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Abstract

Introduction Observational healthcare data contain

information useful for hastening detection of adverse drug

reactions (ADRs) that may be missed by using data in

spontaneous reporting systems (SRSs) alone. There are

only several papers describing methods that integrate evi-

dence from healthcare databases and SRSs. We propose a

methodology that combines ADR signals from these two

sources.

Objectives The aim of this study was to investigate whe-

ther the proposed method would result in more accurate ADR

detection than methods using SRSs or healthcare data alone.

Research Design We applied the method to four clini-

cally serious ADRs, and evaluated it using three experi-

ments that involve combining an SRS with a single facility

small-scale electronic health record (EHR), a larger scale

network-based EHR, and a much larger scale healthcare

claims database. The evaluation used a reference standard

comprising 165 positive and 234 negative drug–ADR pairs.

Measures Area under the receiver operator characteristics

curve (AUC) was computed to measure performance.

Results There was no improvement in the AUC when the

SRS and small-scale HER were combined. The AUC of the

combined SRS and large-scale EHR was 0.82 whereas it was

0.76 for each of the individual systems. Similarly, the AUC

of the combined SRS and claims system was 0.82 whereas it

was 0.76 and 0.78, respectively, for the individual systems.

Conclusions The proposed method resulted in a signifi-

cant improvement in the accuracy of ADR detection when

the resources used for combining had sufficient amounts of

data, demonstrating that the method could integrate evi-

dence from multiple sources and serve as a tool in actual

pharmacovigilance practice.

Key Points

Observational healthcare data can complement

spontaneous reporting systems in signal detection

through quantitative integration of source-specific

signal scores.

Signal detection predictive accuracy from each

source can be improved by combining signals across

sources.

1 Introduction

Adverse drug reactions (ADRs) are known to cause high

morbidity and mortality and cost several billion dollars

annually [1–3]. In addition to the ADRs detected during
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pre-marketing clinical trials, unanticipated ADRs may

occur after a drug has been approved, attributable to its use,

which may be prolonged, on large, diverse populations [4].

Therefore, the post-marketing surveillance of drugs is

essential for generating more complete drug safety profiles

and for providing a decision-making tool to help govern-

mental drug administration agencies take an action on the

marketed drugs [5, 6].

Analysis of spontaneous reports of suspected ADRs has

traditionally served as a valuable tool in the detection of

previously unknown ADRs in post-marketing surveillance

[7, 8]. Spontaneous reporting systems (SRSs) can be

effective in revealing unusual or rare adverse events that

occur with the initial use or short-term use of medications

[9]. However, SRSs do not rapidly lead to ADR detection if

the adverse event is relatively common but not necessarily

drug-related in the general population, and SRSs are also

known for limitations such as under-reporting and biased

reporting influenced by media coverage or the length of

time on the market [10–12]. Electronic healthcare data,

such as electronic health records (EHRs) and administra-

tive claims data, are starting to be used to complement

SRSs [13–16]. Electronic healthcare data contain longitu-

dinal patient information collected during routine clinical

care, and have been used extensively in pharmacoepi-

demiology and pharmacoeconomics to study the natural

history of disease and treatment utilization. Another

opportunity for these data is to study the prevalence of a

drug and an ADR, to explore the temporal relationship

between exposure and outcome, and to reduce the reporting

biases of SRSs. The appropriate use of healthcare data has

the potential for earlier detection of drug safety signals

before healthcare professionals report them to an SRS

system [17]. With the ongoing development of the US

Food and Drug Administration’s (FDA’s) Sentinel Initia-

tive and similar systems around the world, near real-time

active pharmacovigilance may soon be a reality [18]. Since

the Sentinel system is based on administrative claims data

captured as part of the reimbursement process surrounding

routine clinical care, its value can be considered ‘comple-

mentary’ to the utility of SRSs. However, electronic

healthcare data has its own limitations, which are different

from the SRS limitations, since healthcare data usually

mention the patient’s medications, symptoms, and diseases

individually without mentioning explicit causal relation-

ships, such as the indications for prescribing the

medications.

Therefore, statistical methods, together with the use of

temporality, are needed to infer an estimate of the strength

of associations, without the benefit of an explicit reported

ADR relationship. For example, a statistical association

between a medication and a condition may be a treatment if

the condition precedes the medication event, an ADR only

if the condition follows the medication event, or an indirect

association stemming from another event (e.g., a con-

founder). Considerable systematic studies of the potential

value of these databases in post-marketing pharmacovigi-

lance have been undertaken by the Observational Medical

Outcomes Partnership (OMOP, http://omop.org) [16, 19,

20] and the European Union project Exploring and

Understanding Adverse Drug Reactions (EU-ADR, http://

euadr-project.org) [21].

Currently, research efforts are starting to focus on the

use of multiple data sources, such as SRSs, electronic

healthcare data, biomedical literature, and chemical infor-

mation, to detect and validate novel ADRs. For example,

Tatonetti et al. discovered a potentially new drug interac-

tion, which can lead to unexpected increases in blood

glucose levels, between paroxetine and pravastatin based

on SRSs, and then validated this interaction using multi-

center EHRs [22]. Duke et al. predicted probable novel

myopathy-associated drug interactions based on the liter-

ature, and evaluated them using a large EHR database [23].

Vilar et al. re-ranked the ADR signals mined from a large-

scale claims database using 2D structure similarity [24].

However, the above studies have used a single data

resource to generate ADR signals and then have indepen-

dently used another resource for validation or enrichment

analysis. Harpaz et al. recently proposed a Bayes model to

computationally combine a disparate SRS and a healthcare

claims database, and the performance was shown to have

promising results based on a reference standard provided

by OMOP [25].

In addition to the large-scale claims and EHR databases

used by the OMOP and EU-ADR projects, individual

EHRs were shown to have potential for diverse types of

studies, including pharmacovigilance, drug re-purposing

and phenome-wide association scans (PheWAS) [26–28].

Our group conducted several studies based on the EHR

from New York Presbyterian Hospital at Columbia

University Medical Center (NYP/CUMC), and demon-

strated its potential for drug safety studies. Additionally,

we demonstrated that when using the EHR, confounding is

one of the most important challenges that needs to be

handled [14, 29–31]. Confounding is also an important

issue when using the SRS databases. The main algorithm

for detecting ADRs in SRSs is an approach referred to as

disproportionality analysis, which compares the number of

observed cases with that of expected cases [7]. Detecting

ADRs in SRSs is challenging partly due to under-reporting

of unexpected events, the lack of a priori knowledge and a

bias towards well publicized ADRs [32]. Thus, there is an

inherent tradeoff when detecting new ADRs by taking

advantage of primary suspected information based on

experts’ intuition which may be biased, possibly leading to

delayed ADR detection, or detecting ADRs by considering
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concomitant medications as co-occurrence information,

possibly leading to false positive signals. Several previous

studies showed that multivariate logistic regression is

helpful to guard against false positive signals due to con-

founding by concomitant drugs [33, 34].

Although both SRS and healthcare data represent

unique challenges in their use, we believe that they

complement each other along several dimensions that may

improve pharmacovigilance [17, 25]. A challenge

accompanied by the richness of information for pharma-

covigilance practice occurs when these two resources

provide conflicting or inconsistent information. There-

fore, we propose a methodological framework to integrate

analyses generated from the FDA Adverse Event

Reporting System (FAERS) and from healthcare data. As

part of the methodological framework, we incorporated a

method to deal with confounding effects in NYP/CUMC

EHR and the FAERS. We applied the method to four

clinically serious ADRs: acute renal failure (ARF), acute

liver injury (ALI), acute myocardial infarction (AMI), and

upper gastrointestinal bleeding (GIB) [35] with an aim of

demonstrating that signal discrimination performance can

be improved by such an integrative strategy. Predictive

accuracy, as measured by the area under receiver oper-

ating characteristics curve (AUC), is a means of esti-

mating the degree of discrimination of a signal detection

system and is used as an evaluation metric in this study.

We tested our integrative method using the following

three different experiments so that we could also explore

the effect of data size and bias on the method: (i) where

we combined FAERS with a single small-scale EHR

database NYP/CUMC, (ii) where we combined FAERS

with a large-scale network-based EHR database, and (iii)

where we combined FAERS with a much larger-scale

claims database. We further evaluated our system under

the scenarios that the two resources used in combining to

provide consistent/inconsistent information.

2 Methodology

2.1 Data Sources

2.1.1 FDA Adverse Event Reporting System (FAERS)

The data were extracted from FAERS from 2004 to 2010,

which comprised case reports mainly reported from phar-

maceutical manufacturers and, to a lesser extent, from

healthcare professionals and consumers [36]. We prepro-

cessed and mapped the free-text drug names to their

ingredient level specification using the STITCH (Search

Tool for Interactions of Chemicals) database [37]. The

ADRs in FAERS were already coded using MedDRA�

preferred terms [38]. In this study, we did not utilize the

explicit relationships between drugs and ADRs and con-

sidered all relationships as co-occurrence information.

Consequently, we extended data to all medications men-

tioned in the case reports including primary suspected,

secondary suspected and concomitant medications, as well

as indications. The signals from FAERS were obtained

using the confounding adjustment method, which is pre-

sented below.

2.1.2 New York Presbyterian Hospital at Columbia

University Medical Center (NYP/CUMC) Electronic

Health Record (EHR)

The data were extracted from the single-hospital EHR

system at NYP/CUMC, after institutional review board

approval. The data consisted of retrospective narrative

records of inpatient and outpatient visits from 2004 to

2010, including admission notes, discharge summaries, lab

tests, structured diagnosis in the form of International

Statistical Classification of Diseases, Version 9 (ICD-9)

codes and structured medication lists, and the majority of

the data available for this study were from an inpatient

population. Narrative reports were used to obtain the

patients’ medications, and the structured ICD-9 diagnosis

codes were used to detect ADR events; these codes also

served as surrogates of patient characteristics for con-

founding adjustment analysis. Similar to FAERS, the sig-

nals from the EHR were computed using the confounding

adjustment method proposed in this study.

2.1.3 GE EHR

The EHR database, GE MQIC (Medical Quality

Improvement Consortium) (a GE Healthcare data consor-

tium), represents a longitudinal outpatient population, and

captures events in structured form that occur in usual care,

including patient problem lists, prescriptions of medica-

tions, and other clinical observations as experienced in the

ambulatory care setting. The data were analyzed system-

atically under OMOP using seven commonly used methods

for 399 drug–ADR pairs [19]. The resulting signal scores

are reported and publicly available in OMOP. The signal

scores for this database were computed using the optimal

analytic method for each outcome as follows: self-con-

trolled case series (SCCS) method for ARF (analysis-ID

1949010), self-controlled cohort (SCC) method for ALI

(analysis-ID 409002), and information component tempo-

ral pattern discovery (ICTPD) method for AMI and GIB

(analysis-IDs 3016001 and 3034001) [19].
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2.1.4 Claims Data

In this study, we obtained signal scores associated with the

largest claims database—MarketScan Commercial Claims

and Encounters (CCAE). Similar to the GE data, CCAE

data were extensively analyzed in OMOP for the same

drug–ADR pairs with various methods. The signal scores

we used for this database were computed by OMOP using

the SCC method for ARF, ALI and AMI (analysis-IDs

404002, 403002 and 408013), and the SCCS method for

GIB (analysis-ID 1931010) [19].

2.1.5 Reference Standard

The reference standard was developed by OMOP. It con-

tains 165 positive and 234 negative controls, i.e., drugs for

which there is or is no evidence for corresponding ADRs.

This reference set was established by OMOP based on

natural language processing (NLP) of structured product

labels, systematic search of the scientific literature, and

manual validation. The reference standard comprises 181

drugs and four clinically important ADRs: ARF ALI, AMI,

and GIB. More details about the reference standard data

collection, including drug names, can be found in a pre-

vious publication [39].

Other important research conducted by OMOP resulted

in establishment of varied definitions, from narrow to

broad, for each ADR outcome they studied [34, 40]. Fur-

thermore, the mapping between ICD-9 codes and corre-

sponding MedDRA� codes for each ADR outcome were

also made available by OMOP. We adopted these defini-

tions to identify ADR case groups in NYP/CUMC EHR

and in FAERS.

2.2 Cohort Identification

In this study, we used the broad definitions of ICD-9 codes

established by OMOP for identifying ADR events in NYP/

CUMC EHR [40]. The same definitions were also utilized

in the GE EHR and the claims database. In addition, we

used the corresponding MedDRA� codes (as determined

by OMOP) for FAERS to identify patients with a particular

ADR. Our aim was to ensure that the ADRs are equivalent

when using the different databases.

2.2.1 FAERS

Case reports, which have at least one applicable ADR

MedDRA� code for an ADR, were identified as a case

group, whereas the rest were used as a control group. The

indications and all the medications reported in case reports

were included as candidate covariates for confounding

assessment.

2.2.2 NYP/CUMC EHR

The four ADR case groups were identified using their

equivalent ICD-9 codes. For each ADR, the control group

consisted of those patients free of the particular ADR. A

patient may have multiple records in an EHR and therefore

may have experienced an ADR several times, and may

have been on and off a particular medication. Only the first

occurrence of an ADR was considered and candidate

medications were restricted to those that were mentioned

before the ADR. If a case patient did not have any medi-

cations mentioned before the ADR, or a control patient did

not have any medication recorded before 2010, they were

excluded from the analysis. We also applied a 180-day

window before the latest medication prior to the ADR to

retrieve medications and medical conditions (ICD-9 diag-

nosis codes). We assumed that anything prior to that win-

dow was unlikely to be associated with the ADR. For

example, a drug taken in 2004 unlikely leads to the

development of an ADR in 2010. For the control groups,

we used the latest medication record before December 31,

2010 as the anchor, and retrospectively drew a 180-day

window to select medications and ICD-9 diagnoses. Since

our patient population was dominated by inpatients with

single hospitalization, the individual studying windows in

the control groups were evenly distributed from 2004 to

2010. Only ICD-9 codes were included as possible con-

founder candidates. Figure 1 illustrates the data extraction

windows for cases and controls.

2.3 Methodology Framework

As illustrated in Fig. 2, our methodology comprises three

steps: (i) obtaining the confounding adjusted signal score

for each drug–ADR pair from individual health data; (ii)

calibrating the signal scores based on the empirical distri-

bution derived from a set of reference negative controls;

(iii) combining calibrated signal scores from disparate

databases. In what follows, we elaborate the technical

details in each of the three steps.

2.3.1 Obtaining Confounding-Adjusted ADR Signal Scores

This step was based on a previously published work con-

ducted by our group which included identifying con-

founders for specific medications using marginal odds

ratios (ORs) and estimating the drug–ADR associations

using a least absolute shrinkage and selection operator

(LASSO) type regularization [31]. Results showed that the

method outperformed the high-dimensional propensity

score method, but the resulting false positive rates still

exceeded the nominal level [31]. Therefore, we revised the

method in two aspects. (1) In the previous work, we only
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considered the potential confounders that were signifi-

cantly and positively associated with both the ADR and the

medication. We now expanded this list to include medical

conditions that were significantly associated with the ADR

and medication in either a positive or negative direction.

The rationale is that negatively associated conditions could

also bias the strength of association. (2) Standard LASSO

implicitly assumes a sparse structure in the covariates, and

hence tends to select insufficient confounders in high-di-

mensional regression, which in turn leads to an inflated

false positive rate. We adopted a two-step LASSO [41] for

a better control of the false positive rate. In the first step,

we used the standard logistic LASSO regression to select

the confounders that are associated with ADR after

accounting for the impact from the drug use. In the second

step, we used a weighted linear LASSO regression to select

the covariates that are associated with the drug use. We

then estimated the conditional association between the

ADR and drug adjusting for all the confounders selected in

both steps. It is shown that the type I error could be well

controlled by including the confounders from both models

[41]. Finally, we used one-sided p values of the adjusted

log ORs as the signal scores. The details for the two-step

LASSO are shown in the electronic supplementary mate-

rial, Box 1. For GE EHR and claims data, the signal scores

(one-sided p values) were generated based on the log rel-

ative risks (log RRs) and their standard errors provided by

their optimal methods.

2.3.2 Calibrating ADR Signal Scores Based on a Set

of Reference Negatives

If there is no drug–ADR association, the signal scores

using one-sided p value should be uniformly distributed

over the interval (0, 1) in theory. In reality, that is often

deviated and leads to an inflated false discovery rate. We

apply the estimation algorithm to a set of negative con-

trols in the reference standard, and estimate the empirical

distribution of resulting signal scores following formula

(1), where qi represents a one-sided p value of a negative

control and n represents the number of negative controls

in the reference standard. F̂n xð Þ is then used as the null

distribution to calibrate signal scores. This calibration was

ADR specific by assuming that signal scores within sim-

ilar groups have their inherent ranking. For example, a

negative control for ALI was not considered in the cali-

bration of AMI. This procedure could be considered as a

supervised training procedure with the training set con-

sisting of negative controls in the reference standard.

Since we did not use the overall reference standard for

both training data and testing data, over-fitting is less of a

problem.

Fig. 1 Electronic health record

(EHR) cohort identification and

candidate covariates selection.

ADR adverse drug reaction,

ICD-9 International Statistical

Classification of Diseases,

Version 9

Fig. 2 Methodological framework. ADR adverse drug reaction,

CCAE MarketScan Commercial Claims and Encounters, EHR Elec-

tronic health record, FAERS FDA Adverse Event Reporting System,

GE EHR GE Healthcare MQIC (Medical Quality Improvement

Consortium) database, NYP/CUMC New York Presbyterian Hospital

at Columbia University Medical Center, OMOP Observational

Medical Outcomes Partnership
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F̂n xð Þ ¼ 1

n

Xn

i¼1

I x\qif g ð1Þ

2.3.3 Combining ADR Signal Scores from Two

Heterogeneous Databases

Let pi1 denote the ith ADR signal score computed from

source 1, for example, the NYP/CUMC EHR, and pi2
denote the signal score for the same drug–ADR pair

computed from source 2, for example, the FAERS. We

used the formula (2) to combine the signal scores from the

two data sources.

�2 � log pi1ð Þ þ log pi2ð Þ½ � � v2
4ð Þ under the null hypothesis

ð2Þ

2.4 Evaluation Design

We used the reference standard developed by OMOP as

described above to generate three reference standards for our

study. For reference standard 1, we restricted the evaluation

to those drug–ADR pairs for which FAERS contained at least

one case report and the NYP/CUMC EHR contained at least

five patients who were exposed to the studied medications

and who were later diagnosed with the studied ADR. The

application of a case count threshold is to ensure numeric

stability in the signal detection estimates, consistent with

what is proposed by Bate and Evans, in the use of PRR

(proportional reporting ratio) as signal detection routine for

SRS alone [7]. For reference standard 2, we restricted the

evaluation to those drug–ADR pairs for which FAERS had at

least one case report and the GE EHR had results available in

the OMOP result set. We had the same restriction for refer-

ence standard 3 based on FAERS and CCAE claims data. The

details of these three reference sets are shown in Table 1.

Based on reference set 1, 2 or 3, the performance of the

combined system was compared against the performance

of signal scores generated by each data source

independently. Performance was measured using the AUC.

To test if the differences of AUCs based on the different

combination systems were statistically significant, we

computed a one-sided p value for the hypothesis that the

difference between the AUC of the two systems was not

equal to 0. The tests were computed using a bootstrapping

method [42, 43]. To ensure the p values were computed

based on large enough samples of signal scores, and to get

a single answer representing all outcomes, the significant

tests were based on overall reference sets used in each

experiment.

We further studied the nature and proper use of the

combined system on the basis of four scenarios that could

occur in actual pharmacovigilance practice, and which

clinical assessors deal with frequently in their routine work.

Using the cutoff p value of 0.05, we defined a drug–ADR

pair as a signal if its p value is\0.05. Accordingly, the four

scenarios are: (i) a drug–ADR pair has p value \0.05 in

both FAERS and healthcare databases meaning a consis-

tent signal is exhibited in both sources; (ii) a drug–ADR

pair has p value C0.05 in both data sources meaning the

lack of this signal in either source; (iii) a drug–ADR signal

appears in FAERS but not in healthcare database meaning

an inconsistent signal is exhibited; and (iv) a drug–ADR

signal appears in healthcare database but not in FAERS,

also meaning an inconsistent signal is exhibited.

We also compared the AUC before and after con-

founding adjustment on the basis of the FAERS and NYP/

CUMC EHR, respectively. Furthermore, we identified false

positive signals in NYP/CUMC EHR by selecting those

negative controls that produced a one-sided p value\0.05

in the confounding adjustment analysis. We identified false

negative signals in EHR by selecting those positive con-

trols that had a one-sided p value[0.05 in the confounding

adjustment analysis. In addition, we compared the AUC

performance of the confounding adjustment method with

the cutting-edge method Gamma Poisson Shrinkage (GPS)

that produces signal scores signified by lower 5th

Table 1 Subsets of the OMOP reference standard used in the three experiments

Reference Set 1

FAERS and NYP/CUMC EHR

Reference Set 2

FAERS and GE EHR

Reference Set 3

FAERS and claims data

P N P N P N

Acute renal failure 16 37 21 48 21 51

Acute liver injury 52 16 75 30 77 32

Acute myocardial infarction 10 28 33 51 33 58

Upper GI bleed 17 38 24 57 24 63

Total 95 119 153 186 155 204

EHR electronic health record, FAERS FDA Adverse Event Reporting System, GE EHR GE Healthcare MQIC (Medical Quality Improvement

Consortium) database, N negative controls, NYP/CUMC New York Presbyterian Hospital at Columbia University Medical Center, OMOP

Observational Medical Outcomes Partnership, P positive controls in the reference standard
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percentile of the posterior observed-to-expected distribu-

tion (EB05) on the basis of FAERS data. We restricted

evaluation to those drug–ADR pairs for which FAERS had

at least one case report. Furthermore, we assigned a signal

score value of 0, the lowest possible signal score for EB05,

to those drug–ADR pairs that were never mentioned as

primarily suspected relationships, and consequently not

included in the analysis using GPS.

3 Results

We used 2.7 million case reports from FAERS, 0.3 million

patients from the NYP/CUMC EHR, 11 million patients

from the GE EHR data, and 47 million patients from the

CCAE claims data. Some case reports were excluded in

FAERS due to typos of drug names and/or the incomplete

list of drug names using STITCH. The characteristics of

patients for the four databases are shown in Table 2.

FAERS has the oldest population while CCAE has the

youngest population. The ratio of males to females is

approximately 1:1 for CCAE while other databases have

more females than males, and among them FAERS has the

largest number of females.

Table 3 shows the AUCs with and without confounding

adjustment, which suggests that the confounding adjust-

ment was essential for both FAERS and NYP/CUMC EHR

individually. The AUCs after the confounding adjustment

in FAERS were statistically significantly better (e.g.,

higher) than those without the adjustment based on refer-

ence set 1. However, we did not observe a substantial

improvement in the NYP/CUMC EHR. In total, there were

four false positive signals and 35 false negative signals for

the NYP/CUMC EHR. We displayed them correspondingly

in electronic supplementary material Table S1 and

Table S2.

The results from experiment 1 are presented in Table 4.

We found that the FAERS system performed significantly

better than the NYP/CUMC EHR system. Combining

FAERS and NYP/CUMC EHR data did not improve the

ADR detection performance of FAERS, although it did not

harm it either. The combined system also performed sig-

nificantly better than the NYP/CUMC alone. Experiment 2,

which is also presented in Table 4, shows that the com-

bined system outperformed both the FAERS and the GE

EHR individual systems. Improvements were observed for

all the outcomes, although at different levels. The AUC of

the combined system ranged from 76 % for ALI to 92 %

for ARF. For individual systems, the AUC performance of

the GE EHR system was better for AMI, but worse for

ARF, ALI, and GIB, compared with FAERS. Similar

results were found when combining FAERS with the

CCAE in experiment 3. The CCAE had better performance

than FAERS for AMI and GIB, but was worse for the other

two. Again, the combined system outperformed the indi-

vidual ones for all the four outcomes.

Table 2 Demography for four databases

Database Population

FAERS Total: 2.7 m; male: 37 %; mean age (SD): 53.0 (20.3)

NYP/

CUMC

Total: 0.3 m; male: 42 %; mean age (SD): 43.6 (27.0)

GE Total: 11.2 m; male: 42 %; mean age (SD): 39.6 (22.0)

CCAE Total: 46.5 m; male: 49 %; mean age (SD): 31.4 (18.1)

CCAE MarketScan Commercial Claims and Encounters, FAERS

FDA Adverse Event Reporting System, GE GE Healthcare MQIC

(Medical Quality Improvement Consortium) database, NYP/CUMC

New York Presbyterian Hospital at Columbia University Medical

Center

Table 3 AUC for FAERS and

NYP/CUMC EHR before and

after confounding adjustment

ADR FAERS NYP/CUMC EHR

Unadjusted Adjusted Unadjusted Adjusted

Acute renal failure 0.50 0.89* 0.58 0.61

Acute liver injury 0.50 0.70* 0.55 0.45

Acute myocardial infarction 0.48 0.65* 0.44 0.53

Upper GI bleed 0.49 0.83* 0.48 0.54

Total 0.49 0.75* 0.55 0.51

Unadjusted: signal scores (one-sided p values) are not adjusted for the confounding effect

Adjusted: signal scores (one-sided p values) are adjusted for the confounding effect

The bold values indicate the highest AUC performance but not necessarily significantly higher than

comparators except for those also marked with * where the performance difference is statistically

significant

ADR adverse drug reaction, AUC area under the receiver operator characteristics curve, EHR Electronic

health record, FAERS FDA Adverse Event Reporting System, NYP/CUMC New York Presbyterian

Hospital at Columbia University Medical Center
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Results in Table 5 show that the combined system

achieved better AUC performances in most of four sce-

narios for two of the combination studies. Overall, the

combined system had an increase in AUC when compared

to the individual systems where the increase ranged from

3 % to 11 %, but there was one exception. The exception

occurred in one scenario where the AUC was higher when

using the claims database alone in the situation where the

signals were detected in FAERS but not in the claims

database. The difference in AUC performance was defined

as the AUC of the combined system minus the AUC of the

better performing individual system.

Using the cutoff p value of 0.05, we evaluated the pre-

cision and recall of the two combined systems—the com-

bination system using FAERS and GE EHR, and the

combination system using FAERS and claims data. Com-

bining FAERS with the GE EHR resulted in higher recall

(0.41 versus 0.35), while the precisions of the two com-

bination systems were almost identical (0.925 versus

0.931). Using the same cutoff p value, eight more signals

were only detected by the combined system using FAERS

and GE EHR, as shown in Table 6. Among them, seven of

the eight were true positive signals.

Figure 3 shows the histograms of the signal scores for

GIB in each experiment. It is apparent from the figure that

the scale of signal score for FAERS did not overlap

substantially with each healthcare data set, and the dis-

tribution of the signal scores did not follow a normal

distribution.

4 Discussion

The main results of our evaluation show that combining

signals from two relatively large data sources (e.g., FAERS

and the GE EHR data, FAERS and the CCAE claims data)

using the proposed methodological framework led to an

overall significant improvement, which was replicated for

the different outcomes. However, we did not observe the

improvement when combining FAERS with the NYP/

Table 4 AUC of signal detection performance for FAERS, healthcare data, and combined systems

ADR Experiment 1. Combining FAERS and NYP/CUMC EHR

FAERS EHR Combined

Acute renal failure 0.89 0.61 0.89

Acute liver injury 0.70 0.45 0.68

Acute myocardial infarction 0.65 0.53 0.70

Upper GI bleeding 0.83 0.54 0.83

Total 0.75 0.51 0.74

ADR Experiment 2. Combining FAERS and GE EHR

FAERS GE Combined

Acute renal failure 0.91 0.68 0.92

Acute liver injury 0.71 0.63 0.76*

Acute myocardial infarction 0.72 0.80 0.82

Upper GI bleeding 0.80 0.77 0.87*

Total 0.76 0.76 0.82*

ADR Experiment 3. Combining FAERS and the claims data

FAERS Claims Combined

Acute renal failure 0.91 0.83 0.93

Acute liver injury 0.72 0.69 0.79*

Acute myocardial infarction 0.71 0.77 0.82*

Upper GI bleeding 0.81 0.83 0.86

Total 0.76 0.78 0.82*

The bold values indicate the highest AUC performance but not necessarily significantly higher than comparators except for those also marked

with * where the performance difference is statistically significant

ADR adverse drug reaction, AUC area under the receiver operator characteristics curve, EHR Electronic health record, FAERS FDA Adverse

Event Reporting System, GE EHR GE Healthcare MQIC (Medical Quality Improvement Consortium) database, NYP/CUMC New York

Presbyterian Hospital at Columbia University Medical Center
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CUMC EHR. The discrepancies are possibly attributed to

issues such as small data size and sample biases.

4.1 Small Data Size

NYP/CUMC EHR has already been successfully used for

detecting safety signals in several studies [13, 44, 45].

However, challenges remain because of the relatively small

size of the data. There were only 0.3 million patients in

NYP/CUMC EHR compared with 11 million in GE EHR

and 47 million in the CCAE claims data. Since ADRs

generally occur infrequently in the EHRs, and their signals

are often weak, a large data size is essential for effective

detection.

For the same reason, we could clearly observe that

higher prevalence of an ADR resulted in better

performance on the basis of the NYP/CUMC EHR.

Specifically, NYP/CUMC EHR included 14,890 patients

with ARF, 6099 patients with ALI, 5817 patients with

AMI, and 6683 patients with GIB. ARF, with many more

patients (almost three times as many patients as those

developing AMI), had better AUC performance than the

other three ADRs. Furthermore, when using NYP/CUMC

EHR to detect the drugs associated with ARF, we achieved

100 % precision, and successfully identified three true

positive medications: hydrochlorothiazide, telmisartan, and

candesartan.

4.2 Sampling Biases

The NYP/CUMC EHR data came from a tertiary care

academic medical center in a major metropolitan inner city

Table 5 The AUC performance of FAERS, healthcare data and the combined system on the basis of four scenarios

Scenarios Consistent information in two sources Inconsistent information in two sources

Both FAERS and

healthcare

database show signals

Neither FAERS nor

healthcare database

show

signals

FAERS shows signal but

healthcare database does

not

Healthcare database

shows

signal but FAERS does

not

Positive/negative controlsa 25/0 61/152 29/11 38/23

FAERS alone NA 0.71 0.73 0.60

GE alone NA 0.69 0.78 0.68

FAERS and GE combined NA 0.75* 0.89* 0.68

Positive/negative controlsa 49/3 16/104 7/8 83/89

FAERS alone 0.84 0.68 0.68 0.67

Claims alone 0.69 0.50 0.86 0.67

FAERS and claims combined 0.89* 0.74* 0.79 0.68

Signals are identified based on one-sided p value\0.05

The bold values indicate the highest AUC performance but not necessarily significantly higher than comparators except for those also marked

with * where the performance difference is statistically significant

AUC area under the receiver operator characteristics curve, FAERS FDA Adverse Event Reporting System, GE GE Healthcare MQIC (Medical

Quality Improvement Consortium) database, NA AUC performances are not computable when only positive controls are available
a Positive and negative controls are defined according to the reference standard

Table 6 ADR signals detected

only using the combined GE

and FAERS system and their

one-sided p values in three

systems

Medication ADR Ground Truth FAERS GE Combined system

Piroxicam ARF 1 0.299 0.432 0.043

Amoxapine AMI 1 0.076 0.118 0.007

Diflunisal AMI 1 0.109 0.192 0.007

Eletriptan AMI 1 0.682 0.072 0.034

Nabumetone AMI 1 0.079 0.494 0.035

Nelfinavir AMI 0 0.292 0.263 0.044

Zolmitriptan AMI 1 0.224 0.381 0.034

Ketorolac GIB 1 0.425 0.069 0.041

ADR adverse drug reaction, AMI acute myocardial infarction, ARF acute renal failure, FAERS FDA

Adverse Event Reporting System, GE GE Healthcare MQIC (Medical Quality Improvement Consortium)

database, GIB upper gastrointestinal bleeding, NYP/CUMC New York Presbyterian Hospital at Columbia

University Medical Center
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area, which may have led to a highly skewed population. In

addition, many of the patients included in our analysis

could have been referred from other facilities and therefore

their EHR data may have been incomplete because it may

have lacked longitudinal information for many of those

patients. Specifically, only 37 % of patients had at least one

outpatient visit and only 14 % of patients had more than

one visit. The NYP hospital does have an in-house for-

mulary, which is applicable only to medications concerning

inpatients. However, the medications studied in this work

were mainly home medications and were not related to the

NYP hospital formulary. Moreover, NYP/CUMC EHR

data was not linked to pharmacy prescriptions or refills, and

the medications extracted from free-text notes were just

mentions of medications, and therefore temporal relation-

ships between medication exposures and ADR events may

not have been definitive. In contrast, the GE EHR repre-

sented a large outpatient population and captured longitu-

dinal patient information, such as ICD-9 coded medical

problems and prescriptions. NYP/CUMC represented an

inpatient data source and GE EHR represented a strictly

outpatient data source, both of which could not capture the

complete patient information, and therefore the rates of

ADRs might be underestimated. The claims data repre-

sented a much larger and more diverse population, and

captured longitudinal patient information including diag-

nosis codes for billing purposes, as well as dates when

prescriptions were filled or refilled. However, both the GE

EHR and the claims data may also have faced the challenge

of a skewed patient population, such as sicker patients

having many more visits, and more prescriptions and refills

in the database [46].

4.3 Usefulness for Pharmacovigilance Practice

The AUC evaluation showed that FAERS had substantially

better performance for ARF and ALI, and worse perfor-

mance for AMI than healthcare data, which indicates that

Fig. 3 Histograms of signal scores when combining FAERS with the

three healthcare data sets. Signal scores for FAERS and the EHR are

signified by log odds ratio, and signal scores for the GE EHR and the

claims data are signified by log relative risks. EHR Electronic health

record, FAERS FDA Adverse Event Reporting System, GE EHR GE

Healthcare MQIC (Medical Quality Improvement Consortium)

database, NYP/CUMC New York Presbyterian Hospital at Columbia

University Medical Center
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no single source may provide best evidence for all ADR

detections. Therefore, synthesis of evidence from multiple

streams of information is extremely significant. Currently,

clinical assessors carry out the analysis of evidence from

multiple sources. For example, clinical assessors may

validate or want to evaluate a signal from different

resources, such as those generated from SRSs and/or

healthcare data. Thus, a common situation that clinical

assessors need to deal with is inconsistent or conflicting

information from the different data sources.

Results show that the combined ADR signals generated

by the proposed method improved the AUC performance

significantly compared with individual systems. In addition,

we evaluated the combined system in four scenarios men-

tioned above. We observed that the consistent improvement

was achieved by the combined system except for signals that

appeared in FAERS but not in the CCAE claims database.

However, the combined system was still better than the

FAERS system alone in ranking potential signals. Therefore,

the proposed system could serve as a tool for clinical

assessors when they review ADR cases. For example, in the

scenario of consistent signals, clinical assessors are likely to

believe the existence of the signals and may want to select

the strongest signals for further assessment; the combined

system could prioritize signals by integrating the two sour-

ces. In the scenario of inconsistent signals, the combined

system is able to resolve inconsistent or conflicting statistical

information and then provide a single response through the

consolidation of statistical information from the two sources.

In the scenario where no single source provides a signal, the

combined system could possibly transfer two relatively

weak signals into a strong composite one. For instance, eight

more signals were detected only using the combined GE and

FAERS system and seven of them were true positives,

which is promising. However, a practical challenge is how

to effectively communicate these results to the clinical

assessors. In addition, combining FAERS with GE resulted

in higher recall and almost identical precision when com-

pared with combining FAERS with claims data. These

results further demonstrated that the larger data size (e.g.,

combining FAERS with claims) does not necessarily lead to

more sensitive ADR detection. We also observed that

healthcare databases were more sensitive for ADR detection

than FAERS in that more signals were identified. We

acknowledge that the recall and precision are threshold-de-

pendent performance metrics. Hence, the results may vary

when using different thresholds. In practice, pharmacovigi-

lance requires the successful integration of quantitative

measures of population-level summaries with clinical adju-

dication and insights that derive from patient-level case

review. The true utility of this approach will only be

determined through implementation into the workflow of

current pharmacovigilance operations.

4.4 Related Work

Our method was designed originally to combine the NYP/

CUMC EHR with FAERS, which is the first such study.

Harpaz et al. designed an empirical Bayes model to com-

bine signals across FAERS and claims data showing its

effectiveness using the same reference standard used in this

study [25]. However, that method required that the data

satisfy two assumptions: (a) the signal scores generated

from each individual data source should be on approxi-

mately the same scale, and (b) the scores should follow the

log normal distribution. Our data sets did not meet these

assumptions. Figure 3 illustrates the violation of the above

two assumptions for GIB, but the other three ADRs had

similar results.

4.5 Methods to Deal with Confounding

The capability to reduce or eliminate confounding is a

major aim of ADR detection. Self-controlled designs have

recently been proposed and successfully utilized in ADR

detection based on longitudinal healthcare data. They

attempt to identify equivalent periods of unexposed time

within the same patients, against which to compare the

same patients’ exposed time. However, NYP/CUMC EHR

data lacked this kind of longitudinal information relating to

when a patient was put on or taken off a medication. Our

prior study showed that insufficient confounder selection

led to high false positive rates [31] and therefore we

designed the two-step LASSO regression (step 1 of the

proposed methodological framework) to select more asso-

ciated confounders. The AUC performances were generally

improved after the confounding adjustment except for ALI.

We also applied this algorithm to the FAERS data and the

AUC performances were statistically significantly better

with this algorithm than without it. Although the proposed

confounding adjustment method for FAERS could not

leverage primary suspected information stemming from the

clinical judgment of the reporter, the results in electronic

supplementary material Table S3 show that the confound-

ing adjustment method achieved comparable performance

with the cutting-edge algorithm GPS based on primary

suspected medication. For example, the confounding

adjustment method had better AUC performances in ARF,

AMI, and GIB, and lower AUC performance in ALI. We

are also aware that clinical assessors in the industry

sometimes include concomitant medications in addition to

the primary suspected medication in the disproportionality

analysis. However, the implications of including con-

comitant medications in disproportionality analysis, which

is not able to deal with confounding by co-medication, are

beyond the scope of this paper. The advantage of the two-

step LASSO compared with the single LASSO is shown in
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electronic supplementary material Figure S1 and Figure S2,

where the two-step LASSO separated positive controls

more from negative ones, reduced the false positive rate,

and achieved better AUC performance.

4.6 False Positive Signals in CUMC/NYP EHR

One false positive signal was rosiglitazone for GIB.

Rosiglitazone was mentioned in the records of 1587

patients where 133 of the patients developed GIB. The

confounding adjustment method scored this pair with a

one-sided p value of 0.01. In contrast, pioglitazone is in the

same drug class, and was mentioned in the records of 2477

patients where 110 patients developed GIB. The con-

founding adjustment method scored this pair with a one-

sided p value of 1.

4.7 False Negative Signals in CUMC/NYP EHR

Ryan et al. demonstrated that the cohort method using

high dimensional features selected by Bayesian logistic

regression generally yielded a negatively biased estimate

[19]. We observed the same trend in our data set and

summarized possible reasons for false negative signals.

(1) Data sparseness since there were not enough patients

exposed to the studied medications when the ADR

occurrences were quite rare. (2) Confounding by indi-

cation because an indication for a drug may bias the

estimated association if it is associated with an increased

risk of the ADR itself. For example, amlodipine and

nifedipine have hypertension as an indication, but

hypertension was also related to AMI, and therefore the

method did not yield positive associations. However,

amlodipine and nifedipine were in the reference standard

as being positive for AMI. The proposed method could

not deal with this issue correctly, and more clinical

knowledge may be needed. For example, we may com-

pare a medication with the other medications in the same

treatment regimen to better understand its relationship

with the ADR.

4.8 Generalization of the Method

The overall method includes three steps, which are (1)

generating drug ADR signals, (2) calibrating ADR signal

scores based on a set of reference negatives, and (3) inte-

grating calibrated signals. Step 1 and Step 3 are easily

generalizable to other ADRs. Step 2 requires the avail-

ability of negative controls for a particular ADR, and for

ADRs where negative controls are available, the method is

generalizable. In addition, the process developed by

OMOP, which involves examining and collecting negative

controls, is generalizable and could be adapted to other

ADRs.

4.9 Limitations

This study had several limitations. First, using the NYP/

CUMC was a limitation because of its relatively small

population, which limited EHR signal detection capa-

bility, and therefore performance of the combined sys-

tem as well. In future work, we plan to include

additional EHR data from multiple sites. Second, when

using the NYP/CUMC EHR, we simply adopted the

OMOP outcome definitions, which may not be optimal

for the EHR data set, and could have led to outcome

misclassification including both false positive and false

negative patients. Third, the confounding adjustment

method did not deal well with drugs given only to a

particular patient population and therefore the control

groups on the basis of a general population were not

representative for that population. Fourth, the con-

founding adjustment method assumed a single and

homogeneous OR for a drug–ADR combination, which

may not be appropriate. For example, an ADR is more

likely to happen among patients who have contraindi-

cations or who have certain comorbidities than in other

patients. In future work, we plan to apply clustering

algorithms to group patients with similar symptoms or

diagnoses and then acquire associations within these

relatively homogeneous patient groups. Fifth, when

using FAERS, we did not remove duplicate reports or

correct terminological errors. Lastly, the reference stan-

dard consists of test cases that were publicly known

during the time frame of our evaluation, and thus the

performance may be altered when using the reference

standard of emerging safety signals [47].

5 Conclusions

In this paper, we described a method for ADR detection

that combined FAERS with healthcare data and showed

significant improvement when individual healthcare

resources had sufficient amounts of data. Although the

small NYP/CUMC EHR database did not contribute to

improvement, use of the large-size network-based GE EHR

data and claims data did significantly show improved

performance when combined with the FAERs data. An

advantage of this method is that it can serve as a tool for

synthesizing evidence for clinical assessors in actual

pharmacovigilance practice.
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