42 research outputs found

    Knowledge Graph Completion to Predict Polypharmacy Side Effects

    Full text link
    The polypharmacy side effect prediction problem considers cases in which two drugs taken individually do not result in a particular side effect; however, when the two drugs are taken in combination, the side effect manifests. In this work, we demonstrate that multi-relational knowledge graph completion achieves state-of-the-art results on the polypharmacy side effect prediction problem. Empirical results show that our approach is particularly effective when the protein targets of the drugs are well-characterized. In contrast to prior work, our approach provides more interpretable predictions and hypotheses for wet lab validation.Comment: 13th International Conference on Data Integration in the Life Sciences (DILS2018

    Annotation analysis for testing drug safety signals using unstructured clinical notes

    Get PDF
    BackgroundThe electronic surveillance for adverse drug events is largely based upon the analysis of coded data from reporting systems. Yet, the vast majority of electronic health data lies embedded within the free text of clinical notes and is not gathered into centralized repositories. With the increasing access to large volumes of electronic medical data-in particular the clinical notes-it may be possible to computationally encode and to test drug safety signals in an active manner.ResultsWe describe the application of simple annotation tools on clinical text and the mining of the resulting annotations to compute the risk of getting a myocardial infarction for patients with rheumatoid arthritis that take Vioxx. Our analysis clearly reveals elevated risks for myocardial infarction in rheumatoid arthritis patients taking Vioxx (odds ratio 2.06) before 2005.ConclusionsOur results show that it is possible to apply annotation analysis methods for testing hypotheses about drug safety using electronic medical records

    Extraction of pharmacokinetic evidence of drug-drug interactions from the literature

    Get PDF
    Drug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of intense scientific interest. Biomedical literature mining can aid DDI research by extracting evidence for large numbers of potential interactions from published literature and clinical databases. Though DDI is investigated in domains ranging in scale from intracellular biochemistry to human populations, literature mining has not been used to extract specific types of experimental evidence, which are reported differently for distinct experimental goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal mechanisms of putative interactions and as input for further pharmacological and pharmacoepidemiology investigations. We used manually curated corpora of PubMed abstracts and annotated sentences to evaluate the efficacy of literature mining on two tasks: first, identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, extracting sentences containing such evidence from abstracts. We implemented a text mining pipeline and evaluated it using several linear classifiers and a variety of feature transforms. The most important textual features in the abstract and sentence classification tasks were analyzed. We also investigated the performance benefits of using features derived from PubMed metadata fields, various publicly available named entity recognizers, and pharmacokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and irrelevant abstracts (reaching F10.93, MCC0.74, iAUC0.99) and sentences (F10.76, MCC0.65, iAUC0.83). We found that word bigram features were important for achieving optimal classifier performance and that features derived from Medical Subject Headings (MeSH) terms significantly improved abstract classification. We also found that some drug-related named entity recognition tools and dictionaries led to slight but significant improvements, especially in classification of evidence sentences. Based on our thorough analysis of classifiers and feature transforms and the high classification performance achieved, we demonstrate that literature mining can aid DDI discovery by supporting automatic extraction of specific types of experimental evidence.National Institutes of Health, National Library of Medicine Program, grant 01LM011945-01 "BLR: Evidence-based Drug-Interaction Discovery: In-Vivo, In-Vitro and Clinical," a grant from the Indiana University Collaborative Research Program 2013, "Drug-Drug Interaction Prediction from Large-scale Mining of Literature and Patient Records," as well as a grant from the joint program between the Fundação Luso-Americana para o Desenvolvimento (Portugal) and National Science Foundation (USA), 2012-2014, "Network Mining For Gene Regulation And Biochemical Signaling.

    Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes

    Get PDF
    Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP), treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP) by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7), odds ratio = 2, 95% confidence intervals: 1.5-2.6). The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9)). Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs
    corecore