8-ft doors; each door has four $8^{\prime} \times 2^{\prime \prime} \times 4^{\prime \prime}+1$ sheet $1 / 2^{\prime \prime}$ plywood 5 © $\$ 25.00=\$ 125.00$
Back: 4 windows at $2^{\prime} \times 4^{\prime}, 2^{\prime \prime} \times 4^{\prime \prime}$ framing + need $12 \mathrm{ft} /$ window $+8 \mathrm{ft}^{2} 1 / 2^{\prime \prime}$ plywood
4 at $\$ 8.00=\$ 32.00$

A typical sized pole building is $32^{\prime} \times 40^{\prime}$, which may be an old hay shed, machine shed, or storage area with or without a concrete floor. A plan is given to show how such a building may be remodeled for the above number of breeding stock. It is more space than necessary for this number of animals, but we are assuming that the building is already on the farmstead. It will be naturally ventilated with an open ridge so a constant temperature will not be maintained.
CROSS SECTION OF GESTATION SYSTEM 2

GESTATION SYSTEM 2

Gestation System 3 - Open Front Shed with Lot. 18 sows, 8 gilts, 2 boars

B111 of Materials - Open front shed with lot (MWPS - 72692)
Building Dimensions $16^{\prime} \times 32^{\prime}$

Concrete Work

In building: $16^{\prime} \times 32^{\prime} \times 4^{\prime \prime}=170 \mathrm{ft}^{3}=6.3 \mathrm{yd} @ 39.00 / \mathrm{yd}$ \$ 245.70 reinforcing $512 \mathrm{ft}^{2}$ @. $10 / \mathrm{ft}^{2}$ 51.20

TOTAL $\$ 296.90$

Feedlot: $20^{\prime} \times 32^{\prime} \times 4^{\prime \prime}=213 \mathrm{ft}^{3}=8 \mathrm{yd} @ 39.00 / \mathrm{yd}$ 312.00 reinforcing $640 \mathrm{ft}^{2}$ @ .10/ft ${ }^{2}$ $\underline{64.00}$

TOTAL $\$ 376.00$

Apron for runoff, collection: $8^{\prime} \times 32^{\prime} \times 4^{\prime \prime}=85 \mathrm{ft}^{3}=3.2 \mathrm{yd} @ 39.00 / \mathrm{yd} 124.80$ reinforcing $256 \mathrm{ft}^{2}$ @. $10 / \mathrm{ft}^{2} \xrightarrow{25.60}$

TOTAL $\quad \$ 150.40$
TOTAL CONCRETE $\$ 823.30$

Pen Dividers - Fencing

Protection for inside walls use $2 \times 8 \times 8^{\prime} 3$ high, need 24 boards ${ }^{-@ 4.16 \$ \$ 99.84}$
Inside pen dividers, $2^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime} 3$ high, need 18 boards @ $8.00 \quad 144.00$
(solid partitions to help prevent dunging inside)
Outside fencing, need 132 linear ft . of fence, @ 105.60
1 post every $8 \mathrm{ft}=17$ @ 1.75

TOTAL fencing and partitions $\$ 380.00$.

Ventilation - natural ventilation, open doors during summer

Waste handling - This facility will require scraping with a shovel and loader. Waste will be collected on the apron, removed with loader; spreader will be required to dispose of waste on fields.

Feeders: $2^{\prime} /$ sow all fed at once or $1^{\prime} /$ sow self-fed
Provide: Three 10-hole feeders @ $\$ 200$
600.00

One 2-hole feeder @ $\$ 100$
TOTAL
$\$ 700.00$

Waterers: 1 foot or cup / 10 sows
1 foot or cup/3 boars
These waterers must be frost-proof
provide: Two 2-hole frost-proof waterers @ $\$ 100$
200.00

Approximate cost to run 6^{\prime} deep water line $200 \mathrm{ft}+24 \mathrm{ft}=224 \mathrm{ft@} 3.00 / \mathrm{ft} 672.00$ 250 ft of $3 / 4^{\prime \prime}$ plastic pipe @ $.10 / \mathrm{ft} 25.00$
3/4" hydrant 42.00
Electric line for water heaters:
250 ft or $1^{\prime \prime}$ plastic conduit @ .42/ft 105.00
250 ft or (300 volt, 3 conductor, weather-proof, service cable) wire @ .79/ft

$+20 \%$ Misc.	248.50
TOTAL	$\$ 1490.00$

gestation facility 3

Concrete Work:

In building $16^{\prime} \times 64^{\prime} \times 4^{\prime \prime}=340 \mathrm{ft}^{3}=12.6 \mathrm{yd} @ 39.00 / \mathrm{yd} \quad \$ 491.40$ reinforcing $1024 \mathrm{ft}^{2}$ @ $.10 / \mathrm{ft}^{2} \quad 102.40$
593.80

Feedlot: $20^{\prime} \times 64^{\circ} \times 4^{\prime \prime}=426 \mathrm{ft}^{3}=16 \mathrm{yd}$ @ $39.00 / \mathrm{yd} \quad 624.00$
reinforcing $1280 \mathrm{ft}^{2}$ @ $.10 / \mathrm{ft}^{2} \quad 128.00$
752.00

Apron for runoff, collection:

$$
\begin{array}{lrr}
8^{\prime} \times 32^{\prime} \times 4^{\prime \prime}=170 \mathrm{ft}^{3}=6.4 \mathrm{yd} @ 39.00 / \mathrm{yd} & 149.60 \\
\text { reinforcing } 512 \mathrm{ft}^{2} @ .10 / \mathrm{ft}^{2} & 51.20 \\
& & 300.80 \\
& \text { TOTAL Concrete } & \$ 1646.60
\end{array}
$$

Pen Dividers - Fencing:

Protection for inside walls use:
$2 \times 8 \times 8$ ' 3 high, need 36 boards @ 4.16
Inside pen dividers (solid partitions to help prevent dunging inside):
2 " x $12^{\prime \prime} \times 8$ ' 3 high, need 42 boards @ $8.00 \quad 336.00$
Outside fencing:
need 244 linear feet of fence © .80/ft
1 post every $8 \mathrm{ft}=31$ @ 1.75

TOTAL
$\$ 735.00$

Ventilation - natural ventilation

Waste Handling:

This facility will require scraping with a shovel and loader. Waste will be collected on the apron and removed with loader; a manure spreader will be required to dispose of the waste on the fields.
Feeders: $2^{\prime} /$ sow (all fed at once) or $1^{\prime} /$ sow self-feed
Provide: Three 16-hole feeders @ 325.00 $\$ 975.00$
Two 2-hole feeders @ 100.00 200.00
TOTAL $\$ 1175.00$
Waterers:
1 foot or cup/10 sows
1 foot or cup/3 boars
These waterers must be frost-proof
Provide: Four 2-hole frost-proof waterers @ 100.00 $\$ 400.00$
Approximate cost to run 6^{\prime} deep water line:
$200 \mathrm{ft}+55 \mathrm{ft}=255 \mathrm{ft}$ @ $3.00 / \mathrm{ft}$ 765.00
300^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe @ .10/ft 30.00
3/4" hydrant 42.00
Electric line for water heaters:
300 ft of $1^{\prime \prime}$ plastic conduit @ . $42 / \mathrm{ft}$ 126.00
300 ft of (300 volt, 3 conductor, weatherproof , service cable) wire @ .79/ft 237.00
1600.00
$+20 \%$ Misc. 320.00
TOTAL $\$ 1920.00$
Feed System
3 ton bin capacity, auger system $\$ 1625.00$

Gestation System 4 - Open Front Shed with Lot. 36 sows,' 16 gilts, 4 boars Bill of Materials - Open front shed with lot (MWPS - 72692) Building Dimension $16^{\prime} \times 64^{\circ}$

Item	Description	No.	Unit Cost	Total
Poles (pressure treated)	$4 \times 4 \times 12^{1}$	9	\$ 9.60	\$ 86.40
	$4 \times 4 \times 10^{\prime}$	9	8.00	72.00
	$4 \times 4 \times 8{ }^{1}$	9	6.40	57.60
Girders	$2 \times 8 \times 16^{\prime}$	8	8.32	66.56
	$2 \times 6 \times 16^{\prime}$	16	6.24	99.84
Rafters	$2 \times 4 \times 18^{\prime}$	33	5.20	171.60
Purlins	4'x 1'x 16'	40	2.40	96.00
Facia	$2 \times 6 \times 16^{\prime}$	8	6.24	49.92
	$1 \times 8 \times 16^{\prime}$	4	7.56	30.24
Girts (back)	$2 \times 6 \times 16^{\prime}$	12	6.24	74.88
	$2 \times 4 \times 16^{\prime}$	4	3.78	15.12
(sides)	$2 \times 6 \times 16^{\prime}$	8	6.24	49.92
Doors (framing)	$2 \times 4 \times 8{ }^{1}$	60	1.89	113.40
	3/8" plywood	$384 \mathrm{ft}^{2}$	$14.88 / 32 \mathrm{ft}^{2}$	178.56
Roof	$18 \times 64=1152 \mathrm{ft}^{2}$. 038 Aluminum	@ 19.00/32 ft^{2}	684.00
Walls (back)	$288 \mathrm{ft}^{2}$	3/4" Plywood	@ $22.75 / 32 \mathrm{ft}^{2}$	204.75
	$236 \mathrm{ft}^{2}$	1/2 @ 1/2"	$16.65 / 32 \mathrm{ft}^{2}$	61.40
		1/2 © 3/4"	$22.75 / 32 \mathrm{ft}^{2}$	83.90

[Insulation on Ceiling if steel roof is used $1152 \mathrm{ft}^{2}$]
$4^{\prime} \times 8^{\prime} \times 1-1 / 2^{\prime \prime}$ polystyrene $=6.75 / 32 \mathrm{ft}^{2} \underline{\underline{243.00}}$
2439.07
$+20 \%$ Misc. $\quad 487.81$
TOTAL
$\$ 2926.88$

GESTATION FACILITY 4

Gestation System 5 - New Pole Building. 54 sows, 24 gilts, 6 boars

Bill of Materials - Naturally ventilated pole building with a scrape alley (MWPS - 72055)

Building Dimension $30^{\prime} \times 80^{\prime}$

Item	Description	No.	Unit Cost	Total
Concrete	cu. feet	12	\$40.00/ $27 \mathrm{ft}^{3}$	\$ 18.00
Poles	6"x 6"x 16'	12	34.40	413.00
pressure treated	4"x 4"x $16^{\prime \prime}$	11	12.80	141.00
Girders	$2 \times 10 \times 16^{\prime}$	20	14.27	285.00
Bracing	1/2'x $4^{\prime} \times{ }^{\prime} \times \mathrm{c}-\mathrm{c}$ Ext.	Ply 5	10.72	54.00
	$2 \times 4 \times 12^{\prime}$	10	3.47	35.00
	$2 \times 6 \times 6{ }^{\prime}$	6	2.34	14.00
	$2 \times 6 \times 7{ }^{\prime}$	8	2.73	22.00
Trusses		214^{\prime} oc		1176.00
Girts	$2 \times 4 \times 16^{\prime}$	45	4.62	208.00
	$2 \times 4 \times 18^{\prime}$	45	5.20	234.00
	$2 \times 6 \times 16^{\prime}$	38	6.24	237.00
Skirt (pressure treated)	$2 \times 6 \times 16^{\prime}$	18	8.32	150.00
Siding	Sq. feet . 038 Aluminum	2030	$19.00 / 32 \mathrm{ft}^{2}$	1205.00
Roofing	Sq. feet . 038 Aluminum	2880	$19.00 / 32 \mathrm{ft}^{2}$	1710.00
	Ln feet eaves trough	162	3.80/10 ft	62.00
Main door (One at each end of alley)	4"x 4"x 12'6"	4	9.46	38.00
	$2 \times 6 \times 2{ }^{\prime}$	1	. 78	1.00
	1"x 6"x 10'	11	1.84	20.00
Large Doors (dunging alley doo	$\begin{aligned} & 2 \times 4 \times 10^{\prime} \\ & 3-\text { framing }) \end{aligned}$	16	2.89	46.00
Ventilation door framing	$2 \times 4 \times 8{ }^{1}$	90	1.89	170.00
				6239.00
			+ 20\% Misc.	1248.00
			TOTAL	\$7487.00

Cost of Concrete Floor: $\quad 30 \times 80 \times 4^{\prime \prime}=800 \mathrm{ft}^{3}=30 \mathrm{yds}$ @ $\$ 40 / \mathrm{yd} \quad 1200.00$ reinforcing (2400)(.10/ft ${ }^{2}$)
$\underline{240.00}$
1440.00

Insulation

Wall area $=2200 \mathrm{ft}^{2}$ Use $2^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$ polystyrene, cover $1 / 2^{\prime \prime}$ of $3 / 4^{\prime \prime}$ plywood and $1 / 2^{\prime \prime}$ of $1 / 2^{\prime \prime}$ plywood:
insulation: ($2200 \mathrm{ft}^{2}$) (8.88/32 ft^{2}) $\$ 611.00$
plywood: (2200/2)(16.64/32 ft^{2}) - 572.00
(1/2 @ 1/2", 1/2 @ 3/4"): (2200/2)(22.75/32 ft^{2}) 782.00
$\begin{array}{ll}\text { vapor barrier: }(2200)\left(.02 / 32 \mathrm{ft}^{2}\right) & 44.00\end{array}$
Celling area $=(2)(17 \times 80)=2720 \mathrm{ft}^{2}$ Use $1 / 2^{\prime \prime}$ plywood with $2^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$ polystyrene:
$\begin{array}{ll}\text { insulation: }(2720)\left(8.88 / 32 \mathrm{ft}^{2}\right) & 755.00\end{array}$
plywood: (2720)(16.64/32 $\left.\mathrm{ft}^{2}\right) \quad 1414.00$
vapor barrier: (2720)(.02/32 $\left.\mathrm{ft}^{2}\right) \quad 54.00$
TOTAL INSULATION COST $\$ 4232.00$

Plumbing - cost to install new water line:
6^{\prime} deep water line trench 280' @ 3.00/ft
310^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe @ . $10 / \mathrm{ft}$
$\$ 840.00$
$3 / 4^{\prime \prime}$ frost-proof hydrant
.42 .00
913.00
$+20 \%$ Misc. 183.00

TOTAL $\$ 1096.00$

Electrical - electric line for water heaters:

310^{\prime} of $1^{\prime \prime}$ plastic conduit @ . $42 / \mathrm{ft}$
310^{\prime} of (300 volt, 3 conductor, weatherproof , service cable) wire @ .79/ft
100 amp main switch circuit breaker:
$\$ 52.00+6$ breakers @ 3.00
Six 100-Watt enclosed light fixtures @ 8.50
Non-metalic dust and watertight outlets 6 @ 10.00
Type U.F. cable for inside circuits $\simeq 200 \mathrm{ft} @ .35 / \mathrm{ft}$
$\$ \quad 130.00$
245.00
70.00
51.00
60.00
70.00
626.00
$+20 \%$ Misc. 125.00

TOTAL
$\$ 751.00$

Waterers
Five 2-hole frost-proof waterers @ 100.00 \$ 500.00

Feeders

Five 2-trough, 8 ft 8 -door feeder @ 323.00	-	$\$ 1615.00$
Five 2 -trough, $6 \mathrm{ft} \mathrm{6-door} \mathrm{feeder} \mathrm{@} 263.00$	TOTAL	$\$ 2930.00$

Pen Dividers

```
\(2^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime} 3 \mathrm{high}\), need 66 boards @ 8.00
\(\$ 528.00\)
```

Forty $4^{\prime \prime} \times 4^{\prime \prime} \times 8^{\prime}$ posts @ 6.40
256.00

80 ft of hog panel @ $1.00 / \mathrm{ft}$ 80.00

Eleven 8-ft gates @ 35.00
1249.00
$+20 \%$ Misc. 251.00

TOTAL
$\$ 1500.00$

Ventilation

Naturally ventilated with an open ridge, vent doors and an open front during warm weather.

Manure Handling

Bedding will be used, waste will be handled as a solid. The 9^{\prime} alley can be scraped clean with a small skid steer loader.

Feed System

A 4.4 ton capacity bin will be used with an auger system

Gestation System 6, 7 and 8

These facilities will be complete turn-key buildings. The cost to install water lines and electrical service is the same as in farrowing system 8. Each building will be equipped with an automatic auger feed system.

Lagoon design - see page
Irrigation system - see page

GESTATION SYSTEM 6

gestation facility 8 flushing gutter system
CROSS-SECTION
gestation area

Finishing System 1

Pasture finishing system during the summer months only, Requires fencing, sun shades, feeders, waterers--low investment.

This system would probably be used by the operator who normally sells 40 lb, feeder pigs but the market is down and he wants to wait and sell them as market hogs when the market is higher.

130 hog capacity
Sun Shade A (MWPS-8) Dimensions $16^{\prime} \times 20^{\prime}$

Number	Description	Unit Cost	Total
2	$4^{\prime \prime}$ top x 12' poles $\}$ pressure treated	\$9.60	\$ 19, 20
2	$4^{\prime \prime}$ top x 10^{\prime} poles $\}$ pressure treated	8.00	$16,00$
4	$2 \times 6 \times 16^{\prime}$	6.24	24,96
9	$2 \times 6 \times 20^{\prime}$	7.80	70.20
10	$2 \times 2 \times 12^{\prime \prime}$		1.25
Roof	$12^{\prime} \times 20^{\prime}=240 \mathrm{ft}^{2}=8$ sheest of aluminum	© $\$ 19.00$	152.00
5	$2 \times 6 \times 4^{\prime}$		7.80
8	1/2' $\times 9^{\prime \prime}$ bolts		
			\$291,41+20\%
			$=\$ 350$
Sun Shad	B (MWPS-8) Dimensions $16^{\prime} \times 20^{\prime}$		
Number	Description	Unit Cost	Total
	$4 \times 6 \times 16^{\prime}$ pressure treated	\$19.20	\$ 38.40
4	$2 \times 4 \times 6^{\prime}$	1.42	+ 5.68
4	$2 \times 4 \times 4^{\prime}$		3.78
4	$2 \times 8 \times 16^{\prime}$	8.32	33.28
11	$2 \times 6 \times 20^{\prime}$	7.80	85.80
Roof	$12^{\prime} \times 20^{\prime}=240 \mathrm{ft}^{2}=8$ sheets of aluminum	at \$19/32 ft^{2}	152.00
8	$3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 3^{\prime \prime} \times 31 / 2^{\prime \prime}$ angles		
16	$3 / 8^{\prime \prime} \times 3^{\prime \prime}$ lag screws		
8	1/2' ${ }^{\prime \prime}$ x 9' bolts		
8	$2 \times 4 \times 12^{\prime \prime}$		1.89
4	$2 \times 6 \times 4^{\prime}$		6.24
			\$327.07 + 20\%
			$=\$ 392.50$
To finis	off 130 pigs we require $6 \mathrm{ft}^{2}$ per pig over e need $130 \times 6=780 \mathrm{ft}^{2}$ of shade area $=3$	100 lbs. houses	
Waterers	one space/20-25 pigs		
	we require 5 spaces		
	2-2 fount waterers $150=\$ 300$ 95 gal.	capacity each	
	1-1 fount waterer @ $120=\$ 120$ g gal.	capacity each	
These will be filled from a truck equipped with a water tank. Finishing will be done only during the summer so that the waterers to not need to be frost proof.			

```
Finishing System l - Continued
Feeders: one space/5 pigs
    130/5 = 26 spaces required
2-round feeders, 12 openings @ $250 = $500
    or
2-12 opening steel rectangular feeders @ $335 = $670
    or
2-8 ft. troughs, operator made wooden troughs @ $55 = $110
Pasture space required: MWPS recommends 50 to 100 growing-finishing pigs/acre depending
on fertility of the land
.use 2 acres = 295 ft. by 295 ft.
    amount of fence required = 1180 ft @ $.80/ft = $944
    posts every 8 ft = 150 posts @ $1.75 = $263
```


Waste Handling

```
A harrow may be used to groom the pasture between batches,
```


SUN SHADE FOR FINISHING SYSTEM I

A

SUN SHADE FOR FINISHING SYSTEM I

B

Finishing System 2

Remodeled facility, uninsulated, naturally ventilated
2 rows of pens, concrete floor, center gutter, scrape to storage
130 hog capacity
Space requirements: for 125 lb , and up rovide $8 \mathrm{ft}^{2} / \mathrm{hog}$
Cost for pen dividers:
pressure treated lumber
8 ft . of pen solid and 5 ft , of pen with spaces in fence without feeders
For solid partition:
$2^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime}$ by 5 boards high, need 128 Inear feet $=16$ at $8^{\prime}(16)(5)=80$ boards 80 boards at $\$ 4.20=\$ 333$.

For open portions:
2×8 by 3 boards high with spaces, need 110 11near feet $=14$ at 8^{\prime} (3) (14) $=$ 42 boards at $\$ 4.20=\$ 177$.

Total $=\$ 336+\$ 177=\$ 513+20 \%=\$ 616$

Waterers: plumbing

- 4-2 hole waterers © $\$ 25=\$ 10$
$3 / 4^{\prime \prime}$ water lines 320 ft . @ $\$.10 / \mathrm{ft}=\$ 32$
3/4" hydrant - $\$ 42.00$
6^{\prime} deep 200' trench at $\$ 3.00 / \mathrm{ft}=\$ 600$

Feeders:

l_{4}^{\prime} at 8 holes @ $\$ 250=\$ 1000$
(In fenceline)

Electrical:

3-100 Watt 11ghts, enclosed fixtures @ $\$ 8.50=\$ 25.50$
30 amp main service - $\$ 6.50$
6 outlets, nonmetallic, dust and water tight @ $\$ 10.00=\$ 60,00$
Use cype U.F. cable for circuits $x(150 \mathrm{ft})(\$.35 / f t)=\$ 52.5$
AWC 8 feeder circuit cable: Type PWC with THW conductors $\approx(220 \mathrm{ft})(\$, 70 / E t)=\$ 173$
Trenching to bury lines - lines will be buricd with water line
$I^{\prime \prime}$ plastic conduit $(220 \mathrm{ft})(\$.42 / \mathrm{ft})=\$ 92.40$
Total $=\$ 410+20 \%=\$ 492$
Concrete: resloping in building
 reinforcing area $1728 \mathrm{ft}^{2}$ @ $\$.10 / \mathrm{ft}^{2}-\$ 173$

Total = \$1031

FINISHING SYSTEM 2

ALTERNATIVE FLOOR PLAN FOR FINISHING SYSTEM 2

Finishing System 3-open front shed with lot - 300 hog capacity

Bill of Materials - Open Front Shed with Lot (MWPS-72687)
Building Size $16^{\prime} \times 96^{\prime}$

Concrete Work
In building - $16^{\prime} \times 96^{\prime} \times 4^{\prime \prime}=512 \mathrm{ft}^{3}{ }^{\prime}=19 \mathrm{yd} @ \$ 39 / \mathrm{yd}=\$ 940$ reinforcing area $1536 \mathrm{ft}^{2}$ @ $\$.10 / \mathrm{ft}^{2}=\$ 153.60$

Total $=\$ 893.60$
Feedlot area: $40^{\prime} \times 96^{\prime} \times 4^{\prime \prime}=1280 \mathrm{ft}^{3}=47 \mathrm{yd} @ \$ \mathrm{~s} / \mathrm{yd}=\$ 184 \mathrm{y}$ reinforcing area $3840 \mathrm{ft}^{2} @ \$.10 / \mathrm{ft}^{2}=\$ 384$

Total $=\$ 2233$
Total concrete $=\$ 893.60+\$ 223 \mathrm{~s}=\$ 3126.60$

Pen dividers - Fencing

Protection for inside walls use $2 \times 8 \times 8^{\prime} \quad 3$ high need 45 boards $@ \$ 4.16=\$ 187.20$
Inside pen divides and solid dividers $2 \times 12 \times 8$, 3 high need 90 boards @ $\$ 4.16=$ $\$ 374.40$

Outside fencing - need 352 linear feet of fence @ $\$.80 / f t=\$ 282$
1 post every $8 \mathrm{ft}=23$ @ $\$ 5.00=\$ 115.00$

$$
\text { Total }=\$.959
$$

Ventilation - Natural ventilation

Finishime System 3-Continued

Waste flandling

This facility will require scraping with a shovel and loader, Naste will be scraped to the alley area, animals herded out of alley and scraped clean with the loader.

Feeders: 1 space self feed for 5 pigs
provide: 3-double 10 hole feeders @ $\$ 500=\$ 1500$
Total - \$1500

Waterers:

provide: 3-2 hole frost proof waterers © $\$ 100=\$ 300$
6' deep water line, 300 ft @ $\$ 3 / \mathrm{ft}=\$ 900$
300^{\prime} of $3 / 4^{\prime \prime}$ plastic pipe @ $\$.11 / \mathrm{ft}=\$ 30$
$3 / 4^{\prime \prime}$ hydrant $=\$ 42.00$
electric line for water heaters:
300 ft of $\mathrm{l}^{\prime \prime}$ plastic conduit @ $\$.42 / \mathrm{ft}=\$ 126$ 300 ft of wire @ $\$.79 / \mathrm{ft}=\$ 237$ (300 volt, 3 conductor, weather proof service cable)

$$
\text { Total }=\$.1635+20 \%=\$ 1962
$$

Feed Syster

A 14.7 ton capacity bin will be required with the automatic auger system $=\$ 2808$

FINISHING FACILITY 3

FINISHING SYSTEM 3

These facilities will be complete turn-key buildings. The cost to install water lines and electrical service is the same as in Farrowing System 8, Each building will be quipped with an automatic auger feed system.

Lagoon Design - see page Irrigation System - see page

FINISHING SYSTEM 4

FINISHING SYSTEM 5

Remodeling Costs

walls:	insulation R-11	\$20/135 $\mathrm{ft}^{2} \approx \$.15 / \mathrm{ft}^{2}$
	vapor barrier \$	\$16.00/800 $\mathrm{ft}^{2} \approx \$.02 / \mathrm{ft}^{2}$
	3/4" plywood	\$23.00/32 $\mathrm{ft}^{2} \approx \$.72 / \mathrm{ft}^{2}$
		\$.89/ft ${ }^{2}$
ceiling:	insulation R-20 \$	\$8.00/30 $\mathrm{ft}^{2} \approx \$.27 / \mathrm{ft}^{2}$
	vapor barrier \$	\$16.00/800 $\mathrm{ft}^{2} \approx \$.02 / \mathrm{ft}^{2}$
	1/2" plywood \$	\$17.00/32 $\mathrm{ft}^{2} \approx \$.53 / \mathrm{ft}^{2}$
		\$.82/ft ${ }^{2}$
floor:	concrete $2^{\prime \prime}$ slab	b $\$ 39.00 / 162 \mathrm{ft}^{2} \approx \$.24 / \mathrm{ft}^{2}$
	4" slab	b $\quad \$ 39.00 / 81 \mathrm{ft}^{2} \approx \$.48 / \mathrm{ft}^{2}$
	5" slab	b $\quad \$ 39.00 / 64.8 \mathrm{ft}^{2} \approx \$.60 / \mathrm{ft}^{2}$
	$6{ }^{\prime \prime} \mathrm{slab}$	b $\$ 39.00 / 54 \mathrm{ft}^{2} \approx \$.72 / \mathrm{ft}^{2}$
reinforcing costs \$.50/5		$f t^{2}=\$.10 / f t^{2}$

Labor Estimates for Construction and Remodeling

A-frames	3 man-hrs/hut
Wooden crates	6 man-hrs/crate
Wooden feeders	3 man-hrs/feeder
Farrowing Facilities:	
System	Number of Man-Days (1 Man Day $=8 \mathrm{Hrs}$)
2	2
3	6
4	4
5	8
6	16
7	35 (25 - construction, 2 - concrete, -8 - insul, plumb, elec.)
Gestation Facilities:	
System	Number of Man-Days
1	14 (8-construction, 6 - fence)
2	```11 (2 - plywood, 2 - partitions, 4 - concrete, 3-fence)```
3	27 (15 - construction, 6 - concrete 2 - fence)
4	40
5	50

Finishing Facilities:

System
1
2

3

Number of Man-Days

```
7 (3 - construction, 4 - fence)
    9(1 - plywood, 3 - partitions,
    4 - concrete, l - plumb)
```

60
Miscellaneous Equipment
Loading Chute (wooden, homemade) $=\$ 300$
Sorting Chute (wooden, homemade) $=\$ 145$
Standby Generator $\$ 9,920$ ($30 \mathrm{~kW}, 225$ Amp) $\$ 10,520$ (45 kW, 225 Amp)
High Pressure Sprayer \$1200-\$2200
Scales $\$ 625$
Incinerator
Pregnancy Tester \$395
Alarm System \$270-\$640
Liquid Manure Spreader (2000 gallon) $\$ 6500$
Agitator Pump (8' deep) $\$ 3500$
Solid Manure Spreader (150 bu) $\$ 2500$
Used Spreader $\$ 250$
New Loader $\$ 5000-\$ 10,000$
Used Loader $\$ 1000$
Wooden Feeder \$50-85

LOADING CHUTE


```
List of Materials - Loading Chute (MWPS-8)
Item No. Description
```


List of Materials - Sorting Chute (MWPS-8)

ItemBlocking GateCutting GateStationary LanePlywoodDescription
$2^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime}$
$1^{\prime \prime} \times 4^{\prime \prime} \times 10^{\prime}$
$4^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime}$ posts
$2^{\prime \prime \prime} \times 4^{\prime \prime} \times 10^{\prime}$
$3 / 8^{\prime \prime} \times 4^{\prime} \times 8^{\prime} c-c$, ext.

Total Cost $=\$ 145$

No. 2 1 11 2

4 sheets

FEEDER

A

List of Materials - Feeder A (MWPS-8) - 22 bushel capacity
Item No. Description

A	2	$2 \times 8 \times 3^{\prime}$
B	6	$2 \times 8 \times 8^{\prime}$
C	4	$2 \times 4 \times 2^{\prime}$
D	4	$2 \times 6 \times 8^{\prime}$
E	6	$2 \times 6 \times 15^{\prime \prime}$
F	2	$2 \times 6 \times 8^{\prime}$
G	8	$1 / 2^{\prime \prime} \times 4^{\prime \prime}$ bolts
H	24	$3 / 8^{\prime \prime} \times 3^{\prime \prime}$ lag screws

All Lumber Pressure-Treated Cost $=\$ 55$

FEEDER

B

List of Materials - Feeder B (MWPS-8) - 17 bushel capacity

Item	No.	Description
A	4	$2 \times 8 \times 8{ }^{\prime}$
B	5	$2 \times 12 \times 7{ }^{\prime}-10^{\prime \prime}$
C	1	$2 \times 6 \times 2{ }^{\prime}$
D	2	$2 \times 4 \times 34-1 / 2^{\prime \prime}$
E	2	$2 \times 4 \times 3^{\prime \prime} 3^{\prime \prime}$
F	2	$2 \times 12 \times 2{ }^{\prime}$
G	2	$2 \times 12 \times 221 / 2^{\prime \prime}$
H	2	$2 \times 12 \times 171 / 2^{\prime \prime}$

All Lumber Pressure-Treated
Cost $=\$ 83$

LAGOON DESIGN

Minimum design volume: from MWPS-18 Table 30, p. 58
For cold climate $\quad 2 \mathrm{ft}^{3} / \mathrm{lb}$

From manure production for System I:
For farrowing and nusery
10,418 lbs/yr
For gestation $42,916 \mathrm{lbs} / \mathrm{yr}$
For finishing 83,165 1bs/yr
Total feeder pig production $53,334 \mathrm{lbs} / \mathrm{yr}$
Total farrow-to-finish 136,499 1bs/yr

A. Lagoon Design for Feeder Pig Production

*Minimum design volume: $\left(2 \mathrm{ft}^{3} / \mathrm{lb}\right)(53,334 \mathrm{lb} / \mathrm{yr})=106,668 \mathrm{ft}^{3} / \mathrm{yr}$ (lagoon is never pumped lower than this point)
*Pumping schedule: once a year
*Livestock wastes: from manure production for system I , volume $=13,837 \mathrm{ft}^{3} / \mathrm{yr}$
*Dilution volume: Annual precipitation $=28$ inches
Annual evaporation $=28$ inches
Dilution volume $=1 / 2$ the minimum design volume

$$
=(1 / 2)(106,668)=53,334 \mathrm{ft}^{3}
$$

*Safety margin: $25 \mathrm{yr}, 24 \mathrm{hr}$ storm, $4.5 \mathrm{in} /$ day Figure 54
assume diversion dikes prevent extraneous runoff from entering lagoon
*12" freeboard
Total volume required $=173,839 \mathrm{ft}^{3} / \mathrm{yr}+$ safety margin
13 ft deep lagoon, 156^{\prime} square with side slope of $3: 1$ has a volume of $184,548 \mathrm{ft}^{3}$.
Safety margin $=9126 \mathrm{ft}^{3}$
Total volume required $=182,965 \mathrm{ft}^{3}$
Still need a $12^{\prime \prime}$ freeboard, therefore, make lagoon 14^{\prime} deep, 156^{\prime} square
Cost for excavation $=\$.037 / \mathrm{ft}^{3}=\$ 1.00 / \mathrm{yd}$
Cost of lagoon $=\left(190,176 \mathrm{ft}^{3}\right)\left(\$.037 / \mathrm{ft}^{3}\right)=\$ 7,036$

B. Lagoon Design for Farrow-to-Finish Operation

*Minimum design volume: $\left(2 \mathrm{ft}^{3}\right)(136,4991 \mathrm{~b} / \mathrm{yr})=272,998 \mathrm{ft}^{3} / \mathrm{yr}$ (lagoon is never pumped below this point)
*Pumping schedule: once a year
*Livestock wastes: volume $=13,837+33,927=47,764 \mathrm{ft}^{3}$
*Dilution volume: $=(1 / 2)$ (minimum design volume)
$=(1 / 2)(272,998)=136,499 \mathrm{lb} / \mathrm{yr}$
*Safety margin: $25 \mathrm{yr}, 24 \mathrm{hr}$ storm, $4.5 \mathrm{in} / \mathrm{day}$
*12" freeboard
Total volume $=457,261 \mathrm{ft}^{3}+$ safety margin
13 ft deep lagoon, 230° square, volume $=480,844 \mathrm{ft}^{3}$
Total volume required $=477,099 \mathrm{ft}^{3}$
St111 need $12^{\prime \prime}$ freeboard, therefore, make lagoon 14^{\prime} deep, 230^{\prime} square
Cost for excavation $=\$.037 / \mathrm{ft}^{3}=\$ 1.00 / \mathrm{yd}$
Cost of lagoon $=\$ 18,613$

IRRIGATION SYSTEM COSTS

For a Large System: pump (600 gpm) \$ 4772
traveling gun 9500
\$14,272
For a Small System: pump (400 gpm) $\$ 3200$
traveling gun 7500
$\$ 10,700$
Average Cost $\$ 12,500$
6" irrigation pipe $\$ 2.15 / f t$
assume 2500 ft @ \$2.15/ft $\$ 5375$
TOTAL \$17875
Custom pumping $\$ 3.00 / 1000$ gallons pumped
cost to pump feeder pig system lagoon $=$ 1716
cost to pump farrow to finish system lagoon 4592

APPENDIX B

Energy Requirements and Calculations

Table 60. Energy Requirements of Electrical Equipment ${ }^{1}$

Equipment	Capacity hp or Watts	Estimated kW-hr/month*
Lighting, small home	1600 Watts varies widely	75-125
Lighting, large home	4,000 Watts	150-250
Water pump (deep)	1/3-1 hp	10-60
Water pump (shallow)	$1 / 4 \mathrm{hp}$	5-20
Barn cleaner	2-5 hp	25-40
Brooder (hogs)	250 Watts	1 per 4 hrs
Feed grinder (grinder blender)	$2-7-1 / 2 \mathrm{hp}$	3-7 per ton
Feed Mixer	$1-7-1 / 2 \mathrm{hp}$	1 per ton
Stock tank heater	250-1500 Watts	90-500
```Ventilation fans (hogs) (winter)```	1/8-1/2 hp	7-10 per month per 1000 lb . animal weight.
```N(summer)```	1/8-1/2 hp	14-20 per month per   1000 lb . animal weight
Heater, portable	1000-3000 Watts	1-3 per hour
Small motors	$1 / 2-5 \mathrm{hp}$	1 per hp per hour
*unless otherwise specified		
$1_{\text {D.W. Baltes, H.A. Cloud. Energ }}$ Agricultural Engineering Fact	Requirements of heet No. 1. Univ	Electrical Equipment. ersity of Minnesota.

Energy Requirements - Monthly Basis [These values are valid for every system except for farrowing system 10]

Derivation of Heat Balance Equations
A. Farrowing building full

$$
\begin{aligned}
\mathrm{q}_{\text {sen }} & =(1000 \mathrm{Btu} / \mathrm{hr} / \mathrm{sow} \text { and 1itter) (16 sows and litter) } \\
& =16,000 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$ minimum ventilation rate $=(20 \mathrm{CFM} / \mathrm{sow})(16$ sows $)=320 \mathrm{CFM}$

$$
\begin{aligned}
q_{B}=A_{B} / R_{B}\left(T_{n}\right. & \left.-T_{0}\right) \\
\text { where: } \quad A_{B} & =\text { area of building } \\
R_{B} & =R \text {-value of building } \\
T_{n} & =\text { room temperature } \\
T_{0} & =\text { outside temperature }
\end{aligned}
$$

$$
\frac{A_{B}}{R_{B}}=\frac{A_{\text {walls }}}{R_{\text {walls }}}+\frac{A_{\text {ceiling }}}{R_{\text {ceiling }}}
$$

$$
=\frac{1184 \mathrm{ft}^{2}}{13 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}}+\frac{1368 \mathrm{ft}^{2}}{23 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}}=151 \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}
$$

$$
\mathrm{T}_{\mathrm{n}}=70^{\circ} \mathrm{F}
$$

Equations 1 becomes: $16,000+q_{\text {sup }}=(1.1)(320)\left(70-T_{0}\right)+151\left(70-T_{0}\right)$
therefore: $q_{\text {sup }}=503\left(70-T_{0}\right)-16,000$

This is the equation used to determine the amount of supplemental heat required in the farrowing house when full of sows.

$$
\begin{align*}
& \text { Basic Equation: } q_{s e n}+q_{\text {sup }}=1.1 C F M \Delta T+q_{B} \tag{1}\\
& \text { where: } q_{B}=\text { building heat loss [Btu/hr] } \\
& q_{\text {sen }}=\text { sensible heat from the animals [Btu/hr] } \\
& q_{\text {sup }}=\text { supplemental heat [Btu/hr] } \\
& C F M=\text { ventilation rate [cubic feet per min] } \\
& \text { Assumptions: } 16 \text { sow farrowing building } 36^{\prime} \times 38^{\prime} \times 8^{\prime} \text {, kept at } 70^{\circ} \mathrm{F} \\
& 128 \text { piglet nursery } 36^{\prime} \times 22^{\prime} \times 8^{\prime} \text {, kept at } 80^{\circ} \mathrm{F} \\
& \text { Both buildings will be operated independently and kept } \\
& \text { at } 40^{\circ} \mathrm{F} \text { to prevent freezing when not in use. }
\end{align*}
$$

B. Farrowing building empty

$$
\begin{aligned}
& q_{\text {sen }}=0 \\
& T_{n}=40
\end{aligned}
$$

therefore equation 1 becomes:

$$
\begin{equation*}
q_{\text {sup }}=151\left(40-T_{0}\right) \tag{B}
\end{equation*}
$$

This is the equation used to determine the amount of supplemental heat required in the farrowing house when empty.
C. Nursery building full

$$
\begin{gathered}
\mathrm{q}_{\mathrm{sen}}=(80 \mathrm{Btu} / \mathrm{pig})(128 \mathrm{pigs})=10,240 \mathrm{Btu} / \mathrm{hr} \\
\text { minimum ventilation rate }=(2.5 \mathrm{CFM} / \mathrm{pig})(128 \mathrm{pigs})=320 \mathrm{CFM} \\
\frac{A_{B}}{R_{B}}=\frac{\left(36^{\prime}+22^{\prime}\right)(2)\left(8^{\prime}\right)}{13}+\frac{36^{\prime} \times 22^{\prime}}{23}=106 \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F} \\
\mathrm{~T}_{\mathrm{n}}=80^{\circ} \mathrm{F}
\end{gathered}
$$

Equation 1 becomes: $10,240+q_{\text {sup }}=(1.1)(320)\left(80-T_{0}\right)+106\left(80-T_{0}\right)$

$$
\begin{equation*}
\text { therefore: } \quad q_{\text {sup }}=458\left(80-T_{0}\right)-10,240 \tag{C}
\end{equation*}
$$

D. Nursery building empty

$$
\begin{aligned}
& q_{\text {sen }}=0 \\
& T_{n}=40
\end{aligned}
$$

therefore equation 1 becomes:

$$
\begin{equation*}
q_{\text {sup }}=106\left(40-T_{0}\right) \tag{D}
\end{equation*}
$$

Sample Calculations:

From original "cumulative percentage frequency of occurrence", Table I, subtract cumulative frequencies to get a frequency of occurrence at an average temperature between two cumulative frequency temperatures. This has been done and recorded in Table II. Table III contains values obtained by multiplying (frequency) (.01)(\# days in the appropriate month). This gives the number of days in each month that a temperature occurs. In Table IV q-supplemental is obtained by substituting $q_{\text {sup }}=503\left(70-T_{o}\right)-16,000$ when $T_{0}=-22.5$.

$$
q_{\text {sup }}=30,528 \mathrm{Btu} / \mathrm{hr}
$$

This value is then multiplied by the appropriate frequency for each month found in Table III $x 24 \mathrm{hrs} /$ day to obtain energy values.

These values are then summed over the month in each of the four categories to obtain the total energy requirement for each month under 4 circumstances.

Example using (A) and January at $-22.5^{\circ} \mathrm{F}$.

$$
\begin{aligned}
\mathrm{q}_{\text {sup }}= & 30,528 \mathrm{Btu} / \mathrm{hr} \\
& (30,528 \mathrm{Btu} / \mathrm{hr})(.155 \text { days })(24 \mathrm{hrs} / \text { day })=113,564 \mathrm{Btu} \\
& \left(\mathrm{q}_{\text {sup }}\right)(\text { 非 of days from Table III) }(24 \mathrm{hrs} / \text { day })
\end{aligned}
$$

Energy Requirements for Farrowing System 10

Continuous farrowing
Assumptions: 16 sow farrowing house $36^{\prime} \times 38^{\prime} \times 8^{\prime}$
280 piglet nursery $24^{\prime} \times 48^{\prime} \times 8^{\prime}$
Both facilities will be operated independently and continuously at full capacity

Heat Balance Equations:

farrowing house: $q_{\text {sup }}=503\left(70-T_{0}\right)-16,000$
nursery facility:
minimum ventilation rate $=(2.5 \mathrm{cfm} / \mathrm{pig})(280 \mathrm{pigs})=700 \mathrm{cfm}$

$$
A_{B / R_{B}}=\frac{(24+48)(2) \times 8}{13}+\frac{(24 \times 48)}{23}=139 \mathrm{Btu} / \mathrm{hr}^{\circ} \mathrm{F}
$$

$$
q_{\text {sensible }}=(80 \mathrm{Btu} / \mathrm{hr} / \mathrm{pig})(280 \mathrm{pigs})=22,400 \mathrm{Btu} / \mathrm{hr}
$$

fundamental equation: $q_{\text {sen }}+q_{\text {sup }}=q_{B}+q_{\text {vent }}$

$$
\begin{align*}
22,400+q_{\text {sup }} & =139\left(80-T_{0}\right)+(1.1)(700)\left(80-T_{0}\right) \\
q_{\text {sup }} & =839\left(80-T_{0}\right)-22,400 \tag{B}\\
q_{\text {sup }} & =0 \text { when } T_{0} \simeq 53^{\circ} \mathrm{F}
\end{align*}
$$

Using weather data it is found that the total number of Btu's required $=1.3298 \times 10^{8} \mathrm{Btu}$

Temp	Jan. 31	$\begin{array}{r} \mathrm{Feb} . \\ 28 \\ \hline \end{array}$	$\begin{gathered} \text { Mar. } \\ 31 \end{gathered}$	$\begin{gathered} \text { Apr. } \\ 30 \end{gathered}$	$\begin{array}{r} \text { May } \\ 31 \end{array}$	$\begin{gathered} \text { June } \\ \hline \\ \hline \end{gathered}$	$\begin{array}{r} \text { July } \\ 31 \\ \hline \end{array}$	Aug. 31	$\begin{gathered} \text { Sept } \\ 30 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Oct. } \\ 31 \\ \hline \end{array}$	Nov. 30	$\begin{array}{r} \text { Dec. } \\ \hline 11 \\ \hline \end{array}$	Mean
90							. 1						. 0
85						1.3	2.5	2.5	. 3				. 5
80		-			. 5	3.3	13.5	11.2	3.1				2.9
75				. 2	3.1	20.0	41.2	32.1	7.1	. 3			8.8
70				1.3	9.3	42.2	73.0	59.0	15.6	2.2			17.1
65			. 2	4.4	24.2	66.2	93.4	83.7	32.4	9.3			26.4
60			. 6	9.6	41.7	67.9	99.3	95.9	55.1	20.5			34.4
55			1.9	20.0	63.6	95.6	99.9	99.6	76.0	36.6	1.3		41.4
50			5.1	32.4	81.5	99.0	100.0	100.0	90.3	55.2	8.1	. 4	47.7
45		. 5	10.3	51.4	92.3	99.9			97.5	72.0	14.7	. 9	53.5
40	. 2	1.2	19.4	71.0	98.4	100.0			99.7	87.6	27.1	2.3	59.1
35	1.7	6.1	29.7	89.2	99.6				100.0	96.5	46.5	8.4	65.0
30	7.6	15.8	50.4	96.9	100.0					98.8	64.9	22.9	71.5
25	20.0	30.4	67.9	99.1						99.9	79.3	37.7	77.9
20	33.8	46.3	81.6	99.7						100.0	88.0	51.4	83.6
15	47.3	60.4	90.6	100.0							94.8	68.4	88.5
10	60.1	73.4	93.9								98.3	78.3	92.0
5	70.9	84.5	97.8								99.5	86.1	94.9
0	81.2	91.8	99.4								99.7	92.0	97.1
-5	88.8	96.7	99.6								100.0	97.2	98.5
-10	95.3	99.0	99.9									99.2	99.4
-15	98.3	99.7	100.0									99.9	99.8
-20	99.5	100.0										100.0	100.0
-25	100.0												100.0

Table 63

Number of days per month that each temperature occurred.*												
Temp Outside	Jan. 31	Feb. 28	Mar. 31	Apr. 30	May 31	June 30	$\begin{gathered} \text { July } \\ 31 \\ \hline \end{gathered}$	Aug. 31	Sept 30	$\begin{array}{r} \text { Oct. } \\ 31 \\ \hline \end{array}$	Nov. 30	Dec. 31
-22.5	$.155$											
-17.5	. 372	. 084										. 031
-12.5	. 93	. 196	. 031									. 217
-7.5	2.015	. 644	. 093									. 62
-2.5	2.356	1.372	. 062								. 09	1.612
2.5	3.193	2.044	. 496								. 06	1.829
7.5	3.348	3.108	1.209								. 36	2.418
12.5	3.968	3.64	1.023								1.05	3.069
17.5	4.185	3.948	2.79	. 09							2.04	5.27
22.5	4.278	4.452	4.247	. 18						. 031	2.61	4.247
27.5	3.844	4.088	5.425	. 66						. 341	4.32	4.588
32.5	1.829	2.716	6.417	2.31	. 124					. 713	5.52	4.495
37.5	. 465	1.372	3.193	5.46	. 372				. 09	2.759	5.82	1.891
42.5		. 196	2.821	5.88	1.891	. 03			. 66	4.836	3.72	. 434
47.5			1.612	5.7	3.348	. 27			2.16	5.208	1.98	. 155
52.5			. 992	3.72	5.549	1.02	. 031	. 124	4.29	5.766	2.04	
57.5			. 403	3.12	6.82	8.31	. 217	1.147	6.27	4.991		

-

	January	February	March	April	May June	July	Aug.	Sept.	October	November	December
Farrowing Full	9,529,992	6,922,075	3,748,920	346,094	11,627			752	121,921	2,518,591	6,961,453
Farrowing Empty	3,063,991	2,259,604	1,289,447	161,011	6,747			817	61,835	899,651	2,288,652
Nursery Full	15,291,805	12,249,859	9,460, 140	4,0C2,588	1,126,208 105, 218	2,076	8,738	620,766	2,649,248	7,923,179	12,903,581
Nursery Empty	2,150,621	1,585,981	904,962	112,955	4,732			572	43,375	631,358	1,606,347

-247-

APPENDIX C

Seasonal Index for Market Hogs and Feeder Pigs

APPENDIX D

Feeder Pig Production - Cash Flows

monitile enterprise cash flon

$1 \mathrm{E}^{\text {N }}$	いいく	Jan	FEB	mar	A^{\prime}	mar	jun	Jul	Aug	SEP	OC ${ }^{\text {T }}$	NOV	nec	total
Lash receitis														
fetbre pios	${ }^{1} 1$		0	0	\bigcirc	0	$1)$	0	9	0	0	3988.	0	308R．
OILT in．H．	1.0		0	0	0	1	418.	0	0		0	${ }^{\circ}$	n	418.
Sow CULL	$1 \cdot 4$		0	\bigcirc	0			0	0	0	0	2442.	0	2442.
buar	1.4		0	0	0	0	527.	0		0	0	0		527．
tuial			0	0	0	0	944.	0	0	0	0	6430.	0	7374.
LASH EXPENSES														
luen	$1{ }^{1}$		0	0	89.	120.	80.	70.	70.	136.	405.			
Surbe led met Minerals	1．0		0	0	49.	6,	44.	39.	$3{ }^{\text {a }}$ ．	96.	335.	117.	880.	866.
vats	1．0		0	－	．	，	3.	3.	3.	7.	19.		4.	54.
Wheal brand	10		0		0	0	19	0	0	17.	17°	0	0	34.
SUGAK Mis	$1 \cdot 0$			0	0	0	\checkmark	0	0	5.	n	，	0	5.
GHINU ${ }^{\text {Ge MIX }}$	10		0	0	5.	${ }^{6}$.	4.	4.	4.	9.	24.	9.	6.	69.
	1.0 1.0		0	0 0	25.	3.	0 0	0	25.	63.	75.	0	${ }^{\circ}$	$138{ }^{\circ}$
ins．Alve laxps	$1 \cdot 1$			0	0	u	101.	0	${ }_{0}^{0}$	0 0	n	${ }^{1} \cdot$	15.	19.
hauling a mito．	1 u		0	0	．	u	33.	0	0	0	0	226.	ก	1019．
MISCL LXPENSF	1.0		0	0	17.	17.	17.	17.	17.	17.	17.	${ }^{217}$	17.	153.
gruent hoak	1.0		0	0	3100.	0	0	0	0	0	0	0	0	3700.
GESTATION SHLILER	1.0		0	1502.	1500.	${ }_{0}^{0}$	0	0	－	0	0	-0	n	1350.
A－FRAME FAKCTHUT	1.10		0	15020	－	u	994.	994.	${ }_{0}^{0}$	0	n	0 0	n	3004.
Luading chute	1 u		0	0	0	0	0	0	300.	0	n	0	0	
SURTING CHUTE	1.0		0	0	0	u	0		145.	0	0	0	0	145.
	1．0．		0	3240.	30°	310.	${ }^{13}$	0		0	0	0	0	3240.
tutal			0	4764.	6171.	240	1310.	1164.	843.	394.	882.	592.	316.	17084.
Flum of tunds cuminky						OOLIARS								
Chsh palante becihia， ＋CASH UIFFEMENLF			－0	－4764．0．	－0171．0．	$-24{ }^{-6}$ ．		-1164^{-0}	-643^{-0}	-304^{-0}	－882 ${ }^{-n}$	5888^{-0}	－310 ${ }^{-6}$	
－curkent cash dalamle			0	－4764．	－0171．	-240° ．	-366.	－1164．	－643．	－394．	－882．	5838．	-316. -316.	－9710．
－MONEY HORHOWEL			0	4764.	0171.	24.	376.	1164.	643.	394.	－88．	50		
－parment uin luah			\bigcirc	0	0	0	0	0	0	0	0	4867.		
			0	0	0	－	＇3	0	0	0	n	971.	ก	
			－0	－0	－0	－u	－1）	－0	－0	－0	－n	－0	－	

Cuprent Luan sumaray

TAMLE 68 MUNTHLY FNTELPRISE CASH FLOW PROJECTION FOR FEEDER
PIO PHOOUCTION，SYSTEM A SECONO YEAR OF PRDDUCTION．

$1 \mathrm{IEM}^{\text {M }}$	undis	Jan	ref	mar	$\mathrm{AH}^{\text {a }}$	mar	JUN	Jut	aug	SEP	OCT	NOV	nec	TOTAL
Cash rfitibis														
feeder pigs	1.0	u	0	0	0	0	0	0	0	0	0	3988.	0	3988．
gilt N ．b．	1.0	\cup	0	0	0	0	418.	0	0	0	\bigcirc		0	418.
sua cull．	1.0	u	0	0	0	0	，	0	0	0	0	2442.	0	2442.
boar	1.0	u	0	0	0	0	527.	0	0	0	0	0	0	527.
TUTAL		u	0	0	0	0	944.	0	0	0	0	643 n ．	0	7374.
Cash experises														
GURN	1.0	209.	132.	146.	112.	129.	80.	70.	70.	136.	405.	175.	154.	1812.
Surreaid meal	$1 \cdot 0$	73.	73.	80.	61.	$6{ }_{5}{ }^{\circ}$	44.	39.	$3{ }^{30}$	${ }^{9} 6$.	335.	117.	80.	1102.
MIINERALS	1.0	6.	6.	6.	5.	5.	3.	3.	3.	7.	19.		4.	74.
vars	1.0	u	0	0	0	0	0	0	ก	4.	\％	0	n	4.
WHEAT GRAN	1.0	u	0	0	0	0	0	0	0	17.	17.	0	ก	34.
bugate	1.0	u	${ }^{0}$	0	0	0	0	0	0	5.	\bigcirc	0	n	5.
Grind emix	1.0	10.	${ }^{7}$	8.	${ }^{6}$	${ }_{5}{ }^{0}$	4.	4.	${ }^{4} 5^{\text {．}}$	$6{ }^{9}$ ．	24.	9.	6.	95.
VET \＆MED．	1.0	25.	0	0	0	${ }^{0}$	0	0	25.	63.	25.	1	ก	138.
ELECTRICITY InS．AND	1.0	25.	27.	26.	20.	3.	0		0	0	0	1.	15.	117.
INS．AND IAXES	1.0	U	0	0	0	0	101.	0	0	0	ก	0	n	101.
haviling a mkig．	1.0	u	0	0	0	${ }^{0}$	33.	0	0	0	0	226.	0	259.
MISCL EXPENSE	1.0	17.	17.	17.	17.	17.	17.	17.	17.	17.	17.	17.	17.	204.
YOUNG GOAR	1.0	u	0	0	1050.	u	0	0	0	？	0	0	\bigcirc	1350.
tractonifuel．	HEP＇	u	0	0	57.	0	\checkmark	0	0	0	0	0	9	57.
Machine IFllel．Lum	MEP，	u	0	0	3.	0	0	0	0	0	\％	n	n	3.
Equip．Ifuel．${ }^{\text {dua }}$	HEP	40.	40.	40.	40.	41.	40.	40.	40.	40.	40.	40.	47.	485.
iotal		406.	302.	323.	1071.	2611.	323.	173.	198.	304.	8 82．	50\％．	315.	5841.

flow of funds summatr					DULLARS								
Lash balanct brginimi，	－u	－0	－0	－0	－u	－11	－0	－0	－0	－0	－0	－n	
＋CASH UIFFthence	－406．	－302．	－323．	－1ヶ71．	－26il．	622.	－173．	－199．	－394．	－882．	5833.	－316．	1533.
－CURREINT（ASH UALANL	－406．	－302．	－323．	－1671．	－261．	$6{ }^{6}$.	－173．	－198．	－304．	$-8^{2} 2$.	5838.	－316．	
＋MOner borrumed	406.	$31)$ ？	323.	1071.	2610	0	173.	198.	394.	8 R ．	0	316.	
－parment un luan	U		，	0	0	1	。	－	ก	0	4925.	0	
－interest hail at ale	U	0	0	\bigcirc	$1]$	622.	0	0	0	0	413.	0	
＝lash bal ance emolich	－u	－0	－0	0	－	－ 0	－0	－	－	－n	－0	－п	
CURRENT LOAN SUMmakr					nollars								
106bu．aulonn out－uan 1													
alcumulated horrowing 110Rg． 11339. 104．0UACCRUEU INIERFSI－JAN 1			11712		130^{4} ．	13042°	13025.	14014.	1.44048	$1 \cdot 2^{\text {an }}$ ，	11365.		
			436.	川3．	0^{465}	201.	3 ¢	475.	61.	7 f ，	11	104.	

[^0]TAKLE G9 MUNIHLY ENTERHKISE CASH FLOW PROJECTION FOH FFEDFR
PIG PKIOUCTIUN, SYSTEM B FTRSI YFAR OF OPERATIDN.

TAILLE $70 \begin{gathered}\text { MUNTHLY ENTERPRISE CASH FLOW PROJECTIION FOR FEEDER } \\ \text { PIG PKODUCTION. SYSTEM B SECOND YEAR OF PRODUCTION. }\end{gathered}$

2 LITIER-1O SUWS FARKUWING IN FORTABLE A-FRAME BUILOINGG.
HORTABLE NURSERY AND GFGTMIION FACILITIES.

current loan summar
DOLE ARS

[^1]-8ऽ々-

1TEN	UNil ${ }^{\text {a }}$	JAN	$t \pm A$	MAR	AHH	MA ${ }^{\text {r }}$	JUN	JUL	AUG	SEP	OC ${ }^{\text {T }}$	NOV	DEC	total.
CASH RECEIFIS														
teeder pios	1.0	u	0	0	0	u	0	0	0	0	0	0	4248.	4248.
Suw in. B.	1.0	${ }^{3}$	0	0	0	0	0	0	0	0	0	0	162.	162.
GILTN. B.	1.0	u	0	0	0	u	$1)$	418.	0	418.	9	0	139.	974.
suw cull	1.0	u	0	0	0	u	v	0	0	0	1	0	4R2.	488.
dotal		u	0	0	0	u	0	418.	0	418.	0	0	5039.	5873.
CASH EXPH INSES														
CURN	1.0	u	0	0	0	123.	152.	120.	234.	241.	273.	539.	3 fo.	2041.
SUTREAF MEAL	1.0	u	0	0	0	67.	84.	65.	125.	132.	174.	392.	215.	1253.
minerals	1.0	u	0	0	0	ל.	7.	5.	10.	10.	13.	24.	15.	89.
gais	1.0	u	0	0	0	0	0	0	0	0	4.	0	0	4.
WHLAT GPAN	1.0	U	0	0	0	0	0	0	0	0	18.	11.	0	29.
SUGAR	1.0	u	0	0	0	0	0	0	0	0	5.	0	n	5.
GRINU \& Mix	1.0	u	0	0	0	6.	8.	6.	12.	13.	16.	30.	10.	111.
VEI MEU.	1.0	v	0	0	0	31.	30.	30.	30.	30.	51.	30.	30.	261.
INS. ANU TAXES	1.0	U	0	0	0	0	0	220.	0	0	0	0	0	220.
HAULING \& MKIG.	1.0	u	0	0	0	0	0	11.	0	11.	0	0	153.	176.
Lf GAS	1.0	u	0	0	0	0	0	0	0	0	0	53.	153.	205.
Electricitr	1.0	u	0	0	0.	0.	15.	15.	15.	15.	15.	186.	15.	276.
MISCL EXPENSE	1.0	U	0	0	0	21.	21.	21.	21.	21.	21.	21.	21.	168.
gilts	1.0	u	0	0	0	3700 -	0	0	3700.	0	1110	0	0	8510.
YOUNG BOAK	1.0	U	0	0	0	13511.	0	0	0	0	0	0	0	1350.
gestation shed	1.0	4	0	0	4533.	0	4833.	0	0	0	0	0	0	9666.
KEMODEL BUILDING	1.0	u	0	0	0	0	0	4500.	4500.	0	0	0	0	9000.
LUADING CHUTE	1.0	u	0	0	0	0	0	0	0	300.	0	0	0	30 n .
SURTING CHUTE	1.0	0	0	0	0	0	0	0	0	145.	0	0	0	145.
EWUIP-LUSGKEPA1R	1.0	U	0	0	18.	18.	29.	42.	55.	56.	56.	56.	56.	386.
MANURE SPKtacer	1.0	u	0	0	0	0	$2000 \cdot$	0	0	0	0	0	0	2000.
USED SKIO LOADH	$1 \cdot 0$	v	0	0	0	u	3500.	0	0	0	0	0	\bigcirc	3500.
IKACIORIFULL, LUA	, her ${ }^{\text {P }}$	u	0	0	0	0	156.	0	0	311.	0	0	311.	778.
MACHINE IFUELILUA	- He ${ }^{\text {P }}$	u	0	0	0	0	4.	0	0	8.	0	0	8.	21.

Flow of tunds suminiry
ร4v7700

CASH BALANCE HEGINING +CASH DIFFERENLE
= CURHEINT CASH DALANC.

- CURHEIVT CASH DAL
+MONE YOHYOAEU
-HAYME:FT UI LOAN
- INTEREST YAID AI
=CASH GALAINCE ENDING
CURRENT LUNN SUMMARY

[^2]JOLLARS

\square
$00000=0$
$p_{1} c=0=00$

[^3]TAHLE 75 MUNIHLY FNTFRHRISE CASH FLOW PROIECTION FOR FEEDER

PLG PHONUCTIUN. SYSTEM E FIRST YEAR UF OPERATION.

ITEM	UNLIS	JAN	FER	MAR	Arle	MAY	JUN	Jul	Aug	SEP	OC ${ }^{\top}$	NOV	DEC	TOTAL
CASH HECEIPTS														
betoter pigs	1.0	${ }^{u}$	0	0	0	u	0	0	0	0	0	4118	0	4118.
GILT N. H.	1.0	u	0	0	0	0	418.	0	0	0	0	0	139.	557.
SUN N. K.	1.0	\checkmark	0	0	0	0	u	0	0	0	0	0	162.	162.
Suw Cull	1.11	u	0	0	0	0	u	0	0	0	0	0	4 AR .	488.
rotal		1	0	0	0	0	418.	0	0	0	0	4118.	7 ¢ิก.	5325.
CASH EXPENSES														
COKN	1.0	U	0	0	5.	163.	136.	120.	120.	124.	246.	388.	204.	1504.
SUYBEAN MEAL	1.0	U	0	0	3.	84.	74.	65.	65.	71.	190.	299.	113.	958.
MIfuEkALS	1.0	1	0	0	0.	7.	6.	5.	5.	5.	12.	17.	9.	66.
OATS	1.0	U	0	0	0	0	0	0	0	1.	3.	0	0	4.
WhEAT GRAN	1.0	v	0	0	0	u	u	0	0	3.	20.	5.	0	28.
SUGAK	$1: 0$	0	0	0	0	0	0	0	0	1.	4.	0	n	9.
GHIND \& MIX	1.0	U	0	0	0	4.	7.	6.	6.	7.	15.	22.	11.	83.
VET 8 MED.	1.0	U	0	0	0	2ヶ.	0	0	25.	63.	25.	0	0	138.
ELECTRICIIT	1.0	v	0	0	0	0	10.	10.	10.	10.	62.	62.	10.	177.
INS. AND IAXES	1.0	0	0	0	0	0	0	107.	0	0	0	0	0	107.
HAULING \& MKTG.	1.0	u	0	0	0	0	11.	0	0	0	0	130.	23.	164.
MISCL EXPENSE	1.0	U	0	0	${ }^{10}$	27.	20.	20.	20.	20.	20.	20.	37.	160.
GILTS	1.0	U	0	0	3100.	0	0	0	0	0	1110.	0	0	4810.
YUUNG BOAK	1.0	U	0	0	İ350.	0	u	0	0	0	10	0		1350.
GESTAIION SHED	1.0	u	0	0	4750 .	0	0	0	0	0	0	0	n	4950.
FARROW-HEMUUEL	1.0	u	0	0	0	0	0	2608.	0	0	0	0	0	2608.
LOADING CHUTE SURIING CHUTE	1.0 1.0	U	0	0	0	0	0	0	300.	0	n	0	0	300.
FARKOW CHAIES	1.0 1.0	u	0	0 0	0 0	0 0	0 0	0	145. 4000.	0	0 0	0 0	0	145.
EUUIP-LUBSKEPAIR	1.0	u	0	0	14.	14.	14.	21.	4000.	33.	33°	33.	33^{6}	4000.
MANURE SPHEADEH	1.0	0	0	0	0	0	2000.	0	0	0	n	0	0	
UStD SKID LOADK	1.0	u	0	0	0	0	3500 -	0	0	0	0	0	0	3500.
IKAC TORIFUEL L LUR	- $\mathrm{REP}^{\text {P }}$	u	0	0	0	0	81.	0	0	163.	0	0	163.	407.
MACHINEIFULLILUA	KE ${ }^{\prime \prime}$	0	0	0	0	0	3.	0	0	5.	0	0	5.	13.
total		u	0	0	$10 \cup 22$.	326.	5862.	2963.	4730.	506.	1730 。	976.	590.	27705.

TABLE 76 MUNTHLY ENTERYRISE CASH FLOW PROJECTION FOR FEEDFR
PIG PHODUCTION, SYSTEM E SECONO YEAR OF PRODUCTION.

2 LITER-1D SUW HEMUUELFD UNIINGULATEU DAIRY IMARN FOR FADRUWING ANO NURSFRY.
NEW UHEN FHONT SHED FOR GE SIAISON.
-262-
TAHLE 77 MUNTHLY ENTEHHRISE CASH FLOW PRUJECTION FOR FEEDER
PIG PHOOUCTIUN. SYSTEM F FIRST YEAR OF OPERATYON.

IIEM	UNAIS	JAN	HER	MAR	Ark	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	total
CASH RFLEIPIS														
teloth pigs	1.0	u	0	0	0	0	13	0	0	0	n	0	4248.	4248.
Suw N. B.	1.0	u	0	0	0	0	0	0	0	0	0	0	$1 \mathrm{F2}$.	162.
GILT N. H.	1.0	${ }^{1}$	0	0	0	0	0	$41^{\text {A }}$.	0	418.	0	0	139.	974.
Suw Cull	1.0	u	0	0	0	u	0	1	0	0	0	0	4R8.	488.
101 AL		0	0	0	0	0	0	418.	0	418.	0	0	50 月月.	5873.
CASH EXPENSFS														
LURN	1.0	u	0	0	0	123.	152.	120.	234.	241.	273.	539.	760.	2041.
SUYBEAN MEAL	1.0	"	0	0	0	67.	84.	65.	125.	132.	174.	392.	215.	1253.
Mineirais	1.0	u	0	0	0	ל.	7.	5.	10.	10.	13.	24.	15.	89.
Uals	1.0	u	0	0	0	0	0	0	0	0	4.	0	0	4.
wheat grain	1.0	0	0	0	0	0	0	0	0	0	18.	11.	0	29.
SUGAR	1.0	u	0	0	0	0	0	0	0	0	5.	0	0	5.
GKIND M MIX	1.0	u	0	0	0	6.	8.	6.	12.	13.	16.	30.	19.	111.
VET MED.	1.0	u	0	0	0	37.	30.	30.	30.	30.	51.	30.	30.	261.
INS. AND IAXES	1.0	u	0	0	0	0	${ }^{3}$	193.	0	0	0	0	0	193.
haviing a Mkig:	1.0	u	0	0	0	0	0	11.	0	11.	0	0	153.	176.
LP GAS	1.0	0	0	0	0	0	0	0	0	0	0	53.	153.	205.
ELECTRICIT	1.0	u	0	0	0	0	12.	12.	159.	12.	12.	159.	12.	378.
MLSCL EXPERSE	1.0	u	0	0	0	22.	22.	22.	22.	22.	22.	22.	27.	176.
GILTS	1.0	U	0	0	0	37010	0	0	3700.	0	1110	0	\bigcirc	8510.
YUUNG BOAK	1.0	v	0	0	0	135\%.	0	0	0	0	0	0	0	1350.
GESTAIION STEU	1.0	u	0	0	4833.	u	4833.	0	0	0	0	0	0	9666.
- ARrun-REMUUEL	1.0	u	0	0	0	0	0	4767.	0	0	0	0	0	4767.
FARRUNING CHAItS	1.0	\checkmark	0	0	0	0	0	0	4000.	0	0	0	0	4000.
LOADING CHUTE	1.0	u	0	0	0	u	0	0	0	300.	0	0	n	300.
SORTING CHUTES	1.0	u	0	0	0	0	0	0	0	145.	0	0	0	145.
EQUIP-LUBAREPAIR	1.0	u	0	0	21.	21.	30.	30.	57.	57.	57.	57.	57.	387.
manure spreader	1.0	u	0	0	0	0	2000.	0	0	0	0	0	0	2000.
USED SKIU LOADK	1.0	0	0	0	0	0	3500 .	0	0	0	0	0	0	3500.
IKACTORIFUEL. LUB	- HEP'	u	0	0	0	0	156	0	0	311.	0	0	311.	778.
MACHINE (FUELILUA	- RE')	0	0	0	0	0	4.	0	0	B.	0	0	R.	21.
TOTAL		u	0	U	4354.	5324.	10838.	5263.	8340.	129 .	1754.	1315.	1355.	40345.

\footnotetext{
FLOW OF FUNDS SUMMARY

TAELE 78 MUNTHLY ENTERYRISE CASH FLOW PROJEGTION FOR FFEDER
PIG PKUNUCTION, SYSTEM F SECOND YEAR OF PRODUCTION.

4 LIIIER-3L SUWS REMUUELE INSULAIEU VENIILATEU DAIRY BARN FUR FARROWING
ANU MURSERY. NEW UPEN FRONT SHED FOH GESTATION.
-264-

[^4]

$1 \mathrm{IE}^{\mathrm{M}}$	UNITS	JAN	rer	MAR	Ark	may	JUN	JUL	AUG	SEP	Oc ${ }^{\top}$	NOV	DEC	TOTAL
CASH TRECEIPTS						0			0	0	n	0	4378.	4378.
Hetder pigs	1.0	u	0		0	0	0		0	835.	0	41^{80}	0	1670.
GILT N. H.	1.0 1.0	u	0	0	0	13	1	418	0	8	0	4	488．	488．
TJJAL		U	0	0	0	0	0	418.	0	835.	0	418.	4867．	6537.
CASH EXPENSES														
CORN	1.0	0	0	0	0	51.	162.	177.	283.	264.	$3{ }^{1}$	366.	59.	2479.
SUYBEAN MEAL	1.0	U	0	0	0	2%.	88.	97.	1029.	145.	222.	381.	393.	2384.
Minerals	1.0	u	0	0	0	P。	7.	8.	12.	12.	17.	25.	26.	109.
UATS	1.0	U	0	0	0	u	0	0	0	0	2.	2.	？	6.
WHEAT GRAN	1.0	U	0	0	0	0	0	0	0	0	9.	20.	9.	38.
SUGAK	1.0	u	0	0	0	0	0	0	0	0	3.	2.	3.	8.
GRIND \＆MI＊	1.0	u	0	0	0	3.	7.	9.	13.	14.	21.	32.	32.	131.
ver \＆mid．	1.0	v	0	0	0	24.	26.	26.	26.	26.	51.	51.	51.	283.
LINS．AINO IAXES	1.0	u	0	0	0	0	0	293.	0	0	0	0	ก	293.
haviing \＆MKTG6	1.0	0	0	0	0	0	0	11.	0	11.	0	11.	150.	183.
LH GAS	1.0	0	0	0	0	0	0	0	0	0	26.	61.	17 h.	263.
ELECTRICily	1.0	u	0	9	0	45.	45.	45.	45.	45.	89.	R9．	ค9．	490.
M1SCL EXPtNSE	1.0	u	0	0	0	23.	23.	23.	23.	23.	23.	23.	23.	184.
GILIS	1.0	u	0	0	0	3701.	0	425.5	0	3700 ．	0	1110.	0	12765．
YUUNG BUAK	1.0	0	0	0	0	1350.	0	0	1	0	0	0	0	1350.
LESTATION SHEO	1.0	u	0	0	10000	9929.	0	${ }^{0}$	0	0	0	0	n	19928.
HEMOUEL DAIRY TSN	1.0	U	0	0	0	0	${ }^{4}$	11b11．	10000.	0	0	0	0	21511．
luauing chuie	1.0	u	0	0	0	U	0	0	D	300.	0	0	0	300.
SOHTING Chule	1.0	U	0	0	0	0	0	0	0	145.	O	0	0	145.
FEtD SYSItM	1.0	0	0	0	0	191 H	0	0	0	0	37^{0}	1370	0	1918.
EUUIP－LUB\＆HEPA」R	1.0	u	0	0	32.	$6{ }^{\circ}$	69.	104.	135.	137.	137.	137.	137.	557．
MANURE－PII FUMP	1.0	u	0	0	0	0	0	0	0	0	3500.	0	0	3500.
USED SKID LOADM	1.0	u	0	0	0	0	0	3500.	0	0	n	0	0	3500．
MANUKE SPPPAUER	1.3	u	0	0	0	0	0	2000.	0	0	000	0	0	2000.
LIG MANURT SHDR	1.0	u	0	0	0	0	0	0	0	0	6000.		0	
ImACIOR（FUEL．LUE	－ Hepl $^{\text {P }}$	u	0	${ }^{1}$	0	＂	0	151.	0	151.	78.	151.	0	54.
MACHINE（FUFL．LUA	－REP）	u	0	0	0	0	0	8.	0	8.	31.	8.	0	54.

TOTAL
HEW OF HUNIS SUMMAKY
Gitrrelit LUAN SUMMAKY
LASH BALAINCE BEGINING， ＋LASH VIFFEKENLE
＝CURRENT CASH ISALANLH
＋MONEY BOKHONEU
－HAYMENT UN LOAN
－INTEIREST PAIU AT－1／
＝LASH HALAVCF ENDINO

 DOLLAR
GOLLARS
菏
$\overline{1} \dot{\sim} \dot{\sim} \dot{\sim}$
$\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$

I
$\mathfrak{c c}$
0
0
-19
n
-0
0

75706
0

$\begin{aligned} & \text { TAULE } 81 \text { MUNTHLY ENTFRIKIGE CAS' FLOW PROJHCTION FOR FFEDFR } \\ & \text { PLG PHODUCTIOH, SYSTEM G SECUND YEAR OF PRODUCTION. }\end{aligned}$

O LITIER-4O SOWS KEMOUELEU INSULATEO VENTILATEU OAIRY BAKN WITH MANUHE
STURAGE FOK FARKOWING AND NGKSERY. NEW MODIFIEU OPEN FKOHT SHHE FOH GESTATION

TAHE 83 MUN:HLY ENIEIURRISE CASH FLOW PRUJECTION FUR FEEDFR

ITEM	UNI IS	JAN	Her	Mar	Arts	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
CASH RECEIPTS														
+ eeder pigs	1.0	v	$1)$	0	0	0	u	0	0	0	0	0	4249.	4248.
SUW N. H .	1.0	0	0	0	0	0	0	0	0	0	0	0	162.	167.
GILT N. B.	1.0	v	0	0	0	0	0	418.	0	418.	0	0	130.	974.
SUW CULL	1.0	u	0	0	0	\checkmark	0	0	0	0	0	0	488.	488.
TOTAL		0	0	0	0	0	1	418.	0	418.	0	0	5038.	5873.
CASM EXPENSES 0														
CORN	1.0	u	0	0	0	123.	152.	120.	234.	241.	273.	539.	360.	2041.
Surbeain meal	1.0	0	0	0	0	67.	84.	65.	125.	132.	174.	392.	215.	1253.
MINERALS	1.0	u	0	0	0	ל.	7.	5.	10.	10.	13.	24.	15.	89.
UAIS	1.0	u	0	0	0	0	-0	0	0	0	4.	0	0	4.
WHEAT BRAN	1.0	U	0	0	0	0	0	0	0	0	18.	11.	0	29.
SUGAR	1.0	0	0	0	0	0	0	0	0	0	5.	0	0	5.
GRIND \& MIX	1.0	u	0	0	0	6.	8.	6.	12.	13.	16.	30.	19.	111.
VET 8 MED.	1.0	0	0	0	0	35.	30.	30.	30.	30.	51.	30.	30.	261.
INS. AND IAXES	1.0	u	0	0	0	0	0	193.	0	0	0	0	0	193.
HAJILING R MKIG.	1.0	U	0	0	0	0	0	11.	0	11.	0	0	153.	176.
LH GAS	1.0	0	0	0	0	0	0	0	0	0	0	53.	153.	205.
ELECTRICIIY	1.0	0	0	0	0	0	15.	15.	161.	15.	15.	161.	15.	398.
MISCL Exptive	1.0	u	0	0	0	22.	22.	22.	22.	22.	22.	22.	22.	176.
GILTS	1.0	${ }^{u}$	0	0	0	3700.	0	0	3700.	0	1110.	0	0	8510.
YUUNG BOAR	1.0	u	0	0	0	1351 .	0	0	0	0	0	0	0	1350.
GESTATION SHED	1.0	U	0	0	4833.	0	4833.	0	0	0	0	0	0	9666.
GESTATION SHEU	1.0	U	0	0	0	0	0	6696.	6696.	0	0	0	0	13392.
Loading chute	1.0	u	0	0	0	0	0	0	0	300.	0	0	0	300.
SURTING CHUTES	1.0	u	0	0	0	0	0	0	0	145.	0	0	0	145.
MANURE SPKEADER	1.0	U	0	0	0	0	$2000 \cdot$	0	0	0	0	0	0	2000 -
USED SKID LOADK	$1 \cdot 0$	\checkmark	0	0	0	0	3500 -	0	0	0	0	n	0	3500°
EGUIP-LUB\&REPA1R	1.0	0	0	0	1 I.	21.	36.	51.	52.	52.	52.	52.	52.	379.
TKACTORIFIJE, LUB	. REP $^{\text {P }}$	0	0	0	0	U	156.	0	0	311.	0	0	311.	778.
MACHINE IFUTL. LUR	- REP 1	u	0	0	0	0	4.	0	0	8.	0	0	9.	21.
TOTAL		u	0	0	4344.	$53{ }^{4.4}$	10847 •	7215.	11043.	1290.	1752.	1313.	1353.	44981.

FLUW OF FUNO: SUMMARY

CASH BaLance blgining	-u	-0	-0	-0	-0	-0	-0	-0	-0	-n	-0	-0	
+ CASH UIFFERENLE	u	0	0	-4547.	-5324.	-10847.	-6798.	-11043.	-873.	-1752.	-1313.	3685.	-39108.
\#CURRENT LASH OALANCE	U	0	0	-4.44.	-5324.	-10847.	-6798.	-11043.	-873.	-1752.	-1313.	3695.	
+ MONEY BOKHUWEU	u	0	0	$4 \pi 44$.	5324.	10847.	6798.	11043.	873.	1752.	1313.	0	
-payment uiv loan	0	0	0	0	0	${ }^{1}$	0	0	0	n	0	1418.	
- INTERESI MaIU At . 12	v	0	0	0	u	0	0	0	0	0	0	2267.	
= CASH BALANCE ENUINO	-u	-0	-u	-0	-0	-0	-0	-0	-0	- 0	-0	-0	

UOLLIMS

[^5]

LTEM UNLIS	JAN	FER	MAR	APr	MA ${ }^{\text {r }}$	Jun	Jul	AUg	CEP	OC ${ }^{\top}$	NOV	DEC	TOTAL
Cash rectipts													
ftecer pigs 1.0	u	0	- 289.	0	0	0	0	0	0	0	0	0	6288.
PEEUER PIG3 1.0	u	0	0	0	0	5500.	0	0	0	0	0	0	5500.
HEFEEK PIGS 1.0	u	0	0	0	0	$1)$	0	0	5334.	n	0	0	5334.
FEtDER HIGS 1.0	u	$1]$	4	0	0	0	0	0	0	0	0	481?.	4312.
SUA N.B. 1.0	162.	0	u	162.	0	U	162.	0	162.	0	0	0	648.
GILT N. B. 1.0	139.	$1)$	139.	0	0	0	139.	0	139.	0	0	0	557.
SUW LULL 1.0	u	0	488.	0	19	488.	0	0	488.	0	0	4R8.	1954.
BUAR 1.0	u	0	0	327.	0	13	0	0	0	0	0	0	527.
TOTAL	301.	0	0916.	089.	u	5988.	301.	0	6123.	\bigcirc	0	5300.	25619.
CASH EXPENSES													
COKN 1.0	402.	SR7.	373.	<70.	532.	343.	348.	595.	329.	338.	630.	417.	5184.
SOYBEAH MEAL 1.0	248.	409.	228.	167.	397.	212.	215.	425.	197.	204.	441.	251.	3393.
MINERALS 1.0	18.	25.	16.	12.	24.	15.	15.	26.	14.	15.	27.	19.	224.
GKAIN 1.U	5.	0	0	4.	${ }^{6}$	0	5.	0	0	5.	0	0	18.
Wheat hhan 1.0	19.	10.	0	16.	13.	0	18.	11.	0	17.	12.	ก	115.
SUGAH 1.0	5.	0	0	5.	0.	0	6.	0	0	6.	0	0	22.
GHIND 8 MIX 1.0	23.	32.	20.	15.	31.	18.	20.	33.	18.	19.	35.	27.	286.
VET MED. 1.0	51.	30.	30.	51.	37.	30.	51.	30.	30.	51.	30.	30.	444.
ins. and iaxes - 1.0	u	0	0	0	0	0	290.	0	0	n	0	0	290.
HaviIng \& MKTG. 1:0	9.	0	166.	27.	0	166.	9.	0	175.	0	0	166.	718.
Lr GAS 1:0	213.	153.	80.	14.	0	0	0	0	0	0	53.	153.	664.
ELECIHICIIY 1:0	12.	159.	12.	12.	154.	12.	12.	159.	12.	12.	159.	12.	732.
MISCL LXPETHSE 1:0	22.	22.	22.	22.	27.	22.	22.	22.	22.	22.	22.	22.	264.
YGUNG GOAK 1.U	u	0	0	0	0	0	1350.	0	0	0	0	0	1350.
TKACTOK(FUEL M LUR,REP)	u	0	311.	0	0	311.	0	0	311.	0	0	311.	1244.
MACHINE (FUEL. LUB, REP')	U	0	8.	0	0	8.	0	0	8.	0	${ }^{0}$	A.	33.
EGUIP. (FUEL.LUB,REP)	52.	52.	52.	52.	57.	52.	52.	52.	52.	52.	52.	53.	629.
total	107\%.	1480.	1318.	668.	1281.	1190.	2413.	1353.	116日.	741.	1460.	1467.	15611.
FLOW OF r UiNUS SUMMAHY					VOLLARS								
CASH BALANLE BEGINING	-4	-0	-0	-0	-0	-9	-0	-0	-0	-0	-0	- 0	
+LASH DIFFERENLE	-777.	-1480.	3598.	21.	-1281.	4798.	-2112.	-1353.	4955.	-741.	-1460.	3839.	10007.
- CURREINT LASH GALANCE	-777.	-1480.	b598.	21.	-12^{81}.	4798.	-2112.	-1353.	4955.	-741.	-1460.	3838.	
+MONE Y BOHROWEU	777 .	1480.	0	0	1281.	1	2117.	1353.	0	741.	1460 .	0	
-parment on loan	0	0	4402.	0	0	3706.	0	0	3871.	n	0	2793.	
- INTERLST Haio al . 12	u	0	1196.	21.	0	1093.	0	0	1084.	0	0	1045.	
-CASH BALANCE ENUINO	-u	-0	- 0	-0	-0	-0	-0	-0	-0	-n	-0	-0	

CURRENT LOAN SUMMAKY DOLLARS

APPENDIX E

Farrow-to-Finish - Cash Flows

TAHLE 86. MUNIHLY FNIERYRISE CASM FLOW PROJECTION FUR FARPOW-
TUAFINISH, SYSTEM A IN FIRST YEAR OF OPFRATION.

11E*	unils	JAN	HER	MAR	ark	MAY	JUN	JuL	A1, G	SEP	OCT	NOV	DFC	TOTAL
CASH mectiris	1.0	U	0	0	0	0	418.	0	0	0	0	0	0	41%.
SUNT CIVI.	1.0	13	0	0	0	0	0	0	0	0	0	2442.	0	2442.
BUAK	$1 \cdot 0$	u	0	0	0	0	527.	0	0	0	0	0	0	527.
tutal		u	0	0	0	0	944.	0	0	0	0	2442.	0	3386.
CASH EXPLİSES	1.0	u	0	0	89.	12).	80.	70.	70.	136.	405.	680.	855.	2508.
SOTREAN MEAL	1.0	0	0	0	49.	67.	44.	39.	39.	96.	335.	406.	444.	1518.
minerals	1.0	u	0	0	4.	"	3.	3.	3.	$7{ }^{7}$	19.	210	250	4.
UAIS	1.0	\checkmark	0	0	0	0	0	0	0	17.	17.	0	n	34.
Whelit hkan	1.0	U	0	0	0	0	0	0	0	17.	0	0	0	5.
SUGAR	1.0	U	0	0 0	5.	6.	4.	4.	4.	9.	24.	36.	44.	134.
GKINU a MIX	1.0 1.0	0	0 0	0	25.	0	0	0	25.	63.	25.	10.	10.	15R.
VET M MED	1.0 1.0	u	0	0	0	5.	0	0	0	0	0	1.	18.	22.
ins. And laxes	1.0	U	0	0	0	0	86.	0	0	0	0	72	0	${ }^{86}$.
HAULING MKTG:	1.0	0	0	0	0	17	33.	17	17^{0}	17.	17.	72.	26.	166.
MISCL EXPENSE	1.0	U	0	0	17.	17.	17.	17.	17.	17.	17.	20	n	3700.
GILTS	1.0	U	0	0	3100.	0	0	0	0	0	0	0	n	1350.
YOUNG BOAR	1.0	0	0	0	1350.	0	0	0	0	0	0	0	0	3004.
GESIATION SHLIER	1.0	u	0	1502.	1502.	0	0	0	0	0	0	0	0	1988.
A-FRAME FAKO-HUT	1.0	U	0	0	0	0	994.	994.	0	0	0	0	0	300.
luading chute	1.0	u	0	0	0	0	0	0	300.	0		0	0	145.
SORTING CHUTE	1:0	U	0	0	0	0	0	0	145.	0	0	0	0	3240 .
- Eivce	1.0	0	0	3240.	0	0	0	0	0	0	$3913{ }^{0}$	0	0	3240.
-INISH-REMUL-BLO	1.0	u	0	0	0	${ }^{0}$	0	0	40	40	$3913{ }^{\circ}$	60.	60.	3913.
EQUIP-LUBKKEPAIK	1.0	U	0	22.	30.	310	34.	37.	40	40.	60	60	31.	31.
IKAC IORIFUEL L LUB	, her ${ }^{\text {P }}$	U	0	0	0	0	0	0	0					
TOTAL		u	0	4764.	6171.	244.	1295	1164.	643.	394.	4815.	1307.	1512.	22913.

$-274-$
TA＋ILE Q MUNIHLY ENTEHHRISE CASH FLOW PRUJECTION FOR FARROW－
YUHFINISH，SYSIEM B IN FIRST YEAR OF OPERATION．

ITEM	UNLIS	JAN	HER	MAR	Ark	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
CASH RECTIPTS				0	0	0	418．	0	0	0	0	0	n	418.
GILT N．H．	1.0 1.0	U	0 0	0	0	0	418	0	0	0	488.	0	0	4 AB ．
TOTAL		u	0	0	0	0	418.	0	0	0	488.	0	0	906.
ASH EXPENSES				0	36.	117.	115.	94.	94.	159.	376.	750.	930.	2672.
CORN	1.0	U	0	0	19.	64．	115.	52.	52.	107.	303.	441.	487.	1588．
SUYHEAN MEAL	1.0	U	0	0	19.	5.	62.	4．	4.	10.	17.	25.	29.	9R．
MINERALS	1.0 1.0	U	0	0 0	0	0	0	0	0	4.	0	0	0	4.
UATS $\begin{aligned} & \text { WHEAT BRAN }\end{aligned}$	1.0 1.0	U	0	0	0	0	0	0	0	17.	11.	0	0	28.
WHEAT GRAN SUGAR	1.0	U	0	0	0	0	0	0	0	5.	0	0	n	5.
GKINU MIX	1.0	u	0	0	2.	6.	6.	5.	5.	9.	21.	40.	49.	141.
VEI MEU．	1.0	U	0	0	25.	0	0	0	25．	63.	27．	12.	12.	162．
ELECTRICIIT	1.0	U	0	0	20.	$3:$	0	161.	0	0	0	0	0	161．
INS．ANO IAXES	1.0	U	0	0	0	0	13.	161.	0 0	0	17.	0	0	30.
HAULING MKIG．	1.0	U	0	0	17.	17.	17.	17.	17.	17.	17.	17.	21.	157.
MISCL EXPLIVSE	1.0 1.0	1 u	0	0	\＄170．	170	17.	17.	17.	170	1110 ．	0	0	4910.
GILTS	1.0	U	0	0	1350.	0	0	0	0	0	0	0	0	1350.
YOUNG GOAK GESTATION SHLTER	1.0 1.0	U	0	1502.	1502.	0	0	0	0	0	0	0	0	3004.
GESTATION SHLTER	1.0	U	0	0	0	0	994.	994.	0	0	0	0	0	198R．
LUADING CHUTE	1.0	U	0	0	0	0	\checkmark	0	300.	0	0	0	0	300.
SURTING CHUTE	1.0	0	0	0	0	0	0	0	145.	0	0	0	1	1572.
NURSERY	1.0	0	0	0	0	0	0	786.	786	0	0	0	0	3240.
HENCE	1：0	U	0	3240.	0	0	0	0	0	0	913	0		3913.
FINISH－REMUL－BLD	1.0	u	0	0	0	0	0	0	0	48	396.	67.	67.	422.
LUUIP－LUGZREPAIR	1.0	U	0	13.	24.	24.	28.	36.	48.	0	0	0	70.	70.
TKACTOK（FUELILUB	－RE ${ }^{\prime}$	0	0	0	0	0 0	0	0	0	0	0	0	5.	5.
MACHINE IFULL．LUB	－KEP）	0	0	0	0	0	0	0	0	0	0	1	H．	5.
T01AL		U	0	4755.	0696.	236.	1240	2149.	1476.	436.	5878.	1352.	1687.	25905.

flow of funds Suminater

	U－	$0-$	U－	$0-$	U－	$0-$	$0{ }^{-}$	n－	$0-$	n－	$0-$	n＂	9NITNJ 3）NVาV\％HSV）＝
	0	0	0	0	0	0	n	0	0	0	0	0	\checkmark OJVA 15 SHEINI－
	0	0	0	0	0	0	$\stackrel{0}{0}$	！		0	0	n	пЗмоуноת lJNOW＋
	－ 2891	－ CSq	${ }^{6} \mathrm{byE}$ ¢	＊98＊	－924I	－0ttr	－228	－Y¢	． 9699	－\cdot SSくカ	0	0	ЭาNษาVค HSv）（N3＊＊＊กา
	－ 2891 －	－で\＆	－6甘¢C－	－98カー	－92＋rI－	－ontz－	－228－	－9¢2－	－9699－	－GSくカー	0	n	
－060tz－	$\text { - } 2891-$	- ZSعI-			$\begin{aligned} & 924 \mathrm{I}- \\ & 0- \end{aligned}$	0－	－ 0	0－	0－	$0-$	$0-$	${ }^{n}$	

CIJRRENT LOAN GUMMAHY DCLLAKS

CURRENT LOAIS SUMMARY
DOLLARS

ACCRUED INIEREST AT 912 ISAO. 1841.
$26329.0 U$ ACCUKED IUIAL UKRT-JAN 1.
ACCUMMATEL TOIAL DEHI 27649 . 24554.
2 LITIER-10 SUWS \& AHRUWING IN PORTAHLE A-FRAME BUILDINGS. POKTARLE NURSFRY
AND GESTATION FACILIIIES. HEMUOFLED HERMANENT MUILIING FOR FINIGHING.

CURRENT LOAN SUMMARY

2 LITTER-10 SUW' FARKUWIN' IN PORTABLE A-FRAME BUILDINGS. FOKTARLE NURSFRY
ANO GESTATION FACILITIES. HEMUUFLED PERMAMENT OUILDING FIR FINISHING.
TAEHLE 91 MUNTHLY ENTERI'RISE CASH FLOW PROJECTION FOR FARROW-
TUAFINISH. SYSTEM C IN FIRST YEAR DF OPFRATION.

Curnent lonn sumairy
-ULGAN OUI-JAN 1
ACGHMLAITU BURSRUM IHG

TAULE 92. MUNIHLY ENTEKPRISE CASH FLOW PROJECTION FOR FARKOW-
TUAI LISIGH. SYSTEM CIN SECOND YEAR OF OPERATION.

2 LITIEK-10 SUWS A REMUDELEU UNINSULAIED BUILUING FOR FAPHUWING AND NURSERY.
OPEN FRONT REMOULLED SHED HUK GESTATIUN. HEMOUTLED RUILUTNG FOR FINISHING.
TAKLE 93 MUNIHLY ENTERPRISE CASH FLOW PROJECTION FOR FARPOW－
TU－FINISH．STSTEM C IN THIRD YEAR OF OPERATION．

ITEM UNIIS	JAN	＋EB	MAR	AHR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	TOTAL
CASH hecfipts													
SLAUGHIER AOGS 1．0	u	0	11595.	0	0	0	0	0	0	0	0	0	11595.
SLAUGHIER HOGS 1．0	u	0	0	0	0	0	0	0	11925.	0	0	n	11925.
GILT N．B． 1.0	u	0	0	0	0	139 －	0	0	0	ก	0	139.	278.
SUW N．B． 1.0	v	0	0	0	0	162.	0	0	0	0	0	162.	324.
Sow Cuil 1.0	0	0	0	0	488.	0	0	0	0	0	488．	n	977.
BUAR 1．0	U	527.	0	0	0	0	0	0	0	0	0	0	527.
total	u	b27．	11595.	0	48 H ．	301.	0	0	11925.	0	488.	301.	25625.
CASH EXPENSES													
LURN 1.0	1322.	1166.	470.	401.	641.	741.	1130.	1121.	377.	417.	769.	965.	9528.
SOYBEAN MEAL 1.0	473.	423.	215.	515.	394.	421.	406.	186.	186.	328.	461.	531.	4337.
MINERALS 1.0	40.	36.	17.	18.	22.	23.	35.	35.	14.	19.	26.	31.	316.
uars 1．U	0	0	4.	1.	0	0	0	0	4.	0.	0	0	9.
WHEAT BRAN 1.0	\cup	0	14.	14.	0	0	0	0	15.	13.	0	0	56.
SUGAR 1.0	u	0	5.	1.	0	\checkmark	0	0	5.	1.	0	0	11.
GKIND MIX 1.0	65.	57.	25.	23.	34.	39.	56.	55.	20.	24.	41.	50.	488.
VET \＆MED 1.0	12.	37.	63.	25.	12.	12.	12.	37.	63.	25.	12.	17.	322.
ELECTHICIT 1.0	18.	18.	18.	91.	87.	15.	18.	18.	18.	91.	86.	15.	494.
IINS．AND TAXES 1.0	\checkmark	0	0	0	0	0	185.	0	0	0	0	0	185.
MKIG HAULING 1.0	u	18.	283.	0	14.	9.	0	0	$2 \mathrm{A3}$.	0	14.	9.	630.
MISCL EXPEINSE 1.0	29.	29.	29.	29.	29.	29.	20.	29.	29.	29.	29.	2° ．	342.
YUUNG BOAR 1．0	u	0	0	0	13510．	0	0	0	0	0	0	0	1350.
IKACI OH2（FUEL，LUB ，REP）	v	0	233.	0	0	233.	0	0	233.	0	0	233.	931.
MACHINE（FUEL，LUB．REP）	\checkmark	0	10.	0	0	10.	0	0	10.	0	0	10.	41.
KQUIP．（FULL．LUR．HEP）	49.	49.	49.	49.	49.	49.	49.	49.	49.	49.	49.	40.	585.
toial	2008.	1832.	1434.	965.	2631.	1579.	1928.	1529.	1306.	994.	1486.	1933.	19626.
FLOW OF FUNDS SUMMARY					DOLLARS								
CASH PaLANLE BLGINING	－u	－0	－0	$-{ }^{-n}$	－0	－1	－0	－0	－0	－n	－0	－n	
＋CASH UIFFERENLE	－200n．	－1306．	10161.	－465．	-2143.	－1278．	－1929．	－1529．	10619.	－994．	－908．	－1632．	5990.
－CUPRENT CASH SALANLE	－2008．	－1306．	10161.	－ 965.	－214＊．	－1278．	－1928．	－1529．	10619.	－994．	－998．	－1632．	
＋MUNEY bohroweu	cu08．	1306.	0	yob．	2143.	1278．	192R．	$152^{\text {a }}$ ．	0	904.	998.	1637.	
－payment un loan	u	0	6471.	0	u	0	0	0	88_{86}	n	0	n	
－INTEREST HAID AT ． 12	0	0	1690.	0	0	0	0	0	1632.	n	0	0	
＝${ }^{\text {a }}$（ASH BALANLE ENDING	－u	－n	－0	－0	－0	－1	－0	－0	－0	－0	－0	－0	
CURRENT LOAN SUmmatey					DOLLARS								
28590．UULOAN OUI－JAN 1 ALCUMULATEU BORKOWIIG 779．0UACCRUEU INIERF	3Utolt． Sl－JAN	$1^{31910 .}$	2.5434.	2^{1404}	26547.	＜ 733 ¢	29753．	312 AR ．	22296.	23290.	24 cr9．	25014.	
alcruel inierfot at • 12 29375．00 ACCUREU 1617 AL	1463． Uも日臭－	$\begin{gathered} 1371 . \\ \text { AN } 1 \end{gathered}$	1	<34.	$4{ }^{\prime \prime}$ ．	744.	1022.	1320.	0	223．	456.	690.	
accumulattu folal dehi	316617．	31881．	＋3430．	2403n．	2703．	cascia．	30775.	＊2002．	23296．	23413.	24744.	26614．	

2 LITIER－10 SOWS A REMUDFLEU UNINSULATED BUILUING FOR FADROWING AND NIRSFRY．
OPEN FRONT KEMOUELED GHFD HUR GFGIATLUN．HEMOLELEU RUILUING FOR FINISHNG．
TAHLE 94. MUNIHLY ENITHPRISE CASH FLOW PKOJECTION FUR FAKROW-
TUHINISH. SYSTEM D IN IAIRD YEAR OF OPFRATION.

[^6]TATILE 95
MUNIHLY ENTEHPRISE CASH FLOW PROJECTION FOR FAHROW－
TU－HINISH．SYSTEM E IN FIRST YEAH OF OPERATION．

－n¢928	－008 I	－186	－2691	－09\％＊	－18く力	－¢४ฉ\％	62.5	－20¢		0	0	n		78101
$\cdot 8$	$\cdot 4$	0	0	－	0	0	0	0	0	0	0	n	1 （13）	
－пnz	－ K_{61}	0	0	－18	，	$\stackrel{0}{0}$	$\stackrel{0}{0}$	－	$\stackrel{\square}{\square}$	0	a	n	$0 \cdot 10_{0}^{0}$	\＆Vロ
－ 78	－ $2 \boldsymbol{r}$	－${ }^{\prime \prime}$	－ 4	－ 4	－¢¢			－${ }^{\text {I }}$		0	0	0	${ }_{0} \cdot 1$	
－00ss	0	0	\bigcirc	0	0	0	－0098	0	0	0	0	n	${ }_{0}^{0} 1$	
－0002	0	0	0	${ }^{0}{ }^{0}$	0	0		0	0	0	0	n	n．${ }^{\text {¢ }}$	
－cios	0	0	0	－¢168	－ 000 H	0	0	0	0	0	0	n	n． 1	S7lvis motati
－000n	0	0	0	0	，000\％	0	0	0	0	0	0	ก	$0 \cdot 1$	zinci antimas
－¢nt	0	0	0	0	．Sti	0	0	0	0	0	0	n	$0 \cdot 1$	эinho 9wiobnt
$\bigcirc 008$	$\stackrel{\square}{4}$	0	0	0	0^{008}	－6092	ก	0	0	0	0	n	$0 \cdot 1$	
－0509\％	0	0	0	0	0	0	0	0	－0Gat	0	0	n	$0 \cdot 1$	634s NOTIV1579
－uget	0	0	0	0	0	0	0	0	－09ct	0	0	ก	0．t	
－018t	0	0	－0stit	0	0		0	0	－0018	0	0	n	$0 \cdot 1$	SJXGI ONG－SNT
－921	－	－	0	0	0		$\stackrel{11}{ }$	0	0	0	0	ก	$0 \cdot 1$	：91YW \％9Ni Tnut
：n¢	.$_{08}^{0}$	$\stackrel{\square}{98}$	${ }^{0} 12$	$\stackrel{0}{-12}$	$\cdot 12$	$\cdot 12$	－12	－12	\cdot－ 2	0	0	n	$0 \cdot 1$	$35 \sim 17 \pi \times 3$ רJ5iw
－ 081	－29	．99	${ }_{-1} 1$	－ 01	$\cdot 01$	－ 01	－01	0		0	0	n	$0 \cdot 1$	$111 \mathrm{THLJ377}$
－ 281		－2	－sz	－$¢ 9$	－sz		0	0	${ }^{-9}$	0	0	n	$0 \cdot 1$	
－911	－¢	－¢	－$\%$	$\because 1$	0_{0}^{9}	0^{9}	$\stackrel{2}{0}$	0^{n}	0	${ }_{0}$	0	n	n． 1	ximo x OOns
\bullet	0	0	\because	－	0	0	0	0	0	0	0	n	$0 \cdot 1$	Nษ\％ 187 Hm
$\stackrel{82}{ }$	u	$\stackrel{\square}{9}$	\cdot_{-02}	－ 1	0	0	0	0	0	0	a	n	$0 \cdot \mathrm{t}$	Sาateo
$\stackrel{-9}{98}$	$\stackrel{0}{0}_{-18}$	$\stackrel{9}{88}^{81}$	$\cdot 21$	$\cdot \mathrm{s}$	$\cdot \mathrm{s}$	－s	$\cdot 9$	－1	$\cdot 0$	0	0	n	$0 \cdot 1$	S7¢xinim
－${ }_{\text {¢ ¢ ¢ ¢ }}$	－20\％	－ 018	－041	－IL	－¢9	－99	$\cdot{ }^{\circ} \mathrm{L}$	－88	－ε	0	0	n	$0 \cdot 1$	
－6612	－ 218	－01t	－9n2	－加	－U2t	－021	－9kI	－gai		0				535N3dX ${ }^{\text {HS＊）}}$
－ 2 sll	－1／2L	0	0	0	0	0	－81ヵ	0	0	0	0	，		76101
							0			0			$0 \cdot 1$	17 m mos
$\cdots 8$ \％	－\＆\％	，	0	0	0				0	0	0		$0 \cdot 1$	－¢－m mos
－291	－ 291	0	0	0						0			$0 \cdot 1$	－¢ ${ }^{\text {－}}$
－ 295	－681	0	0	0										
76101	330	AON	100	d3s	－	7\％	T	VW	＊				Sild	w 311

FLOW OF FUNDS SUMMAKY DOLLARS

TANLE 96 MUNIHLY ENTERIRISE CASH FLOW PROJELTION FOR FARROW-
TU-TINISH. SYSIEM E IV SECOND YEAR OF OPEHATION.

ITEM UNSIS	JAN	Hea	mapr	ArH	mar	JUN	Jut	Aug	SEP	OCT	Nov	nec	TOTAL
CASH RECLIPTS													
SIAUGHTER HOGS 1.0	u	0	10356.	0	v	0	0	0	0	n	0	0	10356.
SLAUGHTER HOGS 1.0	u	0	0	0	0	0	0	0	11975.	0	0	0	11925.
Gilt N.B. 1.0	u	0	0	0	u	139.	0	0	0	n	1	139.	278.
Suw N.B. 1.0	u	0	0	0	0	162.	0	0	0	0	0	162.	324.
SUW CULL 1.0	u	0	0	0	484.	0	0	0	0	0	488.	\%	977.
BUAR 1.0	u	327.	0	0	0	0	0	0	0	0	0	0	527.
tutal	u	527.	10356.	0	484.	301.	0	0	11925.	0	488.	301.	24387.
CASH EXPENSES													
CURN 1.0	1004.	1082.	1084.	323.	494.	743.	903.	1129.	773.	3 P5.	OR6.	039.	9636.
SUYREAN MEAL 1.0	465.	392.	412.	244.	34,	422.	418.	407.	312.	299.	429.	534.	4678.
MINERALS 1.0	31°	33.	35.	15.	14.	23.	31.	35.	26.	18.	24.	20.	319.
UAIS 1.0	U	0	2.	3.	0	0	0	0	3.	1.	0	0	9.
WhEAT BRAN 1.0	u	0	7.	21.	0	0	0	0	12.	16.	0	0	56.
SUGAR 1.0	v	0	11.	7.	0	0	0	0	9.	4.	0	0	30.
GKINO \& MIX 1.0	65.	57.	25.	23.	34.	39.	56.	55.	20.	24.	41.	50.	48 A .
VET \& MED 1.0	12.	37.	63.	25.	12.	12.	12.	37.	63.	25.	12.	37.	347.
ELECTRICITY 1.0	14.	14.	14.	66.	62.	10.	14.	14.	14.	66.	62.	10.	363.
MKIG HAULING 1.0	u	18.	270.	0	14.	9.	0	0	283.	0	14.	9.	617.
IIVS. AND IAXES 1.0	U	0	0	0	0	0	16月.	0	0	0	0	n	168.
MISCL EXPENSE 1.0	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	0	37.	330.
YOUNG BOAR 1.0	u	0	0	1350.	0	0	0	0	0	0	0	n	1350.
IRACTOK(FUEL. LUB.REP)	u	0	233.	0	0	233.	0	0	233.	0	0	233.	931.
MACHINE (FUEL LUB, HEP)	0	0	10.	0	0	10.	0	0	10.	0	0	10.	41.
EQUIP. (FUEL,LUA.HEP)	47.	47.	47.	47.	47.	47.	47.	47.	47.	47.	47.	47.	569.
total	1669.	1710.	2243.	2154.	1054.	1578.	1769.	1755.	1836.	914.	1316.	$10>0$.	19032.
Flow of funds summary					DOLLARS								
Cash balanle begining	-u	-0	-0	-0	-u	-0	-0	-0	-0)	-0	-0	-0	
+CASH DIFFERENLE	-1660.	-1184.	8113.	-2154.	-57n.	-1277.	-176°.	-1755.	10089.	-914.	-827.	-162R.	4455.
=CURRENT CASH GALANLE	-1669.	-1184.	8113.	-<134.	-57\%.	-1277.	-1769.	-1755.	10089.	-914.	-827.	-1629.	
+muner borroweu	1669.	1184.	0	154.	5% 。	1277.	1769.	1755.	0	914.	827.	1629.	
-rayment un loan	${ }^{0}$	0	5464.	0	0	0	0	0	8135.	n	0	n	
- INTEREST HALD AT 12	u	0	2050.	0	0	0	0	0	1954.	0	0	0	
= CASH BALATVE ENOING	-U	-0	-0	-0	-0	-0	-0	-	-0	-n	-0	-0	
CURRLNT LOAN SUmmaky					dollars								
31483. OULOAN OUT-JAN ACCUMULATEU BOKROWI.JU 166U.OUACCRUED INIERE	33152 • sl-Jai	$1^{34335 .}$	CHET7.	310 ct.	31547.	32874.	34643.	36347.	28262.	29177.	30004.	31632.	
accruen inlerest at • 12 33143.00 ACCUREU IOTAL	1975. UERT-	230t.	0	<49.	59^{12}.	915.	1244.	1590.	0	283.	574.	874.	
alcumulated toial deht	35127.	30042.	28872.	31.15.	32146.	53789.	35896.	37987.	28263.	29450.	30579.	32506.	

2 LITIER-10 SUWS REMUUELEU UNINSULATEU DAIRY BARN FOR FADROWING AND NUIRGERY.
NEW OHEN FKONI DHED FOR GESIAIION. REMODFLED BUILDING FOR FINISHING.
TABLE $97 \begin{aligned} & \text { MUNTHLY ENTERYRISE CASH FLOW PROJECTION FOR FARHOW－} \\ & \text { TUTFINISH．SYSTEM E IN TAIRD YEAP OF OPERAYION．}\end{aligned}$

ITEM UNIIS	JAN	FER	MAR	Ark	MAY	JUN	Jut．	Aug	SEP	OC1	NOV	DEC	TOTAL
CASH RECEIPTS													
SLAUGHIER HOGS 1．0	4	0	11595.	0	0	0	0	0	0	0	0	n	11595．
SLAUGHTER HOGS 1．0	u	0	0	0	0	0	0	0	11925.	0	0	0	11925．
GILT N．B． 1.0	U	0	0	0	0	139.	0	0	0	0	0	139．	278．
SuW N．B． 1.0	u	0	0	0	0	162.	0	0	0	0	0	162.	324.
SUW CULL 1.0	0	0	0	0	488．	0	0	0	0	0	488．	0	977.
BOAR 1.0	0	527.	0	0	0	0	0	0	0	0	0	0	527.
total	0	527.	11595.	0	48M．	301.	0	0	11925.	0	488.	301.	25625.
CASH EXPENSES．													
CURN 1．0	1322.	1166.	470.	401.	641.	741.	1139.	1121.	377.	417.	769.	965.	952R．
SUYBEAN MEAL 1.0	473.	423.	215.	${ }^{15}$	394.	421.	406.	186.	126.	328.	461.	531.	4337.
$\begin{array}{ll}\text { MINERALS } & 1.0 \\ \text { OATS } & 1.0\end{array}$	40.	36.	17.	18.	220	23.	35.	35.	14.	19.	26.	31.	316.
WHEAT BRAN 1．0	U	0	14.	14.	0	0	0	0	15.	13.	，	0	56.
SUGAK 1．0	U	0	5.	1.	0	0	0	0	5.	1.	0	0	11．
GKINU ${ }^{\text {a MIX }} 1.0$	65.	57.	25.	23.	34.	39.	56.	55.	20.	24.	41.	50.	48 A ．
VET \＆MED 1．0	12.	37.	63.	25.	12.	12.	12.	37.	63.	25.	12.	37.	347.
ELECTRICIIY 1．0	14.	14.	14.	66.	62．	10.	14.	14.	14.	66.	62.	10.	363.
MKTG HAULING 1．0	u	18.	283.	0	14.	9.	0	0	283.	0	14.	－	630.
INS．AND IAXES 1．0	U	0	0	0	0	0	168．	0	0	0	0	n	168.
MISCL Exptinse 1．0	30.	30.	30.	30.	$3 n$.	30.	30.	30.	30.	30.	0	37.	330.
YOUNG BOAR 1．0	0	0	0	1350.	0	0	0	0	0	0	0	\bigcirc	1350.
TKACTOK（FUEL LUB．KEP）	U	0	233.	0	0	233.	0	0	233.	\bigcirc	0	233.	931.
MACHINE（FULL，LUB．REP）	0	0	10.	0	0	10.	0	0	10.	0	0	10.	41.
EGUIP．（FUEL LUPRMEP）	47.	47.	47.	47.	47.	47.	47.	47.	47.	47.	47.	47.	569.
101AL	2004．	1828.	1429.	2＜91．	1257.	1575.	1907.	1525.	1302.	970.	1432.	1954.	181474.
FLOW OF FUNDS SUMMARY	DOLLARS												
CASH BALANLE REGINING	－0	－0	－0	－0	－0	－0	－0	－n	－0	－0	－0	－0	
－CASH DIFFEHENLE	－2004．	－1302．	14165.	－＜291．	－76．	－1274．	－1907．	－1525．	10623.	－970．	－944．	-1653.	6151.
＝EURRENT CASH SALANLE	－2004．	－1302．	10165.	－2＜91．	－764．	－1274．	－1907．	－1525．	10623.	－970．	－944．	－1653．	
＋MUNE Y hohroweu	2004 ．	1302.	0	$2<91$.	764.	1274.	1907.	1525.	0	970.	944.	1653.	
－rayment un loan	1	0	8289.	0	0	0	0	0	8787.	0	0	ก	
－iNTEREST PAID AT ． 12	u	0	1876.	a	0	0	0	0	1836.	0	0	\bigcirc	
＝LASH BALARLE ENDINO	－u	－0	－0	－0	－1	－0	－0	－0	－0	－n	－0	－0	
CIJRRENT L OAIV SUMMAKY					DOLLAHS								
$31632.0 U L O A N$ OUI－JAN 1													
ACCUMULATEU BURROWITH ©74．0UACCRUF II INIERF	$\begin{aligned} & 33036 . \\ & S 1-J A^{\prime} N \end{aligned}$	$3493,2 .$	26，643．	20439.	20702．	309R2．	32489.	34414.	29677.	26527 ．	27541.	$22_{193 .}$	
ACCRIIUU INIERESI AT • 12 S2＇JUE．0U ACCUREU 1 IIA	$\begin{aligned} & 1190 \\ & \text { 地けT } \end{aligned}$	h>7. AN 1	0	266	Sta．	453	1163．	1497.	11	256.	52.	70 Am ．	
accumulated toial ders	$348>\mathrm{n}$ 。	$36,464$.	गпGur．	2920t．	302^{641} ．	31835.	311059．	359115	25607.	2tas3．	9RUK3．	20401.	

GURHENT LUAN SUMIMARY

TABLE 99 MUNTHLY ENTERIRISE CASH FLOW FRUJECTION FOR FARROW－

ITEM	Unlis	JAN	HEA	Mar	Arte	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	total
LASH KECEIPTS														
SLAUGHIER HOGS	1.0	0	0	10602.	0	0	0	0	0	0	0	0	n	10694.
SLAUGHIEN AOGS	1.0	0	0	0	0	0	10857.	0	0	0	0	0	0	10857.
Slavghter hogs	1.0	u	0	0	0	0	0	0	9	12388.	0	0	0	12388.
SLAUGHITER HOGS	1.0	u	0	0	0	u	0	0	0	0	0	0	11849.	11849.
GILT N．B．	$1 \cdot 0$	v	0	130.	0	0	0	139.	0	139.	0	0	0	418.
SOW N．B．	1.0	0	0	162.	0	0	10	162.	0	162.	0	0	0	486.
SUW CULL	1.0	u	0	488.	0	0	488.	0	0	498.	0	0	48\％．	1954.
HOAR	1.0	u	0	0	527.	0	0	0	0	0	0	0	0	527.
tutal		u	0	11484.	527.	0	11346.	301.	0	13177.	0	0	12337.	40172.
CASH EXPENSES														
CORN	1.0	1182.	1482.	<038.	907.	1479．	1687.	1072．	1597.	186\％．	1094.	1739̈．	2177.	1R378．
SOYBEAN MEAL	1.0	008.	693.	925.	494.	714.	774.	563.	763.	834.	558.	809.	99.	8732.
MINEHALS	1.0	40.	51.	64.	33.	52.	53.	36.	55.	59.	37.	60.	68.	506.
OATS	1.0	4.	0.	0	4.	0．	0	5.	0	0	4.	0	0.	18.
SUGAR GRAN	1.0 1.0	20. 5.	9.	0	17.	12．	0	17.	12.	0	17.	12.	0	115.
GKIND＊MIX	1.0	62.	76.	103.	5 I ．	76．	85.	56.	82.	9.	62.	89.	110 ．	22．
VET 8 MED	1.0	65.	58.	44.	65.	br．	44.	65.	58.	65.	65.	58.	44.	689.
INS．AND IAXES	1.0	u	0	0	0	0	0	328.	0	0	0	－	0	328．
Matg a hatling	1.0	u	0	284.	16.	0	276.	9.	0	318.	0	0	309.	$1>12$.
LP GAS	1.0	213.	153.	80.	14.	0	0	0	0	0	0	53.	15\％．	664.
ELECTHICIIY	1.0	34.	181.	34.	34.	181.	34.	34.	181.	34.	34.	181.	74．	996.
MLSCL EXPENS GILTS	1.0	33.	33.	33.	33.	33.	33.	33.	33.	33.	33.	33.	33.	396．
GILTS $\begin{aligned} & \text { YOUNS BOAK }\end{aligned}$	$1 \cdot 0$	U	0	1110.	0	0	0	0	0	0	0	0	0	1110.
Practiokifutl Lum	HE ${ }^{\text {H }}$	u	70.	381.	1350	70.	391.	0	70	${ }^{0} 8$	0	0	0	1350.
MACHINE IFUEL，LU	－kE +1	4	5.	13.	0	5.	13.	0	5.	33．	0	70.	381. 3.	1804.
tGlyt．（FUEL，LU	KEP 1	80.	80.	81.	80.	8% ．	80.	80.	80．	90.	RO．	80.	8 ${ }^{\text {a }}$	957.
IUIAL		2342.	2891.	5190.	3163.	2763.	3461.	2303.	2935.	3776.	1989.	3188.	4395.	38397.
HLOW Of FUNDS SUmmary						dollars								
CASH BALANLL HEGINING＋CASH UIFHEPENLE		－ 0	－4	－0	－0	－0	－1）	－	－0	－0	－0	－0	$\rightarrow 0$	
		－2342．	－ 2801.	6294.	－2037．	-276,	$78 R 5$.	－2009．	－2935．	9401.	－1989．	－3188．	7043.	10775.
＋CASH GIFHEPENLE ＝CURKEINT CASH GALANLE		－2342．	－2891．	6294.	－2637．	-275^{3} ．	7885.	－2002．	－2935．	9401 ．	－1989．	－3188．	7943.	10775.
＋MONE Y fohkoweu		25420	1801．	0	cti 37.	274\％．	0	2002.	2935.	0	19^{80}.	3189.	－	
－rayment uiv loan		u	0	<303.	0	0	6120．	0	0	7675.	0	n	6297.	
－Lnterest falu	1 －12	u	0	3990.	0	U	1759.	0	0	1776.	0	0	1646.	
＝CASH BALANCF	INS	－11	－0	－0	－0	－0	－11	－0	－0	－0	－0	－	－n	
curremit loan summary						VOLT AKC，								
S3010．0ULUAN OUI－Jais 1														
alcumblatte bunreunite sisfio e eleshe．				＇） 24.4.	からいい。	＋，134＊．	－2．20	1，7274．	6，119，	，24n＋．	54473.	57061.	51364.	
ALCRUED INIEKES ＇5 342.010 AC．CU	$\begin{gathered} A T \\ E U \end{gathered}$	$2 \mathrm{CH}_{4}$. Ut RT－	$\begin{gathered} 5408 . \\ +1 \end{gathered}$	＂	りんで。	1190。	11	ゆ5？	1124.	\＃	＇，75．	1070.	n	
ALCUMULATEU TOIAL DE SI				51048．59144．		（3）40\％．55＞＞2		「，7176．	$61 \angle 8 \%$ ．	52484.	44998.	587×0.	51364.	

1TEM	undis	JAN	reR	MAR	Ars	MAY	3 UN	Jul	Aug	SEP	OCT	NOV	DEC	TOTAL
LASH RECEIPTS Gilt N. H.	1.0	u	0	0	0	0	U	418.	0	835.	0	418.	0	1670.
SON CULL	1.0	u	0	0	0	0	11	0	0	0	0	0	489.	488.
IUIAL		u	0	0	0	0	0	418.	0	835.	0	418.	48 s .	2159.
CASH EXPY														
LUKN	1.0	${ }^{u}$	0	0	0	b1.	162 -	177.	283.	264.	384.	566.	029.	2818.
SUYPEAN MLAL	1.0	u	0	0	0	2H.	88.	97.	1029.	145.	222.	381.	574.	2565.
maverals	1.0	u	0	0	0	2.	7.	8 .	12.	12.	17.	25.	35.	118.
UAIS	1.0	u	0	0	0	0	0	n	0	0	2.	2.	$?$	6.
Wrttal thran	1.0	v	0	0	0	U	0	0	0	0	9.	20.	a.	38.
SUGAK	1.0	u	0	0	0	0	0	0	0	0	3.	2.	\%.	8.
GRIND A MIX	1.0	u	0	0	0	3.	7.	9.	13.	14.	21.	32.	50.	149.
Vti 6 MED.	1.0	0	0	0	0	20.	26.	26.	26.	26.	51.	51.	79.	311.
INS. AND IAXES	1.0	u	0	0	0	U	0	338.	0	0	0	0	0	338.
havling maktgo	1.0	u	0	0	0	0	0	11.	0	11.	0	11.	14.	47.
LP GAS	1.0	U	0	0	0	0	0	0	0	0	26.	61.	176.	263.
ELECTRICIIr	1.0	u	0	0	0	45.	45.	45.	45.	45.	89.	A9.	111.	512.
MISCL EXPENSE	1.0	U	0	0	0	23.	23.	23.	23.	23.	23.	23.	2 A .	189.
gilts	1.0	U	0	0	0	3700.	0	4255.	0	3700.	0	1110.	0	12765.
YOUNG BOAK	1.0	u	0	0	0	13511.	0	0	0	0	0	0	0	1350.
GESTATION SHED	1.0	u	0	0	10000.	9924.	0	0	0	0	0	0	\bigcirc	19928.
FAKO-KEMDL DAINY	1.0	u	0	0	0	0	1	11511.	10000.	0	0	0	0	21511.
LUADING CHUTE	1.0	U	0	0	0	0	0	0	0	300.	0	0	0	300.
SUKTING CHUTE	1.0	v	0	0	0	0	0	0	0	145.	0	0	0	145.
HEEUSYSTHM	1.0	u	0	0	0	1914.	0	0	0	0	0	0	0	1918.
EWUIP-LUHXREPAIR	1.0	u	0	0	32.	64.	69.	104.	135.	149.	149.	160.	160.	1027.
+INISH-U.F- SHCD	1.0	U	0	0	0	0	U	0	0	6619.	$3500{ }^{\circ}$	$661{ }^{\circ}$	ก	13238.
Mandue -fil plimp	1.0	u	0	0	0	0	${ }^{4}$	0	0	0	3500.	n	0	$350{ }^{\circ}$
USED SKID LOADK	1.0	u	0	0	0	0	0	3500.	0	0	0	0	0	3500.
MARURE SPHEAUEK	1.0	u	0	0	0	0	0	2000.	0	0	0^{0}	0	n	2000.
lig manurt shoum	1.0	u	0	0	0	0	0	0	0	0	6000.	0	n	6000.
TKACTUHSFUEL. LUE	-kt+1	u	0	0	0	0	u	151.	0	151.	0	70.	10 n .	563.
MACHINE (FUEL, LUR	- HE ${ }^{\text {P }}$	u	0	0	0	0	0	R.	0	8.	0	5.	13.	33.

CORRENI LUAN SUMMARY

TAISLE 102 YUNIHLY ENTEHYKISE CASH FLOW PROJECTION FOR FARROW-
TU-FINISH. SYSTEM G IN SECOND YEAR OF OPERATION.

TABLE 103 MUNIHLY ENTERPRISE CASH FLOW PROJECTION FUR FARROW-
TUOLINISH. SYSTEM G IN TAIRD YEAR OF OPERATION.

[^7]IARLE 104 MONIHLY ENTERFRISE CASH FLOW FRUJECTION FUR FAHROW-

CIJRHENT LUAN SUMMARY

[^8]
TAHLE 106 YUNIHLY FNIFRIKISE CASH FLOW PRUJELTION FUR FARROW-
TU-FINISH. SYSTEM H IN IHIRD YEAR UF OPERATION.

4 LIIILK-SE SUWS NEW POLE MUILUING FOK FAKRONING AND NUKSEKY.
NEW PULE GUILUING FOR GESIAIIUN. NEN OHFN FROWI SHED FUK FINISHING.

APPENDIX F

Finishing Systems - Cash Flow
TABLE 107 MUNTHLY ENTFRFHISH CASH FLOW PRONECTION FOR HOG

[^9]TAHLE 108 MUNIHLY ENTERYRISE CASH FLOW PHUJECTION FUR HOO

[^10]

St VEN ACKLS PASIURF (LO HIGS/ACRE FUK 140 HOG (AFACIIY)
FEED: 14 PERCEIH GROWER RAIIUN - 11 HERCENT +IAISHER RATIUN.
TAHLE 110 MUNIHLY ENTERPRISE CASH FLOW PROJECTION FOF HOG
FINISHING. SYSTEM B IN SECOND YEAR OF OPERATION.

TAMLE $111 \begin{aligned} & \text { MUNTHLY ENTEHPNSE CASH FLOW PRUJECTION FOR HOG } \\ & \text { FINISHING. SYSTEM C IN SECOND YEAK OF OPERATION. }\end{aligned}$

[^11]
APPENDIX G

Waste Production and
Pollution Levels for Various Facilities
Table 112．Waste Production．

Component	Volume （ft t^{3} / yr ）	Nutrients Available（lb／yr）									（A） acres	Potential Level of Pollution ${ }^{1}$		
		Broadcast			Broadeast and cultivation／knifing			Irrigation						
		N	$\mathrm{P}_{2} \mathrm{O}_{5}{ }^{2}$	$\mathrm{K}_{2} \mathrm{O}^{3}$	N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$	N	$\frac{\mathrm{P}_{2} \mathrm{O}_{5}}{}$	$\mathrm{K}_{2} \mathrm{O}$			$\frac{11 u}{10}$	$\frac{10 n^{2}}{(D)}$
Farrowing： 1 （1 lit／yr）	417	50	52	68	60	52	68					5	5	3
（2 lit／yr）	834	100	104	136	120	104	136					5	5	3
2	834	160	203	236	194	203	236				1.6	2	2	3
3	1，668	320	406	472	388	406	472				3.2	2	2	3
4	834	160	203	236	194	203	236				1.6	2	2	5
5	1，668	320	406	472	388	406	472				3.2	2	2	5
6	2，678	523	611	655	682	611	655	506	512	545	5.2	2	2	5
7	1，668	320	406	472	388	406	472				3.2	2	2	3
8	2，678	523	611	655	682	611	655	506	512	542	5.2	2	2	5
9	3，648	722	844	904	942	844	904	699	707	752	7.2	2	2	5
10	5，472							250	260	926	2.5	2	2	3
Gestation： 1 （1 lit／yr）	1，479	507	534	700	611	534	700					5	5	3
（2 1it／yr）	1，395	447	470	616	600	470	616					5	5	3
2 （1 11t／yr）	－－－－－sam	ne as	estation	1－－	600	522	685				5.1	4	5	4
（2 lit／yr）	－－－－－sam	ne as	estation	1－	539	470	616				4.5	4	5	4
3 （1 1it／yr）	－－－－－sam	ne as	estation	1－－	same as	gesta	cion 2				5.1	4	5	4
（2 lit／yr）	－－－－－sam	ne as	estation	1－－	－same as	gesta	tion 2				4.5	4	5	4
4	2，790	894	940	1，232	1，078	940	1，232				8.9	4	5	4
5	4，183	1，932	2，461	2，852	2，346	2，461	2，852				19.3	2	2	3
6	4，183	2，185	2，553	2，737	2，852	2，553	2，737	2，116	2，139	2，277	21.9	2	2	5
7	5，577	2.907	3，397	3，641	3，794	3，397	3，641	2，813	2，846	3，029	29.1	2	2	5
8	8，365							1，032	1，075	3，827	10.3	2	2	3
Finishing： 1	2，964	423	445	584	511	445	584					5	5	2
2	2，964	613	781	905	745	781	905				6.1	2	2	3
$3(411 t / y r)$	11，127	1，585	1，665	2，184	1，911	1，665	2，185				15.8	4	5	4
（6 lit／yr）	16，963	2，413	2，538	3，328	2，912	2，538	3，328				24.1	4	5	4
$4(4 \mathrm{lit} / \mathrm{yr})$	11，127	2，594	3，030	3，249	3，385	3，030	3，249	2，512	2，539	2，703	25.9	2	2	5
（6 1it／yr）	16，963	3，952	4，618	4，950	5，158	4，618	4，950				39.5	2	2	5
5 （8 1it／yr）	22，617	5，263	6，149	6，593	6，870	6，149	6，593	5，097	5，152	5，485	52.6	2	2	3
（12 1it／yr）	33，927				，			1，997	2，080	7，405	20.0	2	2	3

[^12]
[^0]:

[^1]:

[^2]:

 $\begin{array}{rrr} & 38302 . & 36685 . \\ \text {. } 1682 . & n \\ 39984 . & 36685\end{array}$

 $\stackrel{\rightharpoonup}{n} \stackrel{n}{n}$

 $\dot{0}$
 $\dot{0}$
 $\dot{\sim}$
 $\dot{\sim}$
 $\dot{\sim}$

 34331.
 34448.
 -0803? -091I?
 $1, T$
 $\begin{array}{ll}- & \\ \dot{n} & 0 \\ \pm \\ 0 & \end{array}$

[^3]:

[^4]: 4 LIIIER-3< SUWS KEMOUELEL INSULATEO VENTILATLU DAIKY GARN FOR FAKROWING

[^5]: 4 LITILA-3L SUWS NEW PULE BUILDING FUK FAKHOWIML AND NUKSERY,
 NE PULE UUILGING FOR GESIAIIUN.

[^6]:

[^7]:

[^8]: 3A732. 46236. 47990. 56, 010 . 576.37.

 0
 -ULUAN OUI-JAN 1
 accumulateu horrow vg u
 ACCRUED INTEREST AT DIC ITJAN 1
 ACCUMULATEU TOIAL DH HY

[^9]:

[^10]:

[^11]:

[^12]: （A）Land required for disposal－ 1 R．K．White and D．L．Forester，Evaluation and Economic Analysis of Livestock Waste （A）Land required for disposal 1
 （B）Quantity of Runoff broadcast〔包合

