394 research outputs found

    Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning

    Get PDF
    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning

    Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform

    Get PDF
    Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are ∼22-23 nucleotides (nt), ubiquitously expressed small RNAs that are sequentially processed from hairpin-like precursors by Drosha/Pasha and Dcr-1/Loquacious complexes. MicroRNAs usually associate with AGO1 and regulate the expression of protein-coding genes. Piwi-interacting RNAs (piRNAs) of ∼24-28 nt associate with Piwi-family proteins and can arise from single-stranded precursors. piRNAs function in transposon silencing and are mainly restricted to gonadal tissues. Endo-siRNAs are found in both germline and somatic tissues. These ∼21-nt RNAs are produced by a distinct Dicer, Dcr-2, and do not depend on Drosha/Pasha complexes. They predominantly bind to AGO2 and target both mobile elements and protein-coding genes. Surprisingly, a subset of endo-siRNAs strongly depend for their production on the dsRNA-binding protein Loquacious (Loqs), thought generally to be a partner for Dcr-1 and a cofactor for miRNA biogenesis. Endo-siRNA production depends on a specific Loqs isoform, Loqs-PD, which is distinct from the one, Loqs-PB, required for the production of microRNAs. Paralleling their roles in the biogenesis of distinct small RNA classes, Loqs-PD and Loqs-PB bind to different Dicer proteins, with Dcr-1/Loqs-PB complexes and Dcr-2/Loqs-PD complexes driving microRNA and endo-siRNA biogenesis, respectively. Copyright © 2009 RNA Society

    Improved detection of synthetic lethal interactions in Drosophila cells using Variable Dose Analysis (VDA)

    Get PDF
    This is the author accepted manuscript. The final version is available from National Academy of Sciences via the DOI in this record.Synthetic sick or synthetic lethal (SS/L) screens are a powerful way to identify candidate drug targets to specifically kill tumor cells, but this approach generally suffers from low consistency between screens. We found that many SS/L interactions involve essential genes and are therefore detectable within a limited range of knockdown efficiency. Such interactions are often missed by overly efficient RNAi reagents. We therefore developed an assay that measures viability over a range of knockdown efficiency within a cell population. This method, called Variable Dose Analysis (VDA), is highly sensitive to viability phenotypes and reproducibly detects SS/L interactions. We applied the VDA method to search for SS/L interactions with TSC1 and TSC2, the two tumor suppressors underlying tuberous sclerosis complex (TSC), and generated a SS/L network for TSC. Using this network, we identified four Food and Drug Administration-approved drugs that selectively affect viability of TSC-deficient cells, representing promising candidates for repurposing to treat TSC-related tumors.This work was supported by NIH Grant P01CA120964; University of Pennsylvania Orphan Disease Program Grant MDBR-15-103-LAM; and Department of Defense Grant W81XWH-16-1-0127. N.P. is a Howard Hughes Medical Institute Investigator

    Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization

    Get PDF
    The use of time series profiling to identify groups of functionally related genes (synexpression groups) is a powerful approach for the discovery of gene function. Here we apply this strategy during RasV12 immortalization of Drosophila embryonic cells, a phenomenon not well characterized. Using high-resolution transcriptional time-series datasets, we generated a gene network based on temporal expression profile similarities. This analysis revealed that common immortalized cells are related to adult muscle precursors (AMPs), a stem cell-like population contributing to adult muscles and sharing properties with vertebrate satellite cells. Remarkably, the immortalized cells retained the capacity for myogenic differentiation when treated with the steroid hormone ecdysone. Further, we validated in vivo the transcription factor CG9650, the ortholog of mammalian Bcl11a/b, as a regulator of AMP proliferation predicted by our analysis. Our study demonstrates the power of time series synexpression analysis to characterize Drosophila embryonic progenitor lines and identify stem/progenitor cell regulators

    Control of the Mitotic Cleavage Plane by Local Epithelial Topology

    Get PDF
    For nearly 150 years, it has been recognized that cell shape strongly influences the orientation of the mitotic cleavage plane (e.g. Hofmeister, 1863). However, we still understand little about the complex interplay between cell shape and cleavage plane orientation in epithelia, where polygonal cell geometries emerge from multiple factors, including cell packing, cell growth, and cell division itself. Here, using mechanical simulations, we show that the polygonal shapes of individual cells can systematically bias the long axis orientations of their adjacent mitotic neighbors. Strikingly, analysis of both animal epithelia and plant epidermis confirm a robust and nearly identical correlation between local cell topology and cleavage plane orientation in vivo. Using simple mathematics, we show that this effect derives from fundamental packing constraints. Our results suggest that local epithelial topology is a key determinant of cleavage plane orientation, and that cleavage plane bias may be a widespread property of polygonal cell sheets in plants and animals.Engineering and Applied Science

    A role for actomyosin contractility in Notch signaling

    Get PDF
    BACKGROUND: Notch-Delta signaling functions across a wide array of animal systems to break symmetry in a sheet of undifferentiated cells and generate cells with different fates, a process known as lateral inhibition. Unlike many other signaling systems, however, since both the ligand and receptor are transmembrane proteins, the activation of Notch by Delta depends strictly on cell-cell contact. Furthermore, the binding of the ligand to the receptor may not be sufficient to induce signaling, since recent work in cell culture suggests that ligand-induced Notch signaling also requires a mechanical pulling force. This tension exposes a cleavage site in Notch that, when cut, activates signaling. Although it is not known if mechanical tension contributes to signaling in vivo, others have suggested that this is how endocytosis of the receptor-ligand complex contributes to the cleavage and activation of Notch. In a similar way, since Notch-mediated lateral inhibition at a distance in the dorsal thorax of the pupal fly is mediated via actin-rich protrusions, it is possible that cytoskeletal forces generated by networks of filamentous actin and non-muscle myosin during cycles of protrusion extension and retraction also contribute to Notch signaling. RESULTS: To test this hypothesis, we carried out a detailed analysis of the role of myosin II-dependent tension in Notch signaling in the developing fly and in cell culture. Using dynamic fluorescence-based reporters of Notch, we found that myosin II is important for signaling in signal sending and receiving cells in both systems—as expected if myosin II-dependent tension across the Notch-Delta complex contributes to Notch activation. While myosin II was found to contribute most to signaling at a distance, it was also required for maximal signaling between adjacent cells that share lateral contacts and for signaling between cells in culture. CONCLUSION: Together these results reveal a previously unappreciated role for non-muscle myosin II contractility in Notch signaling, providing further support for the idea that force contributes to the cleavage and activation of Notch in the context of ligand-dependent signaling, and a new paradigm for actomyosin-based mechanosensation

    FlyRNAi.org—the database of the Drosophila RNAi screening center: 2012 update

    Get PDF
    FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database
    • …
    corecore