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SUMMARY 

For nearly 150 years, it has been recognized that cell shape strongly influences 

the orientation of the mitotic cleavage plane (e.g. Hofmeister, 1863). However, 

we still understand little about the complex interplay between cell shape and 

cleavage plane orientation in epithelia, where polygonal cell geometries emerge 

from multiple factors, including cell packing, cell growth, and cell division itself. 

Here, using mechanical simulations, we show that the polygonal shapes of 

individual cells can systematically bias the long axis orientations of their adjacent 

mitotic neighbors.  Strikingly, analysis of both animal epithelia and plant 

epidermis confirm a robust and nearly identical correlation between local cell 

topology and cleavage plane orientation in vivo.  Using simple mathematics, we 

show that this effect derives from fundamental packing constraints.  Our results 

suggest that local epithelial topology is a key determinant of cleavage plane 

orientation, and that cleavage plane bias may be a widespread property of 

polygonal cell sheets in plants and animals. 

HIGHLIGHTS 

 Neighbor cell topology biases cleavage plane orientation in monolayer cell 
sheets. 

 This “cleavage plane bias” is observed in both plants and animals. 

 This effect can be explained by fundamental packing constraints. 

 Cleavage plane bias influences global epithelial topology.  
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INTRODUCTION 

The active control of the mitotic cleavage plane is crucial to numerous processes, 

and the consequences of cleavage plane mis-orientation can be catastrophic, 

ranging from polycystic kidney disease and organ malformation to tumorogenesis 

(Baena-Lopez et al., 2005; Fischer et al., 2006; Gong et al., 2004; Quyn et al., 

2010; Saburi et al., 2008).  Although the control of cleavage plane orientation is 

usually understood from a molecular viewpoint (Buschmann et al., 2006; 

Fernandez-Minan et al., 2007; Johnston et al., 2009; Siller and Doe, 2009; 

Speicher et al., 2008; Thery et al., 2005; Traas et al., 1995; Vanstraelen et al., 

2006; Walker et al., 2007; Wright et al., 2009), more than a century of 

observations show that mitotic cells in both plants and animals tend to divide 

orthogonal to their geometric long axis as a default mechanism (Gray et al., 

2004; Hofmeister, 1863; O'Connell and Wang, 2000; Strauss et al., 2006).  In 

plants, the geometric location of the division plane can be predicted by 

cytoskeletal structures (Kost and Chua, 2002; Palevitz, 1987; Pickett-Heaps and 

Northcote, 1966; Sinnott and Bloch, 1940), and biophysical experiments suggest 

that the cytoskeleton may be involved in the process of orienting the division 

plane as dictated by cell geometry (Flanders et al., 1990; Goodbody et al., 1991; 

Katsuta et al., 1990; Lloyd, 1991).  Further, in animal cells, recent studies 

implicate the geometry of cell-matrix adhesions as a key determinant of cleavage 

plane orientation (Thery et al., 2007; Thery et al., 2005).  Cell geometry is thus a 
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critical determinant of cleavage plane orientation, at both the molecular and 

biophysical level.   

     While the regulation of mitotic cleavage plane orientation by geometric cues 

has been extensively probed in unicellular systems, far less attention has been 

given to adherent epithelial and epidermal layers.  In this context, cell geometry 

does not exist in isolation, because cell shapes emerge from the combined 

effects of growth, mitosis, and cellular packing.  A priori, this complex interplay of 

biological processes, and the diverse genetic programs that have evolved to 

control them in plants and animals, would appear to suggest a staggering range 

of possible cell geometries within an epithelium.  However, spatial considerations 

impose powerful constraints on the shapes of cells in monolayer sheets, from the 

distribution of polygonal cell types (Rivier et al., 1995) to their neighbor 

correlations (Peshkin et al., 1991) and relative sizes (Rivier and Lissowski, 1982).  

Indeed, empirical investigation confirms that many monolayer cell sheets across 

the plant and animal kingdoms converge on a default equilibrium distribution of 

cellular shapes, with approximately 45% hexagons, 25% pentagons, and 20% 

heptagons (Gibson et al., 2006; Korn and Spalding, 1973; Lewis, 1928).  Such 

clear conservation of cellular network architecture raises the question as to 

whether conserved cellular division mechanisms are responsible for generating 

such similar packing arrangements of cells, as numerous studies have proposed 

(Dubertret et al., 1998; Gibson et al., 2006; Korn and Spalding, 1973; Miri and 

Rivier, 2006; Patel et al., 2009).  The strongest evidence to date that common 

mechanisms are used among plants and animals to generate conserved packing 
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relationships can be found in the mitotic shift, wherein the distribution of mitotic 

cell shapes is shifted by a single polygon class to have a heptagonal mean, as 

opposed to a hexagonal mean as seen in interphase cells. 

     Here, we use computational modeling, experimental observation, and 

mathematical analysis to report that, as a default property, neighbor cell shape 

can strongly bias cleavage plane orientation in the monolayer cell sheets of both 

plants and animals.  Intriguingly, we show that this bias increases the structural 

regularity of an epithelium by increasing the frequency of hexagons.  Our 

analysis indicates that simultaneously, cleavage plane bias is also involved in 

specifying the mitotic shift.  The mechanism through which cleavage plane bias 

accomplishes these effects is differential side-gaining, whereby dividing cells 

preferentially cleave their common interfaces with sub-hexagonal cells such as 

quadrilaterals, and avoid cleaving their common interfaces with super-hexagonal 

cells such as octagons.  Together, our results suggest a common emergent 

mechanism in plants and animals for the control of tissue-level architecture by 

packing-mediated control of the mitotic cleavage plane. 
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RESULTS  

The shape of a cell is predicted to be influenced by local topology 

     In epithelia, the tissue-level architecture at the apical junctions is a contiguous 

tiling of polygonal cell shapes (Figures 1A and B).  This pattern can be described 

as a simple planar network wherein a cell’s number of neighbors (topology) is 

equivalent to its polygon class (Figure 1B’).  To investigate the effect of polygonal 

cell packing on mitotic cell shape, and by extension, cleavage plane orientation, 

we tested whether a cell’s long axis is systematically influenced by the polygon 

class of neighboring cells. 

     To address this, we numerically solved for the minimal energy configuration of 

a local cellular neighborhood (Prusinkiewicz and Lindenmayer, 1990), defined to 

be a central mitotic cell (M) and its first-order polygonal neighbors.  

Geometrically, cells were idealized as polygonal prisms with constant height 

(Figure 1A).  For relaxation, cell mechanics were modeled in terms a balance 

between edge-length tensions, described using ideal springs, and internal 

pressure, modeled as an ideal gas (Figure 1C).  The central mitotic cell, M, was a 

heptagon, consistent with the fact that the average mitotic cell is seven-sided in 

vivo (Aegerter-Wilmsen et al., 2010; Gibson et al., 2006).  Parameters were 

chosen to be uniform for every cell, and initial conditions were arbitrary (Figures 

1D-F).  Given these choices, the effect of local topology on the shape of the 



7 

 

central cell was an emergent property of the relaxed mechanical network at 

equilibrium (Figures 1D-F; Figure S1; Extended Experimental Procedures). 

     To analyze the impact of local topology on the long axis of M, we replaced 

one neighbor hexagon with a single N-sided cell, N.  Strikingly, inserting any non-

hexagonal neighbor induced a clear long axis in M, with opposite orientation of 

the long axis for N<6 versus N>6 (Figures 1D-F; 2A).  Specifically, the presence 

of quadrilateral or pentagonal neighbors induced a long axis parallel to the NM 

interface, while heptagons and octagons induced a long axis orthogonal to 

interface NM. These results suggest that in cell sheets, the orientation of a 

mitotic cell’s longest axis can be strongly influenced by the polygon class of a 

single neighboring cell.  As a consequence of this effect, neighbor cells with 

fewer sides (such as quadrilaterals and pentagons) tend to lie along the shortest 

axis of M, which is the location of the presumed cleavage plane. 

     To test whether this effect was robust under more realistic conditions, we 

numerically relaxed heterogeneous local neighborhoods that were stochastically 

generated from the known polygonal cell shape distribution of the Drosophila 

melanogaster wing epithelium (Figure 2B) (Aegerter-Wilmsen et al., 2010; 

Gibson et al., 2006). Even under these conditions, more than 70% of 

quadrilateral neighbors were positioned on the central cell’s short axis, double 

the percentage expected by chance (Figure 2C).  To quantify this relationship, 

we defined an acute angle, θ, with respect to the presumed cleavage plane along 

the central cell’s short axis (see Figure 2D).  On average, as a function of 
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increasing θ, the neighbor polygon class in direction θ increased monotonically 

(Figure 2E).  Therefore, even in a heterogeneous context, the topology of a 

cellular neighborhood robustly and systematically influenced the orientation of 

the long axis in a central cell. 

Cleavage plane bias in the Drosophila wing disc 

     In both plants and animals, cells are thought to divide their long axis by 

forming a cleavage plane along the short axis of the cell (Hofmeister, 1863; 

Strauss et al., 2006).  If a cell’s short axis consistently bisects its cellular 

neighbors having the fewest sides (Figure 2), then mitotic division planes should 

be disproportionately biased towards quadrilaterals and pentagons in vivo.  To 

test this, we measured the correlation between neighbor cell polygon class and 

cleavage plane orientation in the Drosophila wing imaginal disc (Figure 3A).  

Here, cell division proceeds through a stereotyped process of cell rounding at the 

apical epithelial surface (Figures 3B-D;(Gibson et al., 2006)).  To define the 

frequency with which different classes of polygonal neighbors were bisected by 

the cleavage plane, we examined 420 cells at the cytokinetic stage, which is the 

most stable and easily scored phase of mitosis (Figure 3E).  For each case, we 

recorded the position of all primary neighboring polygons and computed the 

frequency with which each polygon class occupied the cleavage plane position 

(Figures 3F,G). 

     If the orientation of cell division were random with respect to local topology, 

approximately 28.6% of any given polygon class would be expected to correlate 
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with the cleavage plane (two randomly-chosen cells out of seven neighbors).  

However, in the wing disc, we found that more than 50% of quadrilaterals in the 

primary neighborhood occupied the division plane position (Figure 3H; n=46/83).  

Further, octagons were anti-correlated with the division plane, and occupied that 

position with less than 10% probability (n=6/77).  As predicted by the mechanical 

model, this cleavage plane bias was monotone decreasing across all polygon 

types.  We conclude that in the Drosophila wing disc, the polygonal topology of 

local neighborhoods strongly influences cleavage plane orientation in mitotic 

cells. 

     In order to test the assumption that Drosophila wing disc cells actually divide 

their longest axis, we next performed time-lapse analysis of proliferating 

Drosophila wing discs in ex vivo culture (see Movie S1; Experimental 

Procedures).  For each of 198 mitotic cells (Figure 4A), we measured the 

geometric long axis orientation during both interphase (Figure 4A’, far left), and 

cytokinesis (Figure 4A’, far right).  We found a strong tendency for cells to follow 

a long-axis division mechanism, although with moderate noise in the orientation 

(Figure 4B).  This tendency to divide the longest axis correlated with the 

interphase geometry (Figure 4B), and increased with the cell’s interphase 

elongation ratio (the ratio of the long axis to the short axis; Extended 

Experimental Procedures).  For example, for the 99 cells having an elongation 

ratio below the median value of 1.68, the average deviation from a long axis-

division mechanism was about 33°; by contrast, for the 99 cells having an 

elongation ratio above the median value, the average deviation was about 21° 
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(data not shown).  This dependence on the relative axis lengths suggests that 

these cells might be able to adjust their spindle orientations to their newly 

acquired shapes following mechanical strain, as has been previously reported in 

cell culture and in vertebrate embryonic cells (Black and Vincent, 1988; Gray et 

al., 2004; O'Connell and Wang, 2000; Strauss et al., 2006).   

     To test whether deviation from the long axis division mechanism could explain 

the discrepancy between our cleavage plane bias predictions and the empirical 

measurements, we incorporated the measured deviation into our original model 

(Figure 4C; Extended Experimental Procedures).  Interestingly, when the 

measured deviation was incorporated, the mechanical predictions were 

significantly improved (compare the red and black curves in Figure 4C), closely 

matching the empirically measured bias (Figure 4C, blue curve).  Therefore, 

cleavage plane bias is likely to be robust to noise in the cleavage plane 

mechanism, and may be present even when cell divisions do not perfectly obey a 

long axis division scheme.   

Cleavage plane bias in plant epidermis 

     Because our original predictions were mechanically motivated (Figures 1 and 

2), and are expected to persist even when there is moderate noise in the 

cleavage plane (Figure 4), we reasoned that cleavage plane bias should be 

equally likely to appear in plant tissues.  To test this, we used data from FT 

Lewis’s classical study of cucumber epidermal cell topology (Cucumis sativus) to 

compute the probability with which an N-sided polygonal cell occupies the 
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division plane of a mitotic neighbor (Extended Experimental Procedures; Lewis, 

1928).  Remarkably, in Cucumis, the cleavage plane bias was almost 

indistinguishable from that measured in the Drosophila wing disc (Figure 3H).  

We once again observed strong enrichment for 4-sided cells along the cleavage 

planes of mitotic cells, while 8-sided cells were underrepresented.  In order to 

verify our inferences from Lewis’s data (1928), we also directly examined the 

relationship between local topology and cellular long axis orientation in the 

epidermis of Cucumis (Figure S3A).  From fixed samples of cucumber epidermis, 

we studied a population of 501 epidermal cells having the same polygonal 

distribution as the original population of 500 mitotic cells studied by Lewis (1928).  

Cells were selected in a spatially constrained, impartial manner based solely on 

polygon class (Extended Experimental Procedures).  We next tested whether a 

naïve long-axis division rule was sufficient to generate cleavage plane bias in 

Cucumis.  Based on an ellipse of best fit to each cell’s geometry (Figure S3A; 

Extended Experimental Procedures), we were able to reproduce not only the 

cleavage plane enrichment observed in Lewis’s original data (Figure S3C), but 

also the inferred cleavage plane bias (Figure S3D).  Taken together, our results 

suggest that cleavage plane bias occurs in polygonal cell sheets as an emergent 

effect of cell packing, independent of species-specific considerations. 
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Cleavage plane bias and the topological constraints on cell geometry 

     The quantitative similarity of cleavage plane bias in plants, animals, and in 

silico suggests the underlying mechanism is geometric, rather than molecular.  In 

fact, fundamental geometric constraints imposed by the internal angles of 

neighboring polygons are sufficient to explain this phenomenon.  For illustration, 

consider the comparison between a tiling of three hexagons versus two 

hexagons and a square (Figures 5A and B).  From elementary geometry, a 

square (N=4) has internal angles of 90˚, while the internal angles of a hexagon 

(N=6) average 120˚ (for an N-sided polygon, average internal angles are 180˚(N-

2)/N).  In the context of a contiguous layer, the presence of 90˚ internal angles 

within the square forces the internal angles of the adjacent hexagon to increase 

to 135˚(Figure 5B).  Intuitively, this deformation results in elongation of these 

hexagons parallel to the interface with the square, thus generating a cellular long 

axis. 

     The constraints imposed by the internal angles of one cell upon the long axis 

of its neighbor can be formalized for the arbitrary case of an N-sided cell, 

surrounded by N symmetric hexagonal neighbors (Figure 5C).  Assume that a 

mitotic cell, M, is situated vertically above cell N, resulting in a horizontal 

interface NM of length L.  In the simplest case, all side lengths, including L, are 

equal, and without loss of generality can be set to one.  Further, the internal 

angles αN and βM can be computed as a function of N.  Using simple 

trigonometry and exploiting the symmetric configuration of neighbors, we can 
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solve for the ratio of the horizontal axis, dm, to the vertical axis, hm, for the ellipse 

of best fit to cell M (Figure 5C; Extended Experimental Procedures): 

    sec sin 1 sinm

m

d

h N N N

        
       

      
              (1) 

     In this framework, the direction of M’s short axis (presumed cleavage plane) is 

described by the ratio dm:hm, which the above equation shows is determined by 

the N value (Figure 5D).  Geometrically, the ratio dm:hm varies with N because 

the length dm decreases for N>6 and increases for N<6 (Figure 5E).  

Consequently, when N>6 (dm:hm<1), dm forms the short axis parallel to interface 

NM.  Conversely, if N<6 (dm:hm>1), then hm forms the short axis, or presumed 

cleavage plane, in the direction of N, perpendicular to the interface NM. 

Cleavage plane bias is predicted to be robust to side length and cell size 

differences     

     Intuitively, differential side lengths of N-sided neighbors would also affect the 

short axis orientation of M (Figure 5F).  To analyze the relative contributions of 

angular constraints versus side lengths, consider the more realistic case when 

the edge lengths are non-uniform (L≠1).  Here, dm:hm depends on both N and L 

(Figure 5D and Extended Experimental Procedures): 

sec sin sinm

m

d
L

h N N N

        
       

      
              (2) 
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For the simplified case when L=1, the direction of the short axis undergoes a 90° 

rotation (between horizontal and vertical) when dm:hm passes through the value 

1, which corresponds to N=6 (red line, Figure 5D).  Changing the value of L 

changes the length dm (Figure 5F), and thus alters the N value at which this 

transition occurs (black lines, Figure 5D).  The long axis orientation of M is thus 

determined by the interplay between the polygon class and apposed side length 

of each neighbor, N.  In the Drosophila wing disc, the value of L fluctuates by 

about 40% on average (Table 1).  Equation (2) predicts that a 40% deviation in L 

value would change the point of rotation by only a single N value, suggesting that 

cleavage plane bias should be noisy yet reproducible.   

     Supporting this analysis, cell size has a surprisingly weak influence compared 

to polygon class in our mechanical simulations (Figure S4).  Consistent with our 

simulations, based on live imaging analysis of local neighborhoods surrounding 

dividing cells in the Drosophila wing disc epithelium, there was no discernable 

difference in average area for cells occupying the cleavage plane position (Figure 

S4D).   We conclude that internal angle constraints linked to the polygon class of 

neighboring cells are likely the dominant cause of cleavage plane bias, with a 

lesser contribution from the effects of differential side lengths. 

Cleavage plane bias is predicted to alter global tissue topology 

     Numerous recent studies have used mathematical or computational 

approaches to understand the equilibrium topology of proliferating epithelia 

(Aegerter-Wilmsen et al., 2010; Cowan and Morris, 1988; Dubertret et al., 1998; 
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Dubertret and Rivier, 1997; Gibson et al., 2006; Korn and Spalding, 1973; Miri 

and Rivier, 2006; Patel et al., 2009).  Intuitively, cleavage plane bias must alter 

the topology of a cell sheet because it modulates the rates at which specific 

polygon classes gain sides due to neighbor cell mitoses.  We therefore 

investigated the implications of cleavage plane bias for the distribution of 

polygonal cell shapes.  We used two distinct computational simulations informed 

by the empirical division parameters (Figure S2A-C) to model global topology 

with and without cleavage plane bias (Figures 6 and S5-S6).  For both simulation 

types, the cleavage plane bias values approximated those measured empirically 

(Figures S5F and S6H).  Both an abstract, topological simulator using a Monte-

Carlo framework based on topological weights (Figure 6A) (Patel et al., 2009) 

and a mechanical model of tissue growth based on long-axis divisions (Figure 

6D) (Brodland and Veldhuis, 2002) confirmed that cleavage plane bias affects 

the frequency of hexagonal cells (Figures 6B,E).  Moreover, the distribution of 

mitotic polygonal cells was severely disrupted in the absence of bias, resulting in 

decreased frequencies of heptagons and increased frequencies of octagons and 

nonagons (Figures 6C,F).  Taken together, these results suggest that cleavage 

plane bias is required to achieve the normal equilibrium distribution of cell 

shapes. 

DISCUSSION 

     The results presented here raise several important questions.  First, while our 

analysis provides a geometrical rationale for cleavage plane bias based on 
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interphase polygon topology (Figure 5), we still cannot rule out the simultaneous 

action of molecular cues at the cell cortex.   In metazoans, epithelial cells often 

undergo mitosis-induced deformation prior to cleavage (Figures 3C,C’; Figures 

4A,A’) (Gibson et al., 2006; Thery and Bornens, 2008), and our live imaging 

results from Drosophila strongly suggest that a cellular long axis present in 

interphase can inform spindle orientation during mitosis (Figure 4).  One 

intriguing possibility is that the interphase distribution of cell-cell contacts 

determines the localization of cortical cues important for spindle alignment, as 

has been previously reported (Thery et al., 2007; Thery et al., 2005).   

     For plant cells, by contrast, our results indicate that local cell packing 

influences, either directly or indirectly, the placement of the phragmosome and/or 

pre-prophase band (Pickett-Heaps and Northcote, 1966; Sinnott and Bloch, 

1940).  There are multiple ways in which this might be accomplished, potentially 

including stress or strain sensing mechanisms (Hamant et al., 2008; Lintilhac and 

Vesecky, 1984; Lynch and Lintilhac, 1997), or more simply, based on 

cytoskeletal mechanisms that are able to sense cell shape (Flanders et al., 1990; 

Goodbody et al., 1991; Katsuta et al., 1990).  To conclude, in addition to our 

purely geometrical interpretation, our results are also consistent with a 

hypothesis that in both animals and in plants, local epithelial topology may 

coordinately specify both the cellular long axis and the distribution of cortical 

determinants of the eventual cleavage plane. 

     A second important question concerns the broader implications of cleavage 

plane bias for the emergence of cell shape.  Previous studies of proliferating cell 



17 

 

sheets in Drosophila and in Cucumis have shown that the distribution of mitotic 

cell shapes is shifted to have a heptagonal mean, as opposed to the hexagonal 

mean observed in the population of cells overall (Aegerter-Wilmsen et al., 2010; 

Gibson et al., 2006; Lewis, 1928).  Our simulations (Figures 6A,D) suggest that 

the mitotic cell distribution is disrupted in the absence of cleavage plane bias 

(Figures 6C,F), which is consistent with the view that in both Drosophila and 

Cucumis, interphase cells passively gain additional sides as a consequence of 

neighbor cell divisions.  This interpretation contrasts with the idea that the mitotic 

shift solely reflects modulation of the cell cycle by topology-dependent 

mechanical stress (Aegerter-Wilmsen et al., 2010).  Moreover, cleavage plane 

bias is actually expected to synergize with the mitotic shift.  By enriching for 

super-hexagonal cells in the mitotic cell population, which are entropically 

favored to neighbor sub-hexagonal cells (Peshkin et al., 1991), the mitotic shift 

intuitively must amplify the effects of cleavage plane bias.   

     In summary, by varying the orientation of cell division based on neighbor cell 

geometry, cells and tissues are able to achieve increased geometric regularity 

via a dynamic, topology-mediated feedback and control system.  Precisely how 

the default geometric forces that bias cleavage plane orientation interact with 

other mechanisms of  division plane control (Baena-Lopez et al., 2005; Gong et 

al., 2004; Li et al., 2009; Segalen et al., 2010; Siller et al., 2006; Willemsen et al., 

2008) should be an important avenue for future research. 

 



18 

 

Experimental Procedures: 

 

Fly strains: To visualize the septate junctions, we used a neuroglian-GFP exon 

trap line, which was described in a previous study (Morin et al., 2001).  To 

visualize the chromosomes in parallel, we generated a stock also carrying a 

Histone-2 RFP marker ((Schuh et al., 2007); Bloomington stock 23650). 

Wing disc sample preparation & imaging: Wing discs were dissected from 

wandering 3rd instar larvae in Ringers’ solution, fixed in 4% paraformaldehyde in 

PBS, and then mounted in 70% glycerol/PBS.  For live imaging, discs were 

carefully dissected and placed in a 50:50 mixture of Ringer’s solution (130mM 

NaCl, 5 mM KCl, 1.5 mM MgCl2), and a second solution (adapted from (Aldaz et 

al., 2010)), consisting of 2% FBS (Gibco) and 0.5% Pen/Strep (Gibco; 5,000 

units/mL penicillin; 5,000 μg/mL streptomycin) in Shields and Sang M3 Insect 

media (Sigma).  Live discs were mounted between two pieces Scotch double-

sided tape (3M).  Air bubbles were added to the medium using an insulin syringe 

(BD Ultra-fine with a 30-gauge needle) to potentiate gas exchange.  Wing discs 

were maintained in culture for up to four hours, and imaged at intervals of 15-30 

seconds.  All samples, live and fixed, were imaged on a Leica SP5 or Leica SP2 

confocal microscope with a 63X glycerol or oil objective. 

Cucumis sample preparation and imaging: Epidermis was collected from 

freshly gathered cucumbers approximately 10 cm in length and 2 cm in diameter 

(Red Ridge Farm, Odessa, MO).  Epidermis was peeled in thin layers and fixed 

in 4% paraformaldehyde in 50 mM KPO4, 5.0 mM EDTA and 0.2% Tween20 (pH 
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7) for at least 2 hours at room temperature (adapted from Gallagher and Smith 

(1999)).  Tissue pieces were then washed 2-5 times in dH2O, and incubated in 5 

mg/mL Calcofluor White (Sigma) in PBS for at least 10 minutes before imaging.  

Images were collected using a Zeiss LSM 510 Meta with a 20x Plan-Apochromat 

objective, NA 0.8. 

Error bars: Unless otherwise specified, error bars refer to a single standard 

deviation.  For the case of ratio distributions, we have reported an average value 

of the standard deviation.   This was computed as follows: the data were 

randomized and broken into three sub-samples of equal size in order to compute 

an average value for the standard deviation, based on 1000 random shuffles of 

the data. 

Annotation of Drosophila wing disc cytokinetic figures in fixed 

preparations: A total of 420 cytokinetic figures and their 2946 cellular neighbors 

were scored by hand, in multiple focal planes to ensure accuracy of topological 

counts.  Out of the 2946 neighbors, 840, or exactly two per cytokinetic figure, 

were designated as being in the division plane position.  Cells were interpreted to 

be in the division plane position when they occupied the majority of the 

cytokinetic furrow.  Due to the ambiguity of division ordering, cytokinetic figures 

adjacent to other cytokinetic figures were not considered for analysis. 

Annotation of fixed Drosophila wing disc epithelial cell sheets:  Images of 

contiguous epithelial regions from Drosophila wing disc epithelia were annotated 

by hand using Microsoft Powerpoint.  We used custom-built software to digitize 
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the annotations for analysis in MATLAB.  A total of three such cell sheets, 

containing 254, 195, and 233 cells, respectively, were analyzed to compute the 

effective L value (Figure 5C; Table 1), which is described in the text.  See 

Extended Experimental Procedures for additional details. 

Live imaging analysis of mitosis in the Drosophila wing disc: From live 

movies, a total of 198 mitotic cells in the Drosophila wing disc epithelium were 

analyzed by hand using ImageJ.  With the exception of cells located on 

compartment boundaries, every scoreable cell on the epithelium was used.  To 

control for possible mechanical influences due to neighboring divisions, we did 

not consider dividing cells neighboring each other to be scoreable if they rounded 

up at the same time.  Interphase geometry measurements were based on the 

earliest available time point (the first movie frame), except in rare cases when 

epithelial morphology obscured the cell in question, in which case a slightly later 

time point was used.  The long axis orientation of each cell was computed using 

ImageJ, including curvature, based on manual input from the Polygon Selections 

tool.  The identical procedure was used for each cell at later stages, including the 

eventual cytokinetic figure (see Figure 4A’ for an illustration).  See the Extended 

Experimental Procedures for additional details. 
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Analysis of Cucumis epidermal cell sheets: 

Images of contiguous regions of Cucumis epidermis were annotated by hand 

using ImageJ.  Cell geometry was outlined using the Polygon Selections tool, 

with one node placed per tri-cellular junction, except in cases of very curved 

cellular edges, in which additional nodes were used to increase annotation 

accuracy.  To visualize the ellipse of best fit to cell geometry, we used a custom-

made ImageJ macro.  See the Extended Experimental Procedures for additional 

information. 

Algorithm for computing the minimal energy configuration for local cellular 

neighborhoods: We used a mechanical relaxation algorithm for cellular 

networks that has been previously described (Prusinkiewicz and Lindenmayer, 

1990).  For relaxation (Figure 1), cellular networks were modeled in terms of a 

balance between edge length tensions (described using ideal springs) and 

internal pressure (Figure S1).  Relaxation was implemented in terms of a system 

of ordinary differential equations that were solved numerically using the ODE45 

solver in MATLAB (Mathworks).  See the Extended Experimental Procedures for 

additional information. 

Topological simulations of proliferation: Proliferation was simulated in terms 

of a network containing exclusively tri-cellular nodes, with wrapping boundary 

conditions.  All division parameters, including division likelihoods of polygonal 
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cells, the statistical partitioning of mother cell nodes, and the likelihoods of 

orienting the division plane in the direction of specific polygonal neighbor cell 

types, are matched to the empirically measured statistics for the Drosophila wing 

disc (see Figure S2A-C).  The algorithmic details are described in the Extended 

Experimental Procedures. 

  

Finite element models of proliferating cell sheets: The FEM simulations 

(Brodland and Veldhuis, 2002; Chen and Brodland, 2000) model apical 

contractility, cell-cell adhesion, and all other forces along the cellular edge 

lengths in terms of a net, interfacial tension, γ, which is generated by rod-like 

finite elements.  Proliferation is modeled in terms of long-axis divisions.  Cell-cell 

rearrangements (T1 transitions) are permitted when cellular edge lengths shrink 

below a threshold value.  See Figure S6 for a comparison between simulations in 

which T1 transitions are active, versus those for which they are inactive.  

Additional details are described in the Extended Experimental Procedures. 
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Figure legends: 

 

Figure 1:  Local epithelial topology is predicted to influence the geometry 

of an epithelial cell. 

 

(A) A stereotypical simple columnar epithelium.  Black spots represent nuclei.  

(B) The Drosophila wing disc epithelium, with nrg-GFP (green) marking the 

septate junctions.  (B’) A planar network representation of (B).  (C) A model for 

finding the minimum energy configuration of cell packing, based on internal 

pressure and ideal springs.  (D-F) (Initial states, left) Initial conditions for the 

relaxation algorithm.  Each case varies the topology of the marked cell. (Relaxed 

states, right)  At equilibrium, cell shape is specified by a balance between 

pressure and tension.  The central cell’s shape is strongly influenced by the 

labeled cell’s topology.  See also Figure S1. 

Figure 2:  The orientation of a cell’s short axis is predicted to correlate with 

its quadrilateral and pentagonal neighbors, and to anti-correlate with 

heptagonal and octagonal neighbors. 

 

(A) Neighbor cell topology, N, influences the direction of the cellular long axis 

(solid line) and short axis (dashed line), based on an ellipse of best-fit (red).  

Second order and higher neighbors, which are uniformly hexagonal, are not 

shown.  For N< 6, the short axis is oriented towards N-sided cell N; for N>6, it is 

oriented perpendicular to N.  (B) The attraction of the short axis to quadrilateral 

cells (N=4) is robust to heterogeneity in the local cell neighborhood.  (C) We 

computed the cleavage plane index, or fraction of neighbors in each polygon 

class (black line) located adjacent to the central cell’s short axis (presumed 

cleavage plane).  Neighbor cells having N<6 are significantly enriched in this 

position.  Conversely, neighbors having N >6 are under-represented.  For 

comparison, for a randomly oriented division plane, all N values occur with 

similar frequency (green), which is close to the null hypothesis of 2/7 (red).  (D) 

We defined an acute angle, θ, with respect to a cell’s short axis (dashed red line), 

as well as the neighbor topology in direction θ (green cells).  (E) On average, 

neighbor topology (black) is an increasing function of acute angle θ.  Error bars 

represent the standard deviation in the sample mean topology in direction θ per 

cell (an average of the 4 positions on the cell cortex corresponding to the θ, over 

420 such cells).   
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Figure 3:  In both plants and animals, a dividing cell’s cleavage plane 

correlates with its quadrilateral and pentagonal neighbors, and anti-

correlates with heptagonal and octagonal neighbors. 

 

(A) The Drosophila wing imaginal disc, stained with anti-DLG to mark the 

junctions (green) and anti-PH3 to mark chromatin (blue). (B-D; B’-D’), Cell 

division proceeds in the plane of the epithelium via a stereotyped division 

process including interphase (I), mitosis (M), and cytokinesis (C).  Actin staining 

is shown in red.  (E) We can infer the topological complement of neighbors, as 

well as the division orientation of dividing cells, from cytokinetic figures.  

Junctions are marked by a nrg-GFP protein trap (red).  (F-G) We examined > 400 

such figures, and sorted the neighbors by polygon class.  The neighbors on the 

division plane (red) are a subset of the full complement of neighbors (green and 

red).   (H) An overlay of the predicted mitotic cleavage plane bias based on our 

mechanical model (black), with the biases computed from both Drosophila wing 

disc epithelium (blue) and cucumber epidermis (red).  Each is compared with the 

topological null hypothesis (green).  See also Figure S2 for further information. 

Figure 4:  Drosophila wing disc cells approximately obey a long-axis 

division rule. 

 

(A) Time series analysis illustrates the process in which an interphase cell 

entering mitosis gradually dilates before reaching full rounding, and then 

subsequently undergoes cytokinesis, in an orientation approximately predicted by 

its interphase long axis.  (A’) Drawings of the process described in the 

corresponding panels in A, including the mitotic cell and its immediate neighbors.  

The long axis of the ellipse of best fit (red) is labeled with a solid line, whereas 

the dashed line (predicted cleavage plane) represents the short axis.  (B) The 

eventual orientation of the cleavage plane can be predicted based on the 

interphase long axis orientation.  The red line (zero deviation from long-axis 

division) represents a perfect correlation between the interphase long axis and 

the long axis of the resulting cytokinetic figure.  Blue bars show the number of 

cells (represented by radial distance from the center) that divided with a 

particular angular deviation from the interphase long axis.  On average, the 

deviation was approximately 27.1 degrees.  The data is represented by the first 

quadrant (0˚ to 90˚), which is also displayed symmetrically in the other three 

quadrants (90˚ to 360˚).  (C) The bias curve prediction that incorporates the 

measured deviation of 27 degrees from the long axis (red) is significantly closer 

to the empirically measured cleavage plane bias (blue) than the naïve long-axis 

prediction is (black).  A Gaussian noise model with 27 degree standard deviation 
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gives a similar result (data not shown).  We controlled for the influence of 

topological relationships by using the same local neighborhoods as were 

measured from the empirical data (blue).  See also the Extended Experimental 

Procedures and Figure S3, which suggests a long axis mechanism may also 

operate in Cucumis. 

 

Figure 5: Fundamental packing constraints are sufficient to explain 

cleavage plane bias. 

 

(A) Hexagons pack at 120-degree angles.  (B) A 4-sided cell distorts the internal 

angles of the surrounding hexagons, inducing a long axis.  (C)  A geometrical 

argument for division plane bias.  The N-sided neighbor cell influences the ratio 

of the horizontal axis, dm to the vertical axis, hm, in the M-cell.  When dm:hm > 1, 

the N cell is in the predicted cleavage plane position for the M-cell.  (D) A plot of 

the ratio dm:hm, for different values of N and L.  Above the gray line, the N-cell is 

in the M-cell’s predicted division plane; the opposite is true below the gray line.   

(E-F) Both N and L influence the direction of the long axis in the M cell.  (E) The 

value of N influences the direction of the long axis in the M cell (top cell), for 

constant L.  (F) The long axis of the M-cell is influenced by the side length, L, for 

a constant N-value.  See also Figure S4. 

Figure 6: Cleavage plane bias participates in cell shape emergence, and is 

required for wild-type cell packing. 

 

(A) The topological simulator does not model cellular mechanics, but does 

explicitly keep track of topological neighbor relationships.  Based on topological 

weights, division likelihood, division symmetry, and cleavage plane bias are 

matched to empirically measured statistics in a Monte-Carlo framework (see 

Figures S2A-C).  (B) Hexagonal frequency declines by approximately 4% in the 

absence of bias.  Arrows highlight this difference.  (C) The distribution of mitotic 

cells shows pronounced alterations in the absence of bias.  Arrows highlight the 

differences.  (D) The finite element simulator models cellular mechanics, division, 

and rearrangement.  The simulator captures mechanics in terms of a net, 

interfacial tension, which is modeled using rod-like finite elements.  Division 

likelihoods are informed by the empirically measured values (Figure S2A).  

Cleavage plane bias approximates the empirical values, and is achieved using 

long-axis divisions.  For finite element simulations incorporating cellular 

rearrangements (T1 transitions), see Figure S6.  (E) In the absence of bias, 

hexagonal frequency declines by about 4% (compare with panel B).  (F) The 
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distribution of mitotic cells again shows pronounced alterations (compare with 

panel C).  See also Figures S5-S6. 
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Table 1: The effective L value changes by approximately 40% in wild type 

Drosophila tissues. 

N-cell polygon class Average effective L 

Value 

Standard deviation 

in effective L Value 

Sample size 

(hexagonal 

interfaces with 

N-cells) 

4 1.2504 .4165 22 interfaces 

5 1.1158 .4141 231 interfaces 

6 1.0580 .4053 487 interfaces 

7 .9237 .4081 341 interfaces 

8 .9620 .5405 46 interfaces 

 

Table 1 legend: For each value of N (column 1), the average effective L value 

has been computed (column 2), as well as the sample standard deviation 

(column 3), using empirically extracted cellular networks from the Drosophila 

wing imaginal disc (Extended Experimental Procedures).  The sample size for 

each calculation is given in column 4.  The effective L value, computed for 

hexagonal cells, is the average value of an edge shared with an N-sided 

neighbor, divided by the average length of the remaining 5 edges.   
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II.  Figure legends for supplemental Figures S1-S6 and 

supplemental Movie S1: 

 

Figure S1, related to Figure 1:  A diagram for the mechanical relaxation algorithm.      

 

(A)  Diagram for an individual cell as represented by the relaxation algorithm.  Red-filled 

circles represent nodes, which are assumed to behave as point masses during 

relaxation.  Jagged lines represent ideal springs, which provide a contractile force to the 

cellular edge lengths.  Internal pressure, which is assumed to be uniform in all 

directions, and which opposes this contractile force, is diagrammed using arrows.  (B)  

Structural legend.  The relaxation algorithm is implemented in terms of a set of 

interconnected nodes, edges and faces.  The notation F(i) refers to the set of faces to 

which node i belongs.  Except for cases along the boundary, in our simulations each 

node will belong to exactly three faces.  Similarly, except in boundary cases, the ith node 

will have exactly three edges E(i) impinging on it.  The notation dij refers to the distance 

between nodes “i” and “j.”  (C) The relaxation algorithm is implemented in terms of the 

sum of three forces acting at the nodes.  The first, tension, is implemented in terms of 

an ideal spring, whose force is proportional to the distance between the spring’s current 

length and its rest length.  The second force, internal pressure, is modeled as an ideal 

gas.  The third force, friction, opposes node motion and is implemented in order to bring 

the system towards a minimal energy configuration.  (D)  The general form of the 

equations used to numerically solve for the system’s equilibrium, in terms of forces and 

structural relationships between nodes, faces, and edges. 

 

Figure S2, related to Figure 3:  Tissue measurements reveal the kinetics and 

mechanisms operating during cell shape emergence in the Drosophila wing disc 

epithelium.    

 

(A) The conditional mitotic index, P(D|N), of a polygonal cell depends its number of 

sides, N.  For example, about 5% of heptagons (N=7) are dividing, whereas about 10% 

of octagons (N=8) are dividing.  The star for nonagons (N=9) indicates that the sample 

size is too small to reliably estimate the standard deviation.   (B) Polygonal cells exhibit 

a strong preference to divide their junctions evenly.  On the horizontal axis, zero 

indicates perfect division symmetry, which can only be achieved by cells when N is 

even (solid lines).  For smaller N values, a greater frequency of divisions is perfectly 

symmetric.  (C) Neighbor cell topology biases cleavage plane orientation in dividing 

cells (see main text, Figure 3).  (D)  Both in Drosophila and in Cucumis, the distribution 
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of mitotic cells recapitulates the global distribution of cell shapes, except that it is shifted 

by a single polygon class.  (E) A schematic diagram illustrating two metrics: relative arc 

length and relative side length.  Relative side length is measured in terms of a neighbor 

cell’s perimeter.  It is defined as the fraction of that perimeter.  Relative arc length of a 

cell, by contrast, is the fraction of the internal angle in the neighboring cell, as measured 

from the center of mass to the pair of shared vertices.  (F) Neither relative side length 

(red) nor relative arc length (green) varies substantially as a function of polygon class 

when the reference cell is non-mitotic (resting).  (G) Relative side length does not vary 

substantially as a function of topology when the reference cell (see panel E) is a 

rounded-up cell, just prior to cytokinesis.  (H) Based on empirical resting cell 

geometries, a long-axis division mechanism (red) predicts a stronger cleavage plane 

bias than a randomly-oriented division axis (green).  (I) The distribution of cell shapes 

surrounding mitotic cells is almost identical to the distribution of cell shapes in the tissue 

as a whole. 

 

Figure S3, related to Figure 4: A long-axis division mechanism, in combination 

with cucumber cell geometry, is sufficient to reproduce the inferred cleavage 

plane bias for Cucumis sativus. 

(A)  Maximum intensity projections of Z-stack, confocal images of cucumber epidermis 

stained with Calcofluor white.  For image clarity, white content has been adjusted using 

Adobe Photoshop.  Ellipses of best fit are shown in red, with dotted lines representing 

the short axis, or presumed cleavage plane.  Red lettering gives the polygon class of 

neighboring cells in the short axis position.  (B) Cells in the short axis position have a 

skewed distribution as compared with cells in the general population for cucumber 

epidermis.  To generate the population of 1002 cells in the short axis position, in an 

unbiased manner, we selected 501 cells having the (shifted) distribution of cell shapes 

measured in Lewis’s population of dividing cells (Lewis, 1928).  Ellipses were then fit to 

these cells, which determined the population of the 1002 neighbors in the short axis 

position.  Note the enrichment for 4-sided and 5-sided cells in the short-axis cell 

population.  (C) The polygon-class specific enrichment factors (as compared with the 

overall epidermis) closely match between Lewis’s 1928 study of 1000 cells on the ends 

of 500 cleavage planes, and our study of 1002 cells on the ends of 501 short axes.  (D) 

The predicted cleavage plane bias correspondingly matches the inferred cleavage plane 

bias measured from Lewis’s original data (Lewis, 1928). 
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Figure S4, Related to Figure 5: Cleavage plane bias is robust to cell size 

differences in the N-sided cell, N.   

  

(A) For the case of quadrilaterals, the (effective) attraction of the short axis is robust to 

large variation in cell size.  (B) Bias due to a hexagonal cell of variable size is an 

unstable point due to symmetry breaking.  Slight perturbation above or below the target 

apical surface area is sufficient to rotate the long and short axes by 90˚.  (C) For the 

case of octagons, the (effective) repulsion of the short axis is robust to cell size 

differences, except for cases of unnatural and excessive cell enlargement (far right).  

(D)  Based on live imaging analysis of 60 local neighborhoods surrounding dividing cells 

in the Drosophila wing disc, neighbor cell size at interphase is not likely to play a role in 

orienting the division plane.  Excluding the area of the central mitotic cell, interphase cell 

areas were normalized to the total apical area of each local neighborhood (the average 

normalized area of a cell in each neighborhood is 1.0).  Of the 116 observable cells in 

the cleavage position at cytokinesis, the average normalized area for the same cells at 

interphase was 1.0016 with a standard deviation of .2202.  Hence, cells in the cleavage 

plane position at cytokinesis are of approximately average size at interphase. 

 

Figure S5, related to Figure 6 (upper panels):  A topological simulator based on 

empirically measured division kinetics accurately captures the steady-state 

dynamics of the tissue, but only when cleavage-plane bias is present.   

 

(A)  The topological simulator does not model cellular mechanics, but does explicitly 

keep track of topological neighbor relationships.  Division likelihood, symmetry, and bias 

are matched to empirically measured statistics (see Figure S2A-C). (B-C) In the 

presence or in the absence of bias, the system has approximately reached steady-state 

after 30000+ divisions, after starting from an initial condition of 60% hexagons, 20% 

pentagons, and 20% heptagons.  (D-F)  “K” refers to the exponential constant specifying 

the probability of cell division (see Figure S2A).  P(D) is the mitotic index, or proportion 

of all cells that are dividing per time step.  The “bias coefficient” governs the strength of 

the cleavage plane bias (see Extended Experimental Procedures, section 6).  (D) At 

steady-state, in the absence of cleavage plane bias, the frequency of hexagons is about 

4% lower (black arrow; blue) than when cleavage plane bias is present (gray).  (E) 

Without bias, the distribution of dividing cells shows pronounced alterations.  Note the 

large differences in heptagonal, octagonal, and nonagonal frequencies in the presence 

versus absence of bias (black arrows, gray versus blue).  Note also the comparison with 

the empirically measured distributions in Drosophila (red) and Cucumis (green). (F)  The 
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topological Monte-Carlo framework closely captures the empirically observed cleavage 

plane bias.   

Figure S6, related to Figure 6 (lower panels): A finite element simulator based on 

empirically measured parameters accurately captures the steady-state dynamics 

of the tissue, but only when long-axis divisions are used. 

 

(A-D) Graphical output from the finite element model. T1 transitions result in more 

regular tissue patterns, and allow the cells to rearrange in order to relieve stress.  Note 

that panels (A-D) use toroidal (wrapping) boundary conditions.  Therefore, the shapes of 

the tissue boundaries should not be taken to indicate tissue regularity.  (E) A graphical 

comparison between long-axis divisions and (uniform) random-axis divisions.  (F)  Long-

axis divisions result in an increased hexagonal frequency relative to random-axis 

divisions.  T1 transitions do not qualitatively alter this result.  The FEM closely captures 

the empirically observed p* distribution using the in vivo parameters.  (G)  The shape of 

the mitotic cell distribution is substantially altered relative to the empirical values when 

random-axis divisions are used instead of long-axis divisions (black arrows).  This 

suggests that cleavage plane bias plays a role in setting the topological division rates 

(and hence the mitotic shift, see figure S2D), and in the kinetics of side gaining.  (H)  

Using random-axis divisions effectively removes the cleavage plane bias.  By contrast, 

long axis divisions faithfully reproduce the empirically observed cleavage plane biases 

in fly and cucumber.  (I-L) The system is approximately stable after 5300 divisions.  (M) 

Based on polygon-specific volume constraints, the FEM simulation approximately obeys 

Lewis’s linear law of areas, as judged by a comparison with empirical data.  (N) During 

a T1-type transition, a pair of tri-cellular junctions moves closer together as the edge 

separating them shrinks.  In our simulations, the T1 transition is only implemented if the 

edge length separating these two vertices drops below a critical fraction, lcrit of the 

average edge length throughout the sheet.  Just prior to the transition, the edge length 

has shrunk to zero, forming an unstable 4-way junction (not shown).  Following this 

unstable intermediate, the system relaxes with the opposite orientation, resulting in the 

generation of a new edge.  Note that one pair of cells gains one edge each, whereas 

the other pair of cells loses one edge each.   

 

Movie S1, related to Figure 4: A third instar wing imaginal disc proliferating in ex 

vivo culture.  The septate junctions are marked with nrg-GFP; chromatin is marked 

with H2RFP.  Chromosome movement is clearly visible at anaphase.  Note the dynamic 

nature of cell shape as cells progress from interphase, through mitotic rounding, and 

into cytokinesis.  The movie covers a 2-hour period. 
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III. Extended Experimental Procedures: 

(1) Algorithm for computing the minimal energy configuration of local 

cellular neighborhoods  

     To understand how the shape of a cell is influenced by the shapes of its surrounding 

neighbors, we implemented an algorithm to find minimal energy configurations of cell 

packing, similar to that described by Prusinkiewicz and Lindenmayer (1990).  Here, we 

discuss the algorithm’s functional form, boundary conditions, parameters, and 

implementation.  For a diagram of the algorithmic details, see Figure S1. 

     The algorithm assumes that, at equilibrium, apical cell areas are determined by a 

balance between internal cellular pressure and contractile forces along cellular edge 

lengths (Figure S1A).  For relaxation, cells are modeled as two dimensional polygons at 

their apical surface, and referred to as “faces.”  Nodes and edges are modeled, 

respectively, as point masses and ideal springs (Figure S1A).  The assumption that the 

nodes have mass is irrelevant at equilibrium.  Internal pressure is modeled as an ideal 

gas.  During relaxation, damping is achieved using friction, proportional to node velocity.  

These relationships are captured as a system of coupled ordinary differential equations:  

 
   
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
   (1)  

where “qi” is the mass of the ith node, xi is the 2D vector position of node i, d/dt and  

d2/dt2 are time derivative operators, E(i) refers to the set of edges incident to node i, F(i) 

is the set of faces to which node i belongs, Tij refers to the tensional force exerted on 
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node i by the spring connecting nodes i and j, Ci is the friction coefficient for node i, and 

Pij(k) is the force exerted on nodes i and j due to internal pressure from face k (to which 

nodes i and j belong).  The magnitude for the force due to internal pressure is given by 

the following expression: 

( )
ij k k

ij

k

d n H
P k

A


     (2) 

where nk is the number of moles of ideal gas inside face k, AK is the area of face k, dij is 

the distance between nodes i and j, and Hk encapsulates the universal gas constant as 

well as the temperature.  We assume without loss of generality that the height of all 

polygonal cells is 1.  Hence, to recover the force exerted by the ideal gas, we simply 

multiply the pressure expression by dij, which is equivalent to the area of the interface 

between the two cells.   

     The magnitude of the tension is captured by the following Hookean relation: 

     
0( )ij ij ijT G d l 

     (3)
 

where Gij is the stiffness constant for the spring placed between nodes i and j, and l0 is 

the rest length.   

     For our simulations, parameters were chosen to be equal for all cells.  The following 

values were used: qi = 0.0001, for point masses; l0 = .0001, for the rest lengths of 

springs; Ci = 2.0, for the friction coefficients; 1.0, for the product nk Hk; and Gij= 5.0, for 

spring stiffness constants.  Rest lengths were chosen such that cellular edge lengths 
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were much longer than the rest lengths of springs at steady-state, thus placing them 

under considerable tension.  Friction coefficients were chosen such that the system 

would approach steady-state within a reasonable time frame.  We used free boundary 

conditions, where the central cell and its immediate neighbors are surrounded by three 

outer rows of hexagonal cells to mitigate edge effects.  Equations were integrated 

numerically using the ode45 solver in MATLAB (Mathworks).  Integration was 

continuted until the total squared velocity of the nodes summed over the entire cell 

sheet dropped below an arbitrary threshold cutoff, taken to be 0.003.  

(2) Description of simulated cell divisions: 

     In the main text, we use two different models of cell division: random-axis divisions 

and long-axis divisions (Figure S6E).  Here, we specify the algorithms and 

implementation methods that were used for each.  The same algorithms were used for 

both simulated cell shapes and experimental cell shapes. 

(2.1)  Computation of the cellular long and short axes: We defined the long 

and short axes of a cell in terms of an elliptical fit to the cell’s vertices.  To 

determine the ellipse of best fit, we used a direct least-squares fitting procedure, 

which has been described elsewhere (Fitzgibbon et al., 1999).  For an improved 

framework that is more numerically stable, please see the following URL: 

<http://research.microsoft.com/en-us/um/people/awf/ellipse/fitellipse.html>. 

(2.2)  Definition of the long-axis division:  The division plane for a long-axis 

division is taken to be the short axis of the ellipse of best fit, which bisects the 
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long axis.  There is one additional caveat, which is that we require the division 

plane to pass through the cell’s centroid.  This is achieved by fitting a line through 

the centroid with the same orientation as the short axis.  For polygonal cells, the 

distance between the centroid and the center of the ellipse is very small. 

(2.3) Definition of the randomly oriented division: The random-axis division 

model describes the division plane as a straight line passing through the cell’s 

centroid, with an orientation drawn from a uniform random distribution, from 0 to 

2π.   

(2.4) Determination of which neighbor cells are in the division plane 

position: The neighbor cells in the division plane position are determined by 

finding the intersection points of the line representing the division plane with the 

polygonal cell cortex.  The polygonal neighbors sharing the intersected edges are 

considered to be in the division plane position.  

(2.5) Computation of the cellular centroid: The centroid (Cx,Cy) is computed in 

terms of the N vertices, where the set of coordinates for vertex i is denoted (xi,yi).  

The vertices are assumed to be ordered with counter-clockwise orientation, 

where vertex i=0 is equivalent to vertex i=N.  The centroid is found in the 

following manner (Bashein and Detmer, 1994):   
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The area A of the polygon is found as:  
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(3) Empirical analysis of proliferation parameters in the Drosophila 
wing disc: 

     In order to understand the role of cleavage plane bias in vivo, it was necessary to 

understand the dynamic context in which the bias operates.  To this end, we empirically 

measured the parameters governing cell shape emergence in the Drosophila wing disc.  

Below we describe how the empirical rate constants for the Drosophila wing disc were 

either directly computed or statistically inferred from our measurements of cytokinetic 

figures (Figure 3E; Experimental Procedures).  For all probabilities and rate parameters 

described below, the relevant time scale, τ, for the measurement is the duration of M-

phase. 

(3.1) Polygon-specific cleavage plane bias: From a sample of 420 dividing 

cells and their 2946 immediate neighbors, cleavage plane bias was computed as 

the fraction of N-sided cells in the division plane furrow (Figure 3; Experimental 

Procedures).   

(3.2) Polygon-specific division equality measurements: For all mitotic 

polygon classes, we have measured the fraction of M-sided cells that give rise to 

a J-sided daughter, where M and J are arbitrary.  We can summarize these 

measurements as a matrix, which is referred to as the division kernel.  The 

division kernel was inferred from 418 cytokinetic figures (Figure 3E; Experimental 

Procedures).  Kernel values were computed according to the formula 
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M+4=N1+N2, where M is the topology of the mother cell, and N1 and N2 are the 

topologies of the two daughter cells.   

(3.3) Mitotic index for the Drosophila wing disc: The mitotic index over all 

polygon classes, P(D), is defined to be the percentage of cells that are in M-

phase.  Experimentally, P(D) is calculated as an average percentage of cells in 

fixed tissues that positively stain for M-phase markers.  We have measured P(D) 

for the Drosophila wing disc in 96-hour wandering larvae to be approximately 

1.76% (+/- . 17%, corrected 95% confidence interval).   

(3.4) Polygon-specific mitotic indices for the Drosophila wing disc: We have 

found that in the Drosophila wing disc, the fraction of cells dividing in any one 

polygon class may differ from the overall mitotic index P(D), which is an average 

over the different polygon classes.  Therefore, there is a conditional mitotic index, 

P(D|N), for each polygon class, which gives the fraction of N-sided cells dividing, 

where N ranges from 4 to 9.  Equivalently, P(D|N) can be thought of as the 

probability in unit time τ that a randomly selected cell is in M phase given that it 

has N sides.  To infer P(D|N), we used Bayes’ rule: 

     
( | ) ( )

( | )
( )

P N D P D
P D N

P N
      (6).                                                                    

Here, P(N|D) is the polygonal cell shape distribution for cells that are in M phase, 

P(D) is the mitotic index, and P(N) is the global distribution of polygon types.  

P(N|D) has been measured experimentally from 418 cytokinetic figures (Figure 

3E; Figure S3D; Experimental Procedures).  P(N) was measured in a previous 

study (Gibson et al., 2006).  Based on the assumption that empirical wing disc 
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epithelial topology has reached steady-state, we infer that the form of P(D|N) is 

closely approximated (R2 coefficient >.99) by an exponential function in the 

number of edges N, with exponential constant, K.  This is consistent with 

previous measurements in plants (Dubertret et al., 1998).  To compute K, we 

used the cftool function in MATLAB (Mathworks).  Using all data points (N=4…9), 

we obtain a K value of approximately 1.25.  To visualize the polygon-specific 

mitotic index for each polygon class, see Figure S2A. 

(3.5) Rates of T1 transitions in the Drosophila wing disc: Based on live 

imaging studies and the contiguity of marked cell clones, cellular rearrangement 

is rare in the Drosophila wing disc.  Based on analysis of 2-cell clones, it can be 

inferred from a previous study that about 6% of edges undergo T1 transitions per 

11 hours (Gibson et al., 2006).  For an illustration of a T1 transition, see Figure 

S6N.  The 6% figure may be an over-estimate, because it is based primarily on 

dividing cells, which are subjected to increased mechanical stress during mitosis.  

If T1 transitions are more common under mechanical stress, then the true rate of 

cellular rearrangement might be lower than 6%. 

(3.6) Lewis’s law of linear areas in Drosophila:  In the context of a monolayer 

cell sheet, the average surface area of an N-sided polygonal cell is approximately 

linear in the value of N, a relationship known as Lewis’s law (Farhadifar et al., 

2007; Lewis, 1928; Patel et al., 2009; Rivier and Lissowski, 1982).  Here we have 

quantified this relationship for the Drosophila wing disc.  From three digitally 

annotated cell sheets (see Experimental Procedures), we normalized the cell 
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areas of each sheet with respect to the average hexagonal cell area, and then 

grouped the cells by polygon class.  For the data set, we discarded all 9-sided 

cells, which were rare, and also one octagonal outlier cell.  For each sheet, we 

then used the cftool in Matlab (Mathworks) to fit a straight line to the average 

normalized cell area, as a function of polygon class.  The slopes found, were, 

respectively, .2404, .3068, and .3357, for an average of .2943 (with standard 

deviation of .0489).  By comparison, the slope for FT Lewis’s cucumber cells 

(when normalized to the average hexagonal area, and excluding nonagons) is 

closer to .2247 for non-dividing cells, and .104 for dividing cells (Lewis, 1928). 

4. Analysis of geometric parameters in the Drosophila wing disc 

     In order to test whether side length might play a role in cleavage plane bias, we 

annotated and analyzed the apical geometry of epithelial cells in the Drosophila wing 

disc.  Our measurements (figure S2F-H) suggest that this is unlikely. 

(4.1)     Annotation of local neighborhoods of resting cells: Local 

neighborhoods surrounding 205 resting, non-mitotic cells were annotated by 

hand using Microsoft Powerpoint.  Multiple focal planes were used to ensure 

accuracy of annotations.   We used custom-built software to digitize the 

annotations for analysis in MATLAB. 

(4.2) Analysis of local neighborhoods: Two metrics were used to assess 

topological variability of neighbor side length in resting cells (figure S2E).  The 

first metric is linear side length, measured from the first shared node to the 
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second of the shared edge.  We normalized this length to the total linearized 

perimeter of the central cell (i.e. the cell whose neighbors are being studied).  

The second metric is normalized arc length, which is simply the angle between 

the two shared nodes, as measured from the central cell’s center of mass, 

normalized by 360° (Figure S2E).  We found that neither metric showed 

substantial difference as a function of polygon class (Figure S2F). 

(4.3)     Measurements of rounded cell side lengths: Side lengths of 100 

rounded, mitotic cells were measured by hand, taking curvature into account, 

using ImageJ.  Cell side lengths were normalized to the total perimeter of each 

rounded cell.  We did not observe significant variability of the average normalized 

side length as a function of polygon class (Figure S2G). 

(4.4) Cleavage plane bias as predicted by resting cell geometry: In order to 

estimate the cleavage plane bias that would be expected from resting (non-

mitotic) cell geometry in Drosophila, we computed an approximate cleavage 

plane bias based on a long-axis model of cell division.  For comparison, we 

considered a uniform-random cleavage plane orientation, which was drawn from 

a random-number generator in MATLAB (Mathworks).  We found a significantly 

stronger bias using the long-axis division rule (Figure S2H). 
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5. Time lapse analysis of cell division in the Drosophila wing imaginal 

disc: 

     In order to test whether cells in the Drosophila wing imaginal disc actually obey a 

long-axis division mechanism, we used time-lapse microscopy to study wing disc 

epithelial cells as they progressed from interphase through cytokinesis in ex vivo 

culture.  Time lapse movies were recorded for the entire wing blade region at 63X 

magnification.  The focal plane was adjusted manually, and guided by the neuroglian-

GFP marker to stay at the level of the septate junctions.  For an example, see 

Supplemental Movie S1. 

(5.1)  Dataset description:  A total of 210 cells undergoing the division process 

were annotated, of which 198 started in interphase, as judged by cellular 

morphology.  The geometry of each cell was recorded using the ImageJ polygon 

selections tool, with nodes placed liberally in order to accurately record cellular 

morphology.  For each such annotation, the orientation for the ellipse of best fit 

(computed using the ImageJ measuring tool) was recorded.  Upon cytokinesis, 

the cell morphology was again annotated, and a second ellipse fit was made.  

The recorded deviation of division from the interphase long axis (see Figure 4B) 

was taken to be the angle between the two measurements.  Every scoreable 

dividing cell was measured on the epithelium, with the exception of cells on 

compartment boundaries, or those rare cells that entered mitosis at the same 

time as an immediate neighbor.  The latter were not scored to control for 
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hypothetical mechanical influences on the spindle due to the neighboring cell’s 

expansion. 

 

(5.2)  The correlation between the orientation of cytokinesis and orientation 

of the interphase long axis is roughly independent of time:  Based on 

analysis of 198 dividing cells, we found that the time lag between the 

measurement of the interphase long axis, and the final measurement of the 

orientation of cytokinesis, made very little difference in the correlation between 

the two variables (data not shown).  Based on a linear interpolation to the data, 

on average, the deviation increased by less than one degree for each hour that 

elapsed between the two measurements.  For instance, for those cells dividing 

about 20 minutes after the initial interphase measurement, the eventual 

cytokinetic orientation was predicted to be about 26 degrees off the long axis on 

average.  For cells undergoing cytokinesis approximately 220 minutes after the 

initial measurement, the deviation is about 29 degrees.  Therefore, the 

orientation of a cell’s long axis appears to remain relatively constant with time. 

 

(5.3)  The average deviation from a long-axis division mechanism 

decreases as a function of relative length of the long axis to the short axis: 

Based on analysis of 198 dividing cells, we found that the deviation from the 

long-axis division mechanism was partly a function of cell geometry.  Specifically, 

the larger the ratio of the long axis length to the short axis length, the smaller the 

deviation from a long-axis division mechanism (data not shown).  Specifically, 
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cells having a long- to short-axis length ratio close to one showed a deviation 

from the long axis division mechanism close to the theoretically predicted value 

of 45° for a random cleavage plane.  By contrast, cells having a well-defined long 

axis more closely obeyed the long-axis division rule.  A linear fit to the data 

suggests that a cell having a long- to short-axis length ratio at or above 

approximately 4.5 should perfectly obey the long-axis division mechanism (data 

not shown).  To conclude, this suggests that in the Drosophila wing disc, the 

spindle orientation mechanism is sensitive to the degree of elongation of the cell. 

 

(5.4)  Incorporation of the measured deviation into the original cleavage 

plane bias prediction:  The average measured deviation between the 

interphase long axis and the eventual cytokinetic orientation was approximately 

27 degrees.  To test the influence of this deviation on cleavage plane bias, we re-

computed the bias using a 27-degree deviation from the short axis to predict the 

cleavage plane.  We controlled for the influence of topological relationships by 

using the same local neighborhoods as were measured from the empirical data 

(see Figure 3).  Interestingly, when including the measured deviation, we 

obtained a much improved bias prediction which is significantly closer to the 

empirically measured values (see Figure 4C; compare red and black curves).  A 

similar result is obtained when the deviation from long-axis division is simulated 

as Gaussian noise with a 27 degree standard deviation (data not shown). 
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(5.5)  Cell size is not predicted to play a strong role in guiding the mitotic 

cleavage plane:  We followed the immediate neighbors of 60 dividing cells as 

those cells progressed from interphase, through prophase, and into cytokinesis.  

To test the hypothesis that cell size might be capable of biasing cleavage plane 

orientation, we studied the interphase sizes of those neighbor cells which later on 

occupied the cleavage plane position of their mitotic neighbor.  Out of 120 

possible such neighbors in the cleavage plane (two for each of the 60 dividing 

cells), we were able to observe 116.  We normalized the areas of such cells 

based on the average neighbor area value for each local neighborhood.  Based 

on the data (see Figure S4D), neighbor cell size is not likely to play a strong role 

in orienting the cleavage plane.  The distribution of neighbor cell sizes in the 

cleavage plane position is, on average, very close to the average size for a cell 

neighboring a dividing cell (ie, close to 1 on average).  For the 116 cells in the 

cleavage plane position, we computed a value of 1.0016 for the average 

normalized area, and a standard deviation of .2202. 
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6. Empirical analysis of proliferation parameters in the dataset for 
Cucumis: 
 

Polygon-specific cleavage plane bias in Cucumis: To compute the cleavage plane 

bias for the cucumber, we used an historical data set gathered by F. T. Lewis (1928) 

which includes three cell shape distributions of interest for cucumber cells.  The first is 

the tissue-wide distribution of polygonal cell shapes (Lewis, 1928), P(N), which closely 

resembles the distribution of cell shapes in a variety of other organisms (Gibson and 

Gibson, 2009), including Drosophila (Figure S2D, compare red and green distributions 

for all cells).  The second distribution measured by Lewis is that of mitotic cells, P(N|D), 

which again closely resembles the distribution seen in Drosophila (Figure S2D, compare 

red and green distributions for mitotic cells).  The third distribution is P(N|G,B).  This is 

essentially the distribution of polygonal cell shapes located in the division plane position 

of cytokinetic cells (Lewis, 1928).   

     It is instructive to consider the ratio of the number of N-sided cells in the division 

plane position (i.e. the cells having edges bisected by mitotic cleavage planes) to the 

number of N-sided cells throughout the tissue.  Upon computing this ratio, it is apparent 

that there is strong enrichment for some polygon classes over others in the division 

plane position.  Below, using only the very mild assumption that cell divisions are 

sparsely distributed throughout the tissue, we formalize this reasoning and compute a 

very close approximation to the cleavage plane bias for the cucumber.  

     The cleavage plane bias is formally represented as P(G|N,B), which can be 

understood as the fraction of N-sided cells neighboring a mitotic cell that are in the 
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division plane position.  In order to compute this from existing data, we can use Bayes’ 

rule.  For the cucumber, we have expressed P(G|N,B) in terms of 5 other distributions: 

1. P(N|G,B): This is the distribution of cell shapes located in the division plane 

position of cytokinetic cells, as measured by FT Lewis (1928). 

2. P(B|G): This is the fraction of cells occupying the division plane position of mitotic 

cells that gain a side, which is true for all such cells.  Therefore, P(B|G) is always 

equal to one. 

3. P(G): This is the fraction of all cells in the division plane positions of mitotic cells.  

Assuming sparse divisions, this is equal to twice the mitotic index, or 2 times 

P(D). 

4. P(N|B): This is the distribution of cell shapes for cells that border a cytokinetic 

cell.  Both based on our studies of this distribution in Drosophila (see Figure S2I) 

and based on maximum entropy estimates (Peshkin et al., 1991), this distribution 

is closely approximated by the tissue-wide distribution of cell types, P(N). 

5. P(B): This is the fraction of cells neighboring mitotic cells.  Assuming sparse 

divisions, and based on the distribution of dividing cells (Figure S2D), which 

have an average of 7 neighbors, this is approximately equal to 7 times P(D). 

Using Bayes’ rule, we can approximately compute the cleavage plane bias in the 

following manner: 

( | , ) ( | ) ( )
( | , )

( | ) ( )

P N G B P B G P G
P G N B

P N B P B
     (7).   
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As discussed above, P(B|G) is equal to one, and the ratio of P(G) to P(B) is almost 

exactly 2/7, because these two quantities are, respectively, 2 and 7 times the mitotic 

index, P(D).  Moreover, P(N|B) is very well approximated (see Figure S2I) by P(N).  

Therefore, we find that the cleavage plane bias for cucumber epidermis is well 

approximated by the following: 

2 ( | , )
( | , )

7 ( )

P N G B
P G N B

P N


          (8).

 

Both P(N|G,B) and P(N) were measured by F. T. Lewis using sample sizes of 1000 cells 

each, which enables us to estimate the error on the calculation.  Remarkably, the 

cleavage plane bias for cucumber is almost indistinguishable from that of Drosophila 

(see Figure 3H). 

 

7. Empirical analysis of cell geometry in Cucumis epidermis.  

 

     To test whether a naïve long-axis model for cell division is sufficient to generate 

cleavage plane bias in Cucumis, we analyzed the epidermis of freshly-collected 

Cucumis specimens using confocal microscopy.  For sample preparation details, see 

Experimental Procedures.  The specimens, being approximately 10cm in length, and 

2cm in diameter, were similar in size to those used in Lewis’s original study (Lewis, 

1928).  The steps in our analysis are outlined below.     

(7.1)  The epidermis-wide distribution of cellular shapes: We first gathered 

empirical statistics for the epidermis-wide distribution of polygonal cell shapes.  

Cells were scored in terms of the number of neighbors, from large, contiguous 
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epidermal regions of 400 cells or more.  In total, we scored 2464 cells, which 

have the distribution shown in Figure S3B (green).  

(7.2)  Unbiased selection of a shifted cell shape distribution: We next 

selected cells having the same polygon class distribution as the dividing cells 

collected in Lewis’s original study, which is shifted to have a heptagonal mean 

(Lewis, 1928).  For each class of N-sided cell, we selected contiguous regions of 

tissue, and densely scored the N-sided cells in the region before enlarging the 

territory to look for additional cells.  We therefore obtained an unbiased sampling 

of cells, selected solely on the basis of polygon class, having the same 

distribution of polygonal shapes as the mitotic cells studied by Lewis.   

 

(7.3)  Annotation of the selected cell shapes, and determination of 

neighbors in the short-axis position:  For each of the selected 501 cells, we 

manually annotated the polygonal cell geometry using the Polygon Selections 

tool in ImageJ.  Based on these annotations, we used the measure tool in 

ImageJ to compute the ellipse of best fit, and a custom-made macro to plot the 

ellipse, along with the long and short axes.  The short axis impinged on exactly 

two neighboring cells for each ellipse, and these were taken to be the neighbors 

in the cleavage plane position.  From the sample of 501 annotated cells, we 

obtained 1002 cells in the cleavage plane position, which have the distribution 

shown in Figure S3B (red).   
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(7.4)  Computation of topological enrichment: Note than in Figure S3B, 

relative to the epidermis-wide distribution of cellular shapes (green), the 

frequencies of four-sided and five-sided cells are higher in the short-axis position 

(red), whereas the frequencies of heptagons and octagons are lower.  To 

quantify the enrichment or under-representation of each polygon class, we 

plotted the ratio of the short-axis measurements to the epidermis-wide 

measurements (Figure S3C, blue).  For comparison, we also plotted the 

enrichment pattern for the cleavage plane position from Lewis’s original data 

(Figure S3C, black).  Note that in both cases, there is a very clear and similar 

trend.  Four-sided cells are enriched approximately two-fold, hexagons show 

approximately no enrichment, and octagons are under-represented. 

 

(7.5)  Prediction of cleavage plane bias: Given the similar enrichment patterns 

in the short axis position of our randomly selected sample, and the cleavage 

plane position of the mitotic cells in Lewis’s original dataset, we decided to 

compute the predicted bias as based on the short-axis position data using the 

same procedure used in Extended Experimental Procedures, section 6.  This 

computation tests whether a short-axis division mechanism, combined with the 

epidermal geometry of Cucumis, is sufficient to predict the cleavage plane bias.  

Notably, when plotted against the cleavage plane bias inferred from Lewis’s 

original data, the two curves are in close agreement (Figure S3D).  We conclude 

that a naïve short-axis division mechanism is sufficient to generate cleavage 

plane bias in Cucumis. 
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8. Description of global models of tissue proliferation: 

 

     To understand the interaction between cleavage plane bias and cell shape on a 

tissue-wide scale, we simulated the dynamics of cell shape emergence in the context of 

proliferative epithelial simulations using the empirically measured parameters (see 

Extended Experimental Procedures, section 3).  Here, we describe the details for how 

these simulations were implemented. 

 

(8.1) Topological Monte-Carlo simulations of tissue proliferation: 

     In order to study the effects of cleavage plane bias in an abstract, topological 

framework independent of geometric parameters, we used a topological Monte-Carlo 

simulator of epithelial proliferation based on the empirically measured topological 

division kinetics (Figure S2A-C; see Extended Experimental Procedures, section 3).  A 

non-empirical version was analyzed in a previous theoretical study (Patel et al., 2009).  

This framework permits simulation of very large cell sheets (on the order of 30,000 cells 

or more) that would not be practical in a more geometrically realistic, finite element 

simulation (Extended Experimental Procedures, section 8.3). 

     The timing model for the topological simulator is based on the exponential form for 

the polygon class-specific division probabilities.  Cells are chosen for division, with 

replacement, with probability proportional to eKN, where K is a constant set to 1.3 

(Extended Experimental Procedures, section 3.4), and N is the polygon class.  The time 
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step is defined in terms of the mitotic index, making it approximately equal to the 

duration of M-phase in the cell cycle.  Consistent with empirical measurements, we 

have chosen a mitotic index of 2% for each time step.  To avoid ambiguous cases in 

which neighbor cells might influence each others’ division probabilities in the same time 

step, we have forbidden cells that are immediate neighbors from dividing.  This is 

achieved using a rejection procedure that simply re-draws the entire sample of dividing 

cells if the previous random draw selected at least one pair of immediate neighbor cells. 

     Once a cell has been chosen to divide, the next step is to specify its division plane.  

Topologically, this is equivalent to deciding which of the dividing cell’s edges will be 

bisected by the division plane, which is modeled as a straight line.  The first edge to be 

bisected is selected stochastically.  This is accomplished by assigning each of the 

dividing cell’s edges a weight according to the topology of the neighbor cell sharing that 

edge (recall that every edge is shared by exactly two cells).  A single edge is selected 

from the dividing cell’s total complement of edges with probability proportional to its 

weight.  Hence, the topological weights determine the likelihood that a neighbor with a 

given topology will occupy the cleavage plane position.  To assign weights, the function 

used is an inverse exponential, with a base equal to 2.7, which was determined by trial-

and-error.  To illustrate, a pentagon is 2.7 times as likely as a hexagon to occupy the 

cleavage plane position, and so on.  Intuitively, cleavage plane bias can be removed in 

this framework by specifying a base of 1.0, in which case all topological neighbors are 
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equally likely to occupy a division plane position.  Once the location of the first edge has 

been determined, a new tri-cellular junction is formed in the center of the chosen edge.  

The second edge is specified by stochastically sampling from the empirically measured 

division kernel (see section 3.2 of the Extended Experimental Procedures; Figure S2B), 

which specifies how evenly the cells divide up their junctions.  In most cases, these two 

constraints are sufficient to specify the division plane.  Occasionally, two possible 

division orientations are equally likely, in which case the weighting scheme is used a 

second time with identical topological weights to decide (stochastically) between the two 

choices.  Once the second edge is specified, a tri-cellular junction is inserted into the 

chosen cellular edge, and the two new tri-cellular junctions are then connected to result 

in a pair of daughter cells. 

(8.2) Topological simulation results: 

     The topological simulator produces five main results.  First, it closely reproduces the 

shape of the empirically observed cell shape distribution (Figure S5D).  Second, it 

captures cleavage plane bias accurately (Figure S5F).  Third, it predicts that hexagonal 

frequency should drop by approximately 4% in the absence of cleavage plane bias, 

indicating that cleavage plane bias increases the regularity of the tissue (Figure S5D).  

Fourth, it captures the distribution of dividing cells accurately when cleavage plane bias 

is present (Figure S5E).  Fifth, when the cleavage plane bias is absent, it predicts 

pronounced alterations in the distribution of dividing cells.  Specifically, it predicts that 

the frequency of heptagonal cells should decrease, and the frequency of octagons and 
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nonagons should increase, relative to the empirical case, in the dividing cell distribution 

(Figure S5E; black arrows).  Taken together, the above results suggest that cleavage 

plane bias is an integral part of the maintence of tissue regularity during epithelial sheet 

proliferation. 

(8.3) FEM model of tissue proliferation: 

     In contrast to the topological simulator, which captures proliferation dynamics and 

cleavage plane bias in a purely topological framework, the Finite Element Model (FEM) 

of tissue proliferation incorporates cellular mechanics and geometry to more realistically 

simulate epithelial sheet proliferation.  The mechanical aspects of the FEM have been 

described elsewhere (Brodland and Veldhuis, 2002; Chen and Brodland, 2000).  Briefly, 

the FEM models apical contractility, cell-cell adhesion, and all other forces along the 

cellular edge lengths in terms of an equivalent net interfacial tension, γ.  Each cellular 

edge is modeled as a rod-like, constant-force finite element, which generates γ.  Cells, 

which are subject to a volume constraint, are sub-divided into sectors, each having 

viscosity μ and a Poisson’s ratio of zero.  Thus, cytoplasm can move within the cell, but 

not between cells.  At each dimensionless time step, subject to the volume constraint, 

we solved for the resultant network geometry due to interfacial tensions along the 

cellular edge lengths.  We have incorporated polygon-specific volume constraints, VN, in 

order to impose Lewis’s linear law of polygonal areas (section 3.6 of the Extended 

Experimental Procedures), using a slope of 0.3 when cell areas are normalized to the 
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hexagonal mean.  In terms of absolute areas, the hexagonal mean was set to 60000.  

For our simulations, tension γ and viscosity μ were, respectively, 9900 and 20.  The 

initial topological mesh consisted of 20 cells, with a symmetric distribution of 20% 

pentagons, 60% hexagons, and 20% heptagons.  The simulations were run for 

approximately 5300 divisions.  Each data point is averaged over three runs. 

     The timing model used for the FEM simulator is identical to the one used for the 

topological Monte-Carlo simulator (section 6.1 of the Extended Experimental 

Procedures).  Once a cell is chosen to divide, its division plane is determined in one of 

two ways for the FEM.  The first option is a uniform random division, which is 

implemented as a straight line passing through the cell’s center, with its orientation 

drawn from a uniform random distribution, from 0 to 2π.  The second option is division 

of the long axis, which for the FEM is taken to be the principle axis of inertia.  This 

division rule produces cleavage plane bias that is extremely close the empirically 

measured values (Figure S6H).  Here, the division plane is taken to be a straight line 

through the cell’s center, orthogonal to the long axis.  We also tested a similar algorithm 

using the centroid, which yielded similar results (data not shown).  Following 

determination of the division plane, tri-cellular junctions are placed at the two points of 

intersection of the division plane with neighboring cells’ edges, thus forming a pair of 

polygonal daughter cells. 
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     In addition to mitosis, the FEM framework permits T1-type cellular rearrangements.  

T1 transitions (Figure S6N) occur when edge lengths shorten beyond a threshold 

fraction, lcrit, of the tissue-wide average edge length.  Here, lcrit is set to 1/20.  A 4-way 

junction is temporarily formed, created by shrinking the original edge to zero length.  

Next, the 4-way junction resolves into a new pair of tri-cellular junctions, with the 

opposite orientation of the previous edge (Figure S6N).  The length of the newly-formed 

edge due to the subsequent T1 transition is specified by the parameter lflip, which is here 

set to 3 times lcrit.   

(8.4) FEM results: 

     The results of the FEM simulator strongly support the predictions of the topological 

Monte Carlo simulator.  For comparison, we can draw a parallel between the long-axis 

division mechanism used in the the FEM simulator and the topologically biased division 

plane orientations of the topological Monte-Carlo simulator; both mechanisms re-

produce the empirically measured cleavage plane bias (Figures S6H and S5F).  We 

also note similar results for the random-axis division model in the FEM simulator and 

the case of topologically unbiased division orientations in the topological Monte Carlo 

simulator (Figures S6H and S5F).  Both of these division mechanisms effectively 

remove the bias.  Therefore, we can directly compare the presence or absence of bias 

in the FEM simulator with that of the topological simulator.  Like the topological 

simulator, the FEM simulations closely reproduce the empirical distribution of polygonal 

cell shapes, and also recapitulate the drop in hexagonal frequency in the absence of 
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bias (Figure S6F).  Additionally, as predicted by the topological simulator, the 

distribution of mitotic cells is noticeably altered in the FEM when cleavage plane bias is 

absent.  The frequency of dividing heptagons declines significantly, whereas the 

frequencies of dividing octagons and nonagons increase (Figure S6G).  Taken together, 

the above results suggest that the cleavage plane bias will have similar topological 

effects irrespective of the spatial or statistical mechanism used to generate it.  Such 

topological effects appear to extend both to the population of cells as a whole, and also 

to the population of dividing cells.   

     The FEM simulator also provides additional geometrical results that cannot be 

predicted by the topological simulator, because the latter does not model cell geometry.  

We made three observations on the basis of the FEM simulator alone.  First, we tested 

whether the presence or absence of T1 transitions would significantly alter our results.  

As implemented (lcrit=1/20 the average edge length), we did not find that the presence or 

absence of T1 transitions qualitatively changed the simulation results.  Second, for 

simulations including T1 transitions, we tested whether simulated tissues using random 

axis divisions would be more prone to T1 rearrangements, relative to simulations using 

long-axis divisions.  Indeed, we found that the frequency of T1-type transitions was 

more than sevenfold higher in the random-axis division case compared with the long-

axis division case. Third, we found that FEM simulations using long-axis division 

mechanisms produce simulated tissues that are more regular in appearance (Figure 
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S6A,C).  FEM simulations using random-axis divisions, by contrast, seem to produce 

more irregular and mechanically frustrated tissues (Figure S6B,D).  Taken together, the 

above results suggest that long-axis division mechanisms may promote geometric in 

addition to topological regularity. 

9. Geometrical analysis of cleavage plane bias:
 

     For the special case of a regular N-sided cell surrounded by a planar hexagonal 

network, we can analytically compute the approximate length of the long axis for the 

hexagons immediately adjacent to the N-cell.  For a diagram, see figures 5B-C in the 

text (Figure 5C is the general case).  We consider an orientation for which the N-cell, N, 

has its top-most edge horizontal with respect to the observer (Figure 5A-C, 5E-F).  Our 

analysis concentrates on the hexagon that is vertically above the N-cell, here referred to 

as “M,” although the same analysis would apply to any of the other hexagons. 

     To compute the horizontal axis, dm, of M, we first computed the internal angles of M 

and N (Figure 5C).  From geometry, the internal angles of N are found as: αn= π 

(N−2)/N.  The adjacent internal angles βm for M (Figure 5C) satisfy the condition αn+2βm 

= 2 π, from which we find βm = π (N+2)/(2N).  For the case when all edges are of unit 

length (L=1; see Figure 5C), these internal angle constraints specify the following length 

for the horizontal axis of M: dm = 1 + 2sin(π /N).  For purposes of comparison with the 

simulation data, we have computed the approximate height of M in terms of the ellipse 

of best fit to the cell’s vertices.  For simplicity, we assume that the upper and lower 

halves of M are symmetrical.   
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     To compute the vertical height (in the y-direction) of the ellipse, we used a 

parametric representation, where x(t) is Acos(t) and y(t) is Bsin(t).  We chose a 

coordinate system such that the center of M was located at the origin.  Because M is 

symmetric about its long and short axes, we were able to fit an ellipse to M using 

information from only two of its vertices: one of the two vertices at the ends of the 

horizontal axis, and one of the four other points.  We arbitrarily chose the point (1/2, 

cos(π/N)) as well as the horizontal point (1/2+sin(π /N), 0).  To determine the parameter 

A, we assumed that the ellipse must pass through (1/2+sin(π /N), 0).  This constraint is 

equivalent to imposing a horizontal axis of dm, which is reasonable because the ellipse 

is meant to represent the shape of M.  To make use of the second constraint, we first 

solved for the t value, t*, when the function Acos(t) would pass through the second point 

(ie, when x equals 1/2).  Based on t*, we solved for a B value, which along with A 

determines the ellipse.  Over a wide range of N values, we found that this approximation 

agrees with a direct least-squares elliptical fit (Fitzgibbon et al., 1999) to 13 decimal 

places or better (the two computations may be equivalent).  Therefore, using the 

parameters A and B, we can accurately compute the long and short axes of the ellipse 

of best fit.  The values of A and B are the following: 
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     We can determine which axis of M (either hm or dm) is the longest axis for a given N 

value by comparing the ratio of dm to the height of the vertical axis, hm.  This ratio 

(equivalent to the ratio A:B) is the following: 
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  (11). 

The approximation comes from the assumption that M is symmetrical about its long and 

short axes (see above).  When dm / hm is less than 1, hm is the long axis.  When dm/hm is 

greater than 1, hm is the short axis.  This corresponds to the case when N is predicted to 

be in the division plane position of M.  Because the ratio dm/hm is a decreasing function 

of N in the biological range (red, Figure 5D), it assumes the value dm/hm=1 (gray, Figure 

5D) at exactly one N-value.  We refer to this value as the “critical point,” because it 

determines when the long and short axes rotate by 90˚.   Solving for the critical point 

therefore summarizes the behavior of the system.  In this case, the critical point is N=6.  

For N values smaller than six, hm is the short axis, which points towards N, just as we 

observe both in simulation and in vivo.  Conversely, for N values larger than six, dm is 

the short axis, and is parallel to the N-M interface. 

     For the more general case when N has edges of length L, we find a different value 

for the horizontal axis: dm = L + 2sin(π/N).  For this case, both the ratio dm/hm and the 

critical point depend on the L value (Figure 5D).  Using an identical procedure as 

before, for the ellipse we find the following values for A and B: 
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A

N


       (12) 
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    (13). 

Here, the ratio dm/hm is the following: 

      sec sin sinm

m

d
L

h N N N

        
       

      
   (14). 

Larger L values tend to increase the critical point, whereas smaller L values tend to 

reduce it (Figure 5D).  Given that the standard deviation is about 34% of the mean (data 

not shown), we wondered whether variability in L might push the critical point outside of 

the empirically observed range of polygonal cell shapes, making topology irrelevant.  

Our analysis suggests that this is extremely unlikely, because L would need to change 

by about 40% in order to shift the critical point by even a single polygon class (Figure 

5D).  To answer the question empirically, we computed an “effective” L value based on 

empirical hexagonal geometry.  The effective L value is computed by considering the 

space of N-sided cells neighboring the set of all hexagonal cells.  The edge length 

separating each N-cell/hexagonal cell pair is computed, and then divided by the 

average value of the remaining five edge lengths of the hexagon.  Based on this simple 

algorithm, the effective L values for the Drosophila wing disc are summarized in table 1 

(main text). 

     Although there is variance about the mean of about 40%, the average effective L 

value is close to one over a range of polygon classes.  Therefore, the critical point may 

vary from cell to cell by a single polygon class, but on average it should be close to our 
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analytical predictions.  This suggests that angular constraints are the dominant 

influence behind cleavage plane bias in the Drosophila wing disc and potentially all 

other monolayer cell sheets, with lesser contributions from the differential side lengths. 
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