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Abstract
Drug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of in-

tense scientific interest. Biomedical literature mining can aid DDI research by extracting evi-

dence for large numbers of potential interactions from published literature and clinical

databases. Though DDI is investigated in domains ranging in scale from intracellular bio-

chemistry to human populations, literature mining has not been used to extract specific

types of experimental evidence, which are reported differently for distinct experimental

goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal

mechanisms of putative interactions and as input for further pharmacological and pharma-

coepidemiology investigations. We used manually curated corpora of PubMed abstracts

and annotated sentences to evaluate the efficacy of literature mining on two tasks: first,

identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, ex-

tracting sentences containing such evidence from abstracts. We implemented a text mining

pipeline and evaluated it using several linear classifiers and a variety of feature transforms.

The most important textual features in the abstract and sentence classification tasks were

analyzed. We also investigated the performance benefits of using features derived from

PubMed metadata fields, various publicly available named entity recognizers, and pharma-

cokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and

irrelevant abstracts (reaching F1�0.93, MCC�0.74, iAUC�0.99) and sentences (F1�0.76,

MCC�0.65, iAUC�0.83). We found that word bigram features were important for achieving

optimal classifier performance and that features derived from Medical Subject Headings

(MeSH) terms significantly improved abstract classification. We also found that some drug-

related named entity recognition tools and dictionaries led to slight but significant improve-

ments, especially in classification of evidence sentences. Based on our thorough analysis

of classifiers and feature transforms and the high classification performance achieved, we

demonstrate that literature mining can aid DDI discovery by supporting automatic extraction

of specific types of experimental evidence.
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Introduction
Drug-drug interaction (DDI) is one of the major causes of adverse drug reaction (ADR) and a
threat to public health. Pharmaco-epidemiology studies [1] and recent National Health Statis-
tics Report publications [2, 3] indicate that each year an estimated 195,000 hospitalizations and
74,000 emergency room visits are the result of DDI in the United States alone [4]. DDI has
been implicated in nearly 3% of all hospital admissions [5] and 4.8% of admissions among the
elderly [1] and is a common consequence of medical error, representing 3% to 5% of all inpa-
tient medication errors [6]. With increasing rates of polypharmacy, which refers to the use of
multiple medications or more medications than are clinically indicated [7], the incidence of
DDI will likely increase in the coming years.

Researchers link molecular mechanisms underlying DDI to their clinical consequences
through three types of studies: in vitro, in vivo, and clinical [8–10]. In vitro pharmacology ex-
periments use intact cells (e.g. hepatocytes), microsomal protein fractions, or recombinant sys-
tems to investigate molecular interaction mechanisms within the cell (i.e. metabolic, transport-
or target-based). In vivo studies evaluate whether such interactions impact drug exposure in
humans. Finally, clinical studies use a population-based approach and large electronic medical
record databases to investigate the contribution of DDI to drug efficacy and ADR.

Automated biomedical literature mining (BLM) methods offer a promising approach for
uncovering evidence of possible DDI in published literature and clinical databases [11]. BLM is
a biomedical informatics methodology that holds the promise of tapping into the biomedical
collective knowledge [12] by extracting information from large-scale literature repositories and
by integrating information scattered across various domain-specific databases and ontologies
[13–15]. It has been used for knowledge discovery in many biomedical domains, including ex-
traction of protein-protein interactions [16, 17], protein structure prediction [18], identifica-
tion of genomic locations associated with cancer [19], and mining drug targets [20]. In the
domain of DDI, putative interactions uncovered by BLM can serve as targets for subsequent in-
vestigation by in vitro pharmacological methods as well as in vivo and clinical studies [11].

BLM has previously been used for DDI information extraction [21–26], as overviewed by
the literature on recent DDI challenges [27–29] and Pacific Symposium on Biocomputing ses-
sions [30, 31]. However, much remains to be done in automatic extraction of experimental evi-
dence of DDI from text. Importantly, experimental evidence of DDI is reported differently for
the different types of studies described above. For instance, in vivo pharmacokinetic experi-
ments report parameters such as the ‘area under the concentration-time curve’, while clinical
studies may instead report population-level statistics of adverse drug reactions. It is important
for BLM pipelines to be able to identify these different kinds of evidence independently.

To address this situation, we demonstrate the use BLM for reliable extraction of pharmaco-
kinetic evidence for DDI from reports of in vitro and in vivo experiments. Pharmacokinetic ex-
perimental evidence refers to measures of pharmacokinetic parameters such as the inhibition
constant (Ki), the 50% inhibitory concentration (IC50), and the area under the plasma concen-
tration-time curve (AUCR). Such evidence is particularly important in identifying or dismiss-
ing causal mechanisms behind DDIs and in providing support for putative DDIs extracted
from mining patient records, where biases and confounds in reporting often give rise to non-
causal correlations [32]. In order to pursue the goal of using BLM to uncover pharmacokinetic
DDI evidence, a collaboration was developed between Rocha’s lab, working on literature min-
ing, and Li’s lab, working on pharmacokinetics. Though this work is focused on pharmacoki-
netic evidence, in subsequent studies we will approach other types of DDI evidence (e.g.
clinical evidence).
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Our approach is different from previous BLM approaches to DDI information extraction
[21–26, 28] because our ultimate goal is not to identify interacting drugs themselves but rather
abstracts and sentences containing a specific type of evidence of drug interaction. Existing DDI-
extraction methods and corpora—including those evaluated under the DDI Extraction chal-
lenges [27–29, 33, 34]—are not well suited for this task because they do not attempt to extract
experimental evidence of drug interactions, nor specifically label distinct kinds of evidence. For
instance, the DDI Extraction challenge ‘11 [33] used a corpus of several hundred documents
from DrugBank [35], but interacting drug pairs were annotated without regard for the presence
of experimental evidence. More recently, the DDI Extraction challenge ‘13 [34] provided a cor-
pus annotated with pharmacokinetic and pharmacodynamic interactions [29], but the goal of
the text mining task was the extraction and classification of interacting drug pairs, not the ex-
traction of the experimental evidence of interactions. Other related work has used DrugBank
data for large-scale extraction of drug-gene and drug-drug relationships [22, 36], and for pre-
dicting DDI using a drug-drug network based on phenotypic, therapeutic, chemical, and geno-
mic feature similarity [37], but neither study aimed to identify or extract specific kinds
experimental evidence of DDI.

We have previously shown that BLM can be used for automatic extraction of numerical
pharmacokinetics (PK) parameters from the literature [38]. However, that work was not ori-
ented specifically toward the extraction of evidence of DDI. Recently, we reported high perfor-
mance in a preliminary work on automatically classifying PubMed abstracts that contain
pharmacokinetic evidence of DDI [39] (details below). Because identifying relevant abstracts is
only a first step in the process of extracting pharmacokinetic evidence of DDI, in this work we
consider both the problem of identifying abstracts containing pharmacokinetic evidence of
DDI and that of extracting from abstracts sentences that contain this specific kind of evidence.
In addition to evidence sentence extraction, we also provide a new assessment of abstract classi-
fication using an updated version of a separately published corpus [26], leading to substantially
better classification performance than reported in our preliminary study [39]. The updated
corpus is described below and is publicly available. Finally, we provide a new comparison of
classifiers, a new evaluation methodology using permutation-based significance tests and Prin-
cipal Component Analysis (PCA) [40] of feature weights, and a detailed study of the benefits of
including features derived from PubMed metadata, named entity recognition tools and
specialized dictionaries.

We created abstract and sentence corpora using annotation criteria for identifying pharma-
cokinetic evidence of DDI. We consider positive (indicating the presence of interactions) and
negative (indicating the absence) DDI evidence as relevant (see “Materials and Methods” sec-
tion), since both provide important information about possible DDI. Because the criteria con-
sidered here are different from those used in previously available DDI corpora, our results are
not directly comparable to other BLM approaches to DDI. Therefore, we pursued a thorough
evaluation of the performance of different types of classifiers, feature transforms, and normali-
zation techniques. For both abstract and sentence classification tasks we tested several linear
classifiers: logistic regression, support vector machines (SVM), binomial Naive Bayes, linear
discriminant analysis, and a modification of the Variable Trigonometric Threshold (VTT) clas-
sifier, previously developed by Rocha’s lab and found to perform well on protein-protein inter-
action text mining tasks [12, 41, 42]. As we describe in the results and discussion sections,
classifiers fall into two main classes based on whether or not they take into account feature co-
variances. In addition, we compared different feature transform methods, including normaliza-
tion techniques such as ‘Term Frequency, Inverse Document Frequency’ (TFIDF) and
dimensionality reduction based on Principle Component Analysis (PCA). We also compared
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performance when including features generated by several Named Entity Recognition (NER)
tools and specialized dictionaries.

In the experiments reported, our goal is to measure the quality of automated methods in
identifying pharmacokinetic evidence of DDIs reported in the literature. More generally, we
seek to demonstrate that literature mining can be successful in automatically extracting experi-
mental evidence of interactions as part of DDI workflows. We show that many classifier config-
urations achieve high performance on this task, demonstrating the robustness and efficacy of
BLM on extracting pharmacokinetic evidence of DDI.

Materials and Methods
The following sections describe the methods used in our literature mining pipeline. Its basic
steps are visually diagrammed in Fig 1. They include the selection of corpus documents, hand-
labeling of ground truth assignments, extraction and normalization of textual features, and
computation of unigram/bigram occurrences matrices. Cross-validation folds are used to esti-
mate generalization performance of classifier and feature transform configurations, while
nested (inner) cross-validation folds are used to choose classifier hyperparameters. The soft-
ware consisted of custom Python scripts unless otherwise noted.

Fig 1. Literature mining pipeline. The basic steps of the literature mining pipeline include selection of corpus documents, hand-labeling of ground truth
assignments, extraction and normalization of textual features, and computation of unigram/bigram occurrences matrices. Cross-validation folds are used to
estimate generalization performance of classifier and feature transform configurations, while nested (inner) cross-validation folds are used to choose
classifier hyperparameters.

doi:10.1371/journal.pone.0122199.g001
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Abstract Corpus
For the training corpus, Li’s lab selected 1203 pharmacokinetics-related abstracts by searching
PubMed using terms from a previously developed ontology for PK pharmacokinetic parame-
ters [38]. Therefore, all retrieved articles describe and contain some form of pharmacokinetic
evidence, though not necessarily of DDI. We kept in vitro studies but removed any animal in
vivo studies. Abstracts were labeled according to the following criteria: abstracts that reported
the presence or absence of drug interaction supported by explicit experimental evidence of phar-
macokinetic parameter data were labeled as DDI-relevant (909 abstracts) while the rest were la-
beled as DDI-irrelevant (294 abstracts). DDI-relevance was established regardless of whether
the relevant enzymes were presented or not. Importantly, the concept of DDI-relevance em-
ployed here updates the criteria used in a previous preliminary study [39]. Interactions between
a drug and food, fruit, smoking, alcohol, and natural products are now classified as drug inter-
actions because their pharmacokinetics studies are designed similarly. For the same reason,
studies dealing with interactions between drug metabolites (instead of parent compounds) are
now also considered relevant, as well as studies reporting inhibition of induction of a drug on a
drug metabolism enzyme or drug transporter. Classification was done by three graduate stu-
dents with M.S. degrees and one postdoctoral annotator; any inter-annotator conflicts were
checked by a Pharm D. and an M.D. scientist with extensive pharmacological training. The
corpus is publicly available as “Pharmacokinetics DDI-Relevant Abstracts V0” in [43] (see
also [26]).

We extracted textual features from PubMed article title and abstract text fields as well as the
following metadata fields: the author names, the journal title, the Medical Subject Heading
(MeSH) terms, the ‘registry number/EC number’ (RN) field, and the ‘secondary source’ field
(SI) (the latter two fields contain identification codes for relevant chemical and biological sub-
stances). For each PubMed entry, the content of the above fields was tokenized, processed by
Porter stemming [44], and converted into textual features (unigrams and, in certain runs,
bigrams). Strings of numbers were converted into ‘#’, short textual features (with length of less
than 2 characters) and infrequent features (that occurred in less than 2 documents) were omit-
ted. Author names, journal titles, substance names, and MeSH terms were treated as single
textual tokens.

The corpus was represented as binary term-document occurrence matrices. We evaluated
classification performance under two different conditions: in the first—referred to as ‘unigram
runs’—only word unigram features were used; in the second—referred to as ‘bigram runs’—
word bigram features were used in addition to unigram features. Bigram runs included a much
larger number of parameters (i.e. the bigram feature coefficients) that needed to be estimated
from training data, which can potentially increase generalization error arising from increased
model complexity [45]. Testing the classifiers exclusively with unigram features as well as with
both unigram and bigram features evaluated whether the class information provided by
bigrams outweighed their cost in complexity.

Sentence Corpus
The evidence sentence task consisted in identifying those sentences within a PubMed abstract
that reported experimental evidence for the presence or absence of a specific DDI. For this pur-
pose, Li’s group developed a training corpus of 4600 sentences extracted from 428 PubMed ab-
stracts. All abstracts contained (positive or negative) pharmacokinetic evidence of DDIs.
Sentences were manually labeled as DDI-relevant (1396 sentences) if they explicitly mentioned
pharmacokinetic evidence for the presence or absence of drug-drug interactions, and as DDI-ir-
relevant (3204 sentences) otherwise. The same pre-processing and annotation procedures were
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followed for the sentence corpus as for the abstract corpus (see section “Abstract Corpus”).
This corpus is publicly available as “Deep Annotated PK Corpus V1” in [43] (see also [26]).

Classifiers
Six different linear classifiers were tested:

1. VTT: a simplified, angle-domain version of the Variable Trigonometric Threshold Classifier,
previously developed in Rocha’s lab [12, 41, 42]. Given a document vector x =<x1, . . ., xK>
with features (i.e. dimensions) indexed by i, the separating hyperplane is defined as

X

i

φixi � l ¼ 0

Here, λ is a threshold (bias) and φi is the ‘angle’ of feature i in binary class space:

φi ¼ arctan
pi
ni

� p
4

where pi is the probability of occurrence of feature i in relevant-class documents and ni is
the probability of occurrence of feature i in irrelevant-class documents. The threshold pa-
rameter l is chosen so that a neutral ‘pseudo-document’ defined by xi = (pi+ni)/2 falls exactly
onto the separating hyperplane.
The full version of VTT, which includes additional parameters to account for named entity
occurrences and which we have previously used in protein-protein interaction classification,
is evaluated in combination with various NER tools in section “Impact of NER and PubMed
metadata on abstract classification” below. VTT performs best on sparse, positive datasets;
for this reason, we do not evaluate it on dense dimensionality-reduced datasets. Notice that
in previous work, we used a different version of VTT with a cross-validated threshold pa-
rameter; its performance on the tasks was very similar, and is reported in the Supporting In-
formation as the ‘VTTcv’ classifier (section 1 and 2 in S1 Text).

2. SVM: a linear Support Vector Machine with a cross-validated regularization parameter (im-
plemented using the sklearn [46] library’s interface to the LIBLINEAR package [47]).

3. Logistic regression classifier with a cross-validated regularization parameter (also imple-
mented using sklearn’s interface to LIBLINEAR).

4. Naive Bayes classifier with smoothing provided by a Beta-distributed prior with a cross-vali-
dated concentration parameter.

5. LDA: a regularized Linear Discriminant Analysis classifier, following [48]. Singular value de-
composition (SVD), a dimensionality reduction technique, is first used to reduce any rank-
deficiency, after which the covariance matrix is shrunk toward a diagonal, equal-variance
structured estimate. The shrinkage parameter is determined by cross-validation.

6. dLDA: a ‘diagonal’ LDA, where only the diagonal entries of the covariance matrix are esti-
mated and the off-diagonal entries are set to 0. A cross-validated parameter determines
shrinkage toward a diagonal, equal-variance estimate. This classifier can offer a more robust
estimate of feature variances; it is equivalent to a Naive Bayes classifier with Gaussian fea-
tures [49].

Generally, linear classifiers fall into one of two types. Classifiers of the first type—sometimes
called ‘naive’ in the literature, which in our case include VTT, dLDA, and Naive Bayes—learn
feature weights without considering feature covariances. While covariance information can be
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useful for distinguishing classes, naive classifiers often perform well with small amounts of
training data, when covariances are difficult to estimate accurately. Classifiers of the second
type—which we refer to as ‘non-naive’, and which in our case included SVM, LDA, and Logis-
tic Regression—do consider feature covariances (often in combination with regularization
techniques to smooth covariance estimates) and can achieve superior performance when pro-
vided with sufficient training data.

Feature Transforms
For both unigram and bigram runs, we evaluated classification performance on several trans-
forms of the document matrices:

1. No transform: raw binary occurrence matrices (see section “Abstract Corpus”).

2. IDF: occurrences of feature i were transformed to its Inverse Document Frequency (IDF)
value: idf ið Þ ¼ log N

ciþ1, where ci is the total number of occurrences of feature i among all

documents. This reduced the influence of common features on classification.

3. TFIDF: the Term Frequency, Inverse Document Frequency transform (TFIDF); same as
above, but subsequently divided by the total number of features that occur in each docu-
ment. This reduced the impact of document size differences.

4. Normalization: the non-transformed, IDF, and TFIDF document matrices underwent a
length-normalization transform, where each document vector was inversely scaled by its L2
norm. L2 normalization has been argued to be important for good SVM performance [50].

5. PCA: The above matrices were run through a Principal Component Analysis (PCA) di-
mensionality reduction step. Projections onto the first 100, 200, 400, 600, 800, and 1000
components were tested.

Feature transforms can improve classification performance by making the surfaces that sep-
arate documents in different classes more linear and by decreasing the weight of non-discrimi-
nating features. PCA, on the other hand, reduces the number of parameters that need to be
estimated from training data. If class membership information is contained in the subspace
spanned by the largest principal components, then this kind of dimensionality reduction can
improve generalization performance by reducing noise and model complexity.

Performance evaluation
The abstract and sentence corpora described above were used both for training classifiers and
for estimating generalization performance on out-of-sample documents. In order to estimate
out-of-sample performance, we used the following cross-validation procedure for each possible
classifier and feature transform:

1. Each corpus was randomly partitioned into 4 document folds (75%–25% splits). This was
repeated 4 times, yielding 16 outer folds. All classifiers and transforms were evaluated using
the same partitions.

2. For each fold, the 75% split was treated as the ‘training’ split and the 25% split was treated
as the ‘testing split’. If a feature transform was used, it was applied to both splits but was
computed using statistics (such as IDF or principal components) from the training split. Fi-
nally, classifiers were trained on the training split and evaluated based on their prediction
performance on the testing split.
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3. Measures of classification performance (see below) on the testing split were collected. The
16 sets of performance measures were averaged to produce an estimate of generalization
performance.

Because training and testing documents are always separated, for each cross-validation fold
the above procedure is equivalent to calculating performance on an independent
testing corpus.

Except for VTT, the classifiers listed in section “Classifiers” used cross-validated regulariza-
tion parameters. These parameters were not chosen using cross-validation on the outer folds
because this would lead to a biased estimate of out-of-sample performance. Instead, regulariza-
tion parameters were chosen using nested cross-validation within each of the 75% blocks of the
above outer folds:

1. The 75%-block was itself partitioned into 4 folds (75%–25% splits of the outer 75% block).
This is repeated 4 times, producing a total of 16 inner folds for each outer fold training split.

2. Over a range of values of the cross-validated parameter, the procedure described in step 2
above was used, but now applied to the 75%/25% splits of each inner fold. Mean perfor-
mance on inner fold testing splits were measured using the Matthews Correlation Coeffi-
cient [51] (MCC), which is particularly well-suited for the unbalanced scenarios of our
corpora [52].

3. The parameter value giving the highest mean MCC was chosen as the regularization param-
eter value for training the classifier in the outer fold.

We evaluated the performance of the classifiers using three different measures: the balanced
F1 score (the harmonic mean of precision and recall), the iAUC or ‘area under the interpolated
precision/recall curve’ [53], and the MCC. In addition, we computed and reported the rank
product of these three measures (RP3) as a single inclusive metric of classification performance.
The RP3 measure provides a well-rounded assessment of classifier performance, as it combines
the ranking of the different individual measures [12, 41].

For displaying results, we focus primarily on the iAUC measure (in cases where only plots
of iAUC performance are provided, F1 and MCC plots are found in the Supporting Informa-
tion, S1 Text). iAUC does not depend on predicted class assignments but rather on the ranking
of test set documents according to classifier confidence scores from most relevant to most irrel-
evant. iAUC offers three major advantages as a measure of classification performance. First, it
provides a more comprehensive measure of classifier performance because it evaluates the en-
tire ranking of documents, as opposed to just class assignments. Second, iAUC is less sensitive
to variation driven by random-sampling differences in the training corpus, which may lead to
fluctuations in the class assignments of low confidence documents and, correspondingly, high
variability in measures such as F1 and MCC. Finally, it is more relevant in a frequently-encoun-
tered situation where a human practitioner uses a BLM pipeline to retrieve only the most rele-
vant documents (which should have high positive-class confidence scores) or to identify likely-
to-be-misclassified documents (which should have low confidence scores).

Both the abstract and sentence classification tasks are characterized by imbalanced datasets,
with more relevant-class abstracts and more irrelevant-class sentences respectively. For sim-
plicity, and because we are primarily concerned how ranking performance (as measured by
iAUC) changes between different machine learning configurations on the same dataset, we do
not perform resampling or re-weighting of training items. We also report MCC values, a mea-
sure which is known to be stable in the face of unbalanced classes [52].
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The performance of a classifier and feature transform configuration varies both due to ran-
dom sampling of folds and due to the inherent performance bias of the configuration over the
entire distribution of folds. Since we are only interested in the latter, observed performance dif-
ferences between pairs of configurations were tested for statistical significance using a non-
parametric paired-sample permutation test. First, the assignments of performance scores for
each of the 16 outer folds were permuted between the two classifier/transform configurations
under consideration. For each of the 216 possible permutations, the difference in across-fold
mean performance was calculated; this formed the distribution of performance differences
under the null hypothesis that the two configurations have equal performance. Finally, the p-
value was computed as the probability (one- or two-tailed, as indicated) of observing a differ-
ence under the null hypothesis distribution equal to or greater than the actual difference.

Results

Abstract classification performance
Fig 2 shows classifier performance on the abstract task for the unigram and bigram runs with
no feature transform applied. The best classifier configuration, as well as those configurations
not significantly different from the best (p>0.05, one-tailed test), are marked with an asterisk.
In addition, the performance results, ranks, and the rank-product (RP3) measure are reported
in Table 1. The best classifier achieves F1�0.93, iAUC�0.98, MCC�0.73, which constitutes a
substantial and significant improvement over our previous preliminary results reported in
[39], where we had reached F1�0.8, iAUC�0.88, MCC�0.6 (notice that these performance
values would be well below the lowest reported levels in Fig 2). This demonstrates that the cor-
pus used in this work—which is more carefully curated and now also considers interactions be-
tween drugs and food, fruit, smoking, alcohol, and natural products to be relevant (details in
“Materials and Methods Section”)—improves the classification of abstracts with pharmacoki-
netic evidence of DDI. The levels of performance achieved are excellent when compared to
similar abstract classification tasks in other biomedical domains. For instance, in the BioCrea-
tive Challenge III, considered one of the premier forums for assessment of text mining meth-
ods, the best classifiers of abstracts with Protein-Protein Interaction yielded performances of
F1�0.61, iAUC�0.68, MCC�0.55 [17]. Naturally, our results are not directly comparable to
results obtained on different corpora and on a different problem; rather, these numbers provide
guidance on what is typically considered good results in biomedical article classification.

Fig 2. Classification performance on abstracts. Performance for both unigram and bigram runs on non-transformed features. Left: F1 measure. Middle:
MCCmeasure. Right: iAUCmeasure. The best classifier configuration, and configurations not significantly different (p>0.05, one-tailed test) from it, marked
with asterisk ‘*’.

doi:10.1371/journal.pone.0122199.g002
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For each classifier, the inclusion of bigram features improved performance according to the
RP3 measure. The best classifier according to all measures was LDA using bigrams. The perfor-
mance of this classifier was significantly better than all others for the MCC, but not significant-
ly better that Logistic Regression according to iAUC, and not significantly better that Logistic
Regression and SVM according to F1 score. According to RP3, these three classifiers using
bigrams yield the best performance. Naive Bayes, VTT, and dLDA—classifiers that make a
‘naive’ independence assumption about features (see “Materials and Methods” section)—per-
formed below the top three. However, the performance levels they achieved are still quite high,
which indicates that such simple classifiers are also capable of classifying documents with phar-
macokinetic DDI evidence in our corpus. The in-house VTT classifier is the only classifier
among these that does not use cross-validated parameters; when used with NER features and
cross-validated parameters (the configuration for which it was originally designed [12, 41, 42]),
its performance improved (see below).

Feature Transforms and Dimensionality Reduction. The different feature transforms
and PCA-based dimensionality reductions (section “Materials and Methods”) significantly im-
proved performance for several classifiers, though they could not beat the performance of the
best non-transformed classifier. Details are provided in Supporting Information (section 1.1 in
S1 Text). To summarize, according to most measures only dLDA and SVM improved perfor-
mance significantly with either an IDF or TFIDF transform plus L2 normalization and di-
mensionality reduction (top n principal components). For instance, the best iAUC for SVM
(0.984) occurs with a dimensionality reduction to the top 800 principal components and no
feature transform; this is a significant improvement over the no-transform, no dimensionality
reduction SVM classifier reported in Table 1 and Fig 2, but not a significant improvement over
the overall best classifiers reported there (LDA and Logistic regression). The dLDA classifier
significantly improves its iAUC performance with almost all feature transform and dimension-
ality reduction combinations, but not above that of the top performing classifiers. We conclude
that feature transforms and dimensionality reduction does not lead to the best classification
performance on the abstract task.

Pharmacokinetics DDI Features in abstract classification. We looked at which textual
features play the largest role in the abstract classification task. A linear classifier separates

Table 1. Classification performance on abstracts. Performance for both unigram and bigram runs on non-transformed features according to F1, MCC, and
iAUC performance measures. The rank of the classifiers according to each measure is reported in parenthesis in the respective column. Classifiers are or-
dered according to the rank product (RP3) of the three measures (last column).

Classifier Type F1 MCC iAUC RP3

LDA Bigram .931 (1) .728 (1) .984 (1) 1

Log Reg Bigram .929 (2) .698 (3) .984 (1) 6

SVM Bigram .928 (3) .693 (4) .983 (3) 36

LDA Unigram .926 (6) .719 (2) .983 (3) 36

Log Reg Unigram .927 (4) .689 (5) .980 (6) 120

SVM Unigram .927 (4) .689 (5) .980 (6) 120

Naive Bayes Bigram .920 (7) .661 (10) .981 (5) 350

Naive Bayes Unigram .919 (8) .672 (7) .978 (9) 504

VTT Bigram .919 (8) .656 (12) .980 (6) 576

VTT Unigram .918 (10) .662 (9) .977 (10) 900

dLDA Bigram .909 (11) .670 (8) .975 (11) 968

dLDA Unigram .908 (12) .658 (11) .974 (12) 1584

doi:10.1371/journal.pone.0122199.t001
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document classes with a hyperplane defined by a set of feature coefficients. The impact of a fea-
ture on classification is quantified by the sign and amplitude of its hyperplane coefficient. A
feature with a large positive coefficient contributes strongly to a document’s propensity to be
classified as relevant, while a feature with a large negative coefficient contributes strongly to a
document’s propensity to be classified as irrelevant. In Table 2, we show the top 20 most dis-
tinctive features of the relevant and irrelevant classes in the abstract task, as chosen in the
bigrams runs by the LDA classifier (left) and Logistic Regression classifier (right), the two top-
performing classifiers in this task according to the RP3 measure (see Table 1). Notice that tex-
tual features are stemmed.

Some of the most relevant features come fromMeSH term metadata (such as the MeSH
term Drug interactions) and terms that explicitly indicate interactions (‘interact’, ‘inhibit’, ‘in-
teract between’, ‘decreas’, ‘increas’). Other relevant terms deal with administration protocols
and study design (‘oral’, ‘day’, ‘receiv’, ‘mg’, ‘treatment’, ‘alon’, ‘combin’). Some of the irrelevant
features concern genetics terminology (‘allel’, ‘genotyp’, ‘polymorph’, and MeSH term Pheno-
type), indicating that the irrelevant class was enriched with genetics or pharmacogenetics vo-
cabulary. Several generic biomedical terms (such as ‘patient’, ‘healthi subject’, ‘higher’) terms
are also highly irrelevant. In addition, highly irrelevant features also contain some non-DDI-
specific pharmacokinetic terms (for example, ‘area’, ‘rate’, ‘clearance of’), which is not surpris-
ing given that both relevant and irrelevant articles were drawn from pharmacokinetics-related
literature. One surprising result is the observation that while the MeSH termMale is one of the
top relevant features, the MeSH term Female is one of the top irrelevant features. We have no

Table 2. Top 20 relevant and irrelevant abstract features. The stemmed textual features most discriminative of relevant and irrelevant classes on the ab-
stract task, as chosen by two of the top-performing classifiers according to the RP3measure: LDA with bigrams (left) and Logistic Regression with bigrams
(right).

LDA (Bigram) Logistic Regression (Bigram)

Relevant Irrelevant Relevant Irrelevant

MeSH:Drug Interactions area MeSH:Drug Interactions area

interact rate interact rate

inhibit differ inhibit differ

interact between polymorph interact between MeSH:Reference Values

oral activ oral activ

day genotyp decreas that the

decreas higher mg conclus

receiv patient with Substance:Enzyme Inhibitors clearanc of

mg conclus receiv higher

increas to the auc patient

auc Substance:Hydrocarb. Hydroxylas. determin MeSH:Female

inhibitor that the treatment patient with

MeSH:Male lower day MeSH:Injections, Intravenous

treatment patient inhibitor polymorph

chang allel chang genotyp

increas the among dure MeSH:Phenotype

dure extens alon among

on the MeSH:Female MeSH:Male healthi subject

alon of the administ MeSH:Half-life

combin analysi chang in lower

doi:10.1371/journal.pone.0122199.t002
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explanation for the cause of this gender imbalance since the corpus was built from automatic
searches to PubMed without any gender-specific query terms.

Further analysis of highly relevant and irrelevant features across all classifiers and feature
transforms was performed and reported in the Supporting Information (section 1.2 in S1
Text). We quantified and plotted the contribution of standardized coefficients [54] of different
features and show the most positively and negatively loaded features for different classifier and
transform configurations. Top textual features obtained from all classifiers include additional
terms falling under the categories described above, with features derived from PubMed meta-
data (MeSH, chemical substances) also appearing among both the most relevant and irrelevant
sets. Other relevant MeSH terms, besides Drug Interactions, include Cimetidine/pharmacology,
Cross-Over Studies, Enzyme Inhibitors/PK, Kinetics, and Proton Pump Inhibitors. Additionally,
a PubMed author entry corresponding to a prominent researcher in the pharmacokinetics DDI
field (‘PJ Neuvonen’) appears as highly relevant, as well as three substances from the RN field
(see also section “Impact of NER and PubMed metadata on abstract classification” below): Ci-
metidine, Enzyme Inhibitors, and Proton Pump Inhibitors. For the irrelevant set, additional
MeSH (Anti-Ulcer Agents/adm&dos; Injections, Intravenous; Phenotype; Protein Binding; Refer-
ence Values) and Substance terms also appear (Anti-ulcer agents; Hydrocarb. Hydroxylas). The
Supporting Information S1 Text contains details of the analysis and lists of features. It also
shows the results of a Principal Component Analysis of feature weight coefficients chosen by
different classifiers.

Impact of NER and PubMed metadata on abstract classification. We have previously
demonstrated improved classification performance on protein-protein interaction BLM tasks
by supplementing textual features (such as the word unigram and bigram occurrences) with
features built using Named Entity Recognition (NER) and domain-specific dictionary tools [12,
41, 42]. To test if similar techniques are useful in the DDI domain, we counted mentions of
named biochemical species (e.g. proteins, compounds and drugs) and concepts (e.g. pharmaco-
kinetic terms) in each document and then included these counts as document features in addi-
tion to the bigram and unigram textual features. Counts were extracted using biomedical-
specific NER extraction tools and dictionaries, with dictionary matches identified by internal-
ly-developed software. A preliminary study of the impact of NER/Dictionary features was re-
ported in [39] using a previous less-refined DDI corpus. Here, in addition to using the more
fine-tuned corpus (see “Methods and Data” section), we study the impact of PubMed metadata
features on classification performance. We also provide a new comprehensive analysis of the
performance impact of including features from several publicly-available NER and metadata
resources:

• OSCAR4 [55]: NER tool for chemical species, reaction names, enzymes, chemical prefixes
and adjectives.

• ABNER [56]: NER tool for genes, proteins, cell lines and cell types.

• BICEPP [57]: NER tool for clinical characteristics associated with drugs.

• DrugBank database [58]: a dictionary list of drug names

• Dictionaries provided by Li’s lab. i-CYPS: cytochrome P450 [CYP] protein names, a group of
enzymes centrally involved in drug metabolism; i-PkParams: terms relevant to pharmacoki-
netic parameters and studies; i-Transporters: proteins involved in transport; i-Drugs: Food
and Drug Administration’s drug names. The dictionaries are available for download from
[43].
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For each of these NER tools and dictionaries, we counted the number of occurrences of any of
its entities/entries in a given abstract. These counts were treated as any other feature for SVM,
Logistic Regression, diagonal LDA, and LDA classifiers. Naive Bayes was omitted since NER
count features are non-binary. VTT incorporates NER features via a modified separating hy-
perplane equation:

X

i

φixi �
X

j

bj � cj
bj

� l ¼ 0

where xi represents the occurrence of textual feature i, φi and λ are textual feature and bias pa-
rameters as described in section “Classifiers”, cj is the count of NER/Dictionary feature from re-
source j, and βj is a weight for resource j, which is chosen by cross-validation.

In Fig 3 (left), we plot the relative iAUC changes over the respective classifiers without
NER/Dictionary count features (results for MCC and F1 in Supporting Information; section
1.3 in S1 Text). Significant performance changes are indicated with an asterisk (p<0.05, two-
tailed test). Some NER/Dictionary features improved performance significantly for several clas-
sifiers. However, the inclusion of two dictionary features (DrugBank, and i-CYPS) actually de-
creased performance significantly for several classifiers, suggesting that these features contain
little class information and instead contribute to over-fitting. Table 3 lists performance for con-
figurations in which NER and dictionary features gave a significant performance increase for at
least one of the three measures (F1, MCC, or iAUC), along with best classifier performance
using only textual features (bigram runs). The BICEPP tool consistently yielded the best im-
provement for every classifier tested, followed by the i-Drugs dictionary. The OSCAR4 tool
also significantly improved the performance of the VTT classifier (especially for the MCCmea-
sure as shown in Supporting Information, S1 Text). With the inclusion of NER and dictionary
features, the overall top classifiers (LDA and Logistic Regression), significantly improved their
performance, now reaching F1�0.93, MCC�0.74, iAUC�0.99. Among the set of naive classifi-
ers, VTT improved performance significantly with the inclusion of NER features, ranking
above the other naive classifiers according to the RP3 measure.

As mentioned, word unigram and bigram features were extracted not only from article ab-
stracts and titles, but also from five PubMed metadata fields: author names, journal titles,

Fig 3. Performance impact of abstract NER andmetadata features. Left: Relative changes in iAUC scores on non-transformed bigram runs in
combination with different NER/Dictionary features. Significant changes (p<0.05, two-tailed test) in performance over the respective classifiers without NER
features are indicated with asterisk ‘*’. Right: Relative changes in iAUC when features from a given PubMedmetadata field are included versus omitted
(while including features from the other 4 metadata fields). Significant changes (p<0.05, two-tailed test) in performance are indicated with asterisk ‘*’.

doi:10.1371/journal.pone.0122199.g003
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MeSH terms, and two fields referring to standardized substance names: the ‘registry number/
EC number’ [RN] field and the ‘secondary source’ field [SI]. In fact, some PubMed metadata
features were among those most distinguishing of relevant and irrelevant abstracts (for greater
detail, see Table 2 and section “Pharmacokinetics DDI Features in abstract classification”, as
well Supporting Information; section 1.2 in S1 Text). We tested the impact of PubMed meta-
data fields on abstract classification performance. In Fig 3 (right), we plot the relative iAUC
changes when features from a given PubMed metadata field are included versus omitted (while
including features from the other 4 metadata fields). Significant changes (p<0.05, two-tailed
test) in performance are indicated with an asterisk; results for MCC and F1 can be found in
Supporting Information (S1 Text). MeSH terms was the only metadata source whose omission
decreased performance significantly. However, the performance increase of including MeSH
data is rather small. Therefore, the methodology does not require the availability of human-an-
notated metadata such as MeSH terms and can still be deployed on recent articles that have not
yet been annotated with MeSH terms.

Evidence sentence extraction performance
Fig 4 shows classification performance on the sentence task of the unigram and bigram runs
without any feature transforms applied, according to F1, MCC, and iAUC measures. The best
classifier configuration, as well as those configurations not significantly different from the best
(p>0.05, one-tailed test), are marked with an asterisk. In addition, the numerical results, ranks,
and the rank-product (RP3) measure are reported in Table 4.

As with abstracts, including bigram features tended to improve sentence classification per-
formance. LDA performed best, having the highest RP3 and being the best classifier according
to the F1 and MCC measures and one of the two best classifiers (along with SVM) on the
iAUC measure. Generally, the classifiers that performed well on the sentence task were those

Table 3. Abstract classification performance using NER features. Performance of the best classifiers when specific NER and dictionary features are
added; original (bigram runs) classifiers also listed with no NER features (indicated by -). F1, MCC, and iAUC performance measures are listed; the rank of
the classifiers according to each measure is reported in parenthesis in the respective column. Classifiers are ordered according to the rank product (RP3) of
the three measures (last column).

Classifier NER F1 MCC iAUC RP3

LDA BICEPP .933 (2) .737 (1) .985 (1) 2

LDA i-Drugs .934 (1) .736 (2) .985 (1) 2

Log Reg BICEPP .933 (2) .714 (3) .985 (1) 8

Log Reg i-Drugs .930 (6) .700 (6) .985 (1) 36

LDA – .931 (5) .728 (3) .984 (5) 75

SVM BICEPP .932 (4) .710 (5) .984 (5) 100

Log Reg – .929 (8) .698 (7) .984 (5) 280

SVM i-Drugs .930 (6) .687 (10) .984 (5) 300

SVM – .928 (9) .693 (8) .983 (9) 648

VTT BICEPP .922 (11) .692 (9) .980 (12) 1188

VTT OSCAR4 .923 (10) .683 (11) .979 (14) 1540

VTT i-Drugs .920 (12) .670 (14) .981 (10) 1680

Naive Bayes – .920 (12) .661 (16) .981 (10) 1920

dLDA BICEPP .911 (15) .680 (12) .976 (15) 2700

VTT – .919 (14) .656 (17) .980 (12) 2856

dLDA i-Drugs .911 (15) .678 (13) .975 (16) 2700

dLDA – .909 (17) .670 (14) .975 (16) 3808

doi:10.1371/journal.pone.0122199.t003
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that took into account feature covariances: SVM, Logistic Regression, and LDA. The top classi-
fier (LDA with bigrams) on the evidence sentence task reached performance of F1�0.75,
MCC�0.64, iAUC�0.83.

We measured sentence classification performance in combination with different feature
transforms and dimensionality reductions (see section 2.1 in S1 Text). In general, the three
classifiers that do best on non-transformed features (SVM, Logistic Regression, and LDA)
show decreased performance with dimensionality reduction according to all measures, with
more extreme dimensionality reduction leading to larger performance decreases. On the other
hand, for dLDA (a ‘naive’ classifier that treats features as independent), PCA-based dimension-
ality reduction—which uses feature covariances to choose optimal projections—led to signifi-
cant improvements in all measures, with more dimensions giving better performance. These
findings indicate that the pattern of feature covariance carries important information about
class membership in the sentence task, and that this pattern is distributed across a large num-
ber of dimensions. Generally, the LDA classifier achieved the best performance according to all
three measures. Its baseline performance according to the iAUC measure was further improved

Fig 4. Sentence classification performance. Performance for both unigram and bigram runs on non-transformed features. Left: F1 measure. Middle: MCC
measure. Right: iAUCmeasure. The best classifier configuration, and configurations not significantly different (p>0.05, one-tailed test) from it, marked with
asterisk ‘*’.

doi:10.1371/journal.pone.0122199.g004

Table 4. Sentence classification performance. Performance for both unigram and bigram runs on non-transformed features according to F1, MCC, and
iAUC performance measures. The rank of the classifiers according to each measure is reported in parenthesis in the respective column. Classifiers are or-
dered according to the rank product (RP3) of the three measures (last column).

Classifier Type F1 MCC iAUC RP3

LDA Bigram .752 (1) .642 (1) .826 (1) 1

LDA Unigram .750 (2) .636 (2) .819 (4) 16

SVM Bigram .736 (3) .633 (3) .824 (2) 18

Log Reg Bigram .734 (7) .630 (4) .823 (3) 84

SVM Unigram .735 (6) .630 (4) .819 (4) 96

VTT Bigram .736 (3) .617 (8) .797 (7) 168

Naive Bayes Unigram .736 (3) .617 (8) .791 (10) 240

Log Reg Unigram .734 (7) .629 (6) .818 (6) 252

Naive Bayes Bigram .734 (7) .619 (7) .796 (8) 392

dLDA Unigram .732 (11) .613 (10) .790 (11) 1210

dLDA Bigram .710 (12) .600 (12) .794 (9) 1296

VTT Unigram .733 (10) .606 (11) .789 (12) 1320

doi:10.1371/journal.pone.0122199.t004
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significantly by an IDF-transform, and—according to the F1 measure—by any transform con-
taining an L2 normalization.

In Table 5, we show the top 20 features most distinctive of the relevant and irrelevant classes
in the sentence task as chosen by the LDA classifier on bigrams (the top performing classifier
according to the RP3 measure; features of other top classifiers are not shown because they were
highly similar). Numerical features (indicated by ‘#.#’) were highly indicative of the relevant
class, along with expressions of quantitative changes (‘decreas’, ‘increas’) and interaction (‘in-
hibit’, ‘catalyz’, ‘interact with’) as well as adverbs expressing significance of evidence (‘signifi-
cantli’). Also highly relevant were features referring to the area under the concentration-time
curve (‘auc’), which is often employed in pharmacokinetics to measure differences in drug
clearance rates under different experimental conditions. Names of several drugs (‘ketoconazol’,
‘itraconazol’, ‘quiindin’) were relevant in predicting DDI evidence sentences. These drugs are
frequently used probe inhibitors for metabolism enzymes CYP3A4/5, CYP3A4/5 and CYP2D6
respectively and are routinely used in drug interaction studies.

Highly irrelevant features refer to more generic pharmacokinetic or biomedical concepts
such as ‘investig’, ‘dose’, ‘enzym’, ‘studi’, etc. Interestingly, some terms that are highly relevant
in the abstract task are highly irrelevant in the sentence task (e.g., ‘day’). Notably, the unigram
‘interact’ is highly irrelevant for sentences, whereas the bigram ‘interact with’ is highly relevant.
This may be because all sentences in this corpus come from abstracts containing pharmacoki-
netic DDI evidence (see “Materials and Methods” section). Thus, general administration
protocols and drug interaction terms are likely to occur in the abstract as a whole but not nec-
essarily in the evidence sentences that actually report outcomes of the pharmacokinetic drug

Table 5. Top 20 relevant and irrelevant sentence features. The most discriminative features of relevant
and irrelevant classes in the sentence task, as chosen by the top-performing classifiers according to the RP3
measure: LDA on bigrams.

LDA (Bigram)

Relevant Irrelevant

inhibit day

increas investig

#.# determin

ketoconazol vitro

decreas evalu

microm enzym

rifampin use

format differ

catalyz cytochrom p450

auc studi

significantli dose

coadministr examin

itraconazol measur

quinidin subject

clearanc assess

reduc interact

#.#-fold compar

show drug

co-administr genotyp

interact with cytochrom

doi:10.1371/journal.pone.0122199.t005
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interaction experiments. Similar patterns are observed in the more extensive analysis provided
in Supporting Information (section 2.2 in S1 Text), where relevant and irrelevant features are
analyzed across a wide range of classifier and feature transform configurations. There we also
show the results of a Principal Component Analysis of feature weight coefficients chosen by
different classifiers.

Finally, we tested the impact of additional features on sentence classification. Though there
is no metadata available in the sentence corpus, features from NER tools can still be computed.
Six NER features were tested: BICEPP, DrugBank, i-CYPS, i-Drugs, i-PkParams, i-Transporters
(see section “Impact of NER and PubMed metadata on abstract classification” for details). As
before, we counted mentions of named biochemical species and concepts specified by different
NER tools in each sentence and then included such counts as sentence features in addition to
the bigram and unigram textual features. Fig 5 shows relative iAUC changes when features
from each of these NER tools were included. Significant improvements (p<0.05, two-tailed
test) above the corresponding classifier’s performance without NER features are indicated by
an asterisk; performance according to MCC and F1 measures is shown in Supporting Informa-
tion (section 2.3 of S1 Text). Notice that Naive Bayes was omitted since NER count features are
non-binary.

As in the abstract task, a few NER/Dictionary features improved performance for several
classifiers. The iAUC scores of nearly all classifiers were significantly improved by three NER
features: BICEPP, DrugBank, and our internally developed i-Drugs dictionary. These three fea-
tures represent counts of drugs names, showing that drug name counts are helpful for classify-
ing sentences as DDI-relevant vs. DDI-irrelevant. Use of features from the BICEPP tool yielded

Fig 5. Performance impact of sentence NER features.Relative changes in iAUC scores on sentence bigram runs (without transforms or dimensionality
reductions) in combination with different NER features. Significant changes (p<0.05, two-tailed test) in performance over respective classifiers without NER
features are indicated with asterisk ‘*’.

doi:10.1371/journal.pone.0122199.g005
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the largest improvement for every classifier. Table 6 lists the performance according to all mea-
sures for classifiers using the BICEPP features; also listed are the corresponding best classifiers
using only textual features (bigram runs). The overall top classifiers (LDA and SVM) showed
significantly improved performance with the inclusion of these NER features, reaching
F1�0.76, MCC�0.65, iAUC�0.83. In addition, VTT performance improved significantly for
all three measures with the inclusion of NER features. Here VTT with bigrams performs better
than other naive classifiers, as expected given that this classifier was designed specifically to
handle such NER features [12, 41, 42]. In contrast, dLDA (another naive classifier) did not ben-
efit much from the inclusion of NER features.

Discussion
We have demonstrated that current BLMmethods for text classification can reliably identify
PubMed abstracts containing pharmacokinetic evidence of drug-drug interactions, as well as
extract specific sentences that mention such evidence from relevant abstracts. The performance
reached on a corpus of carefully annotated pharmacokinetics literature is quite high for both
abstract classification (reaching F1�0.93, MCC�0.74, iAUC�0.99) and evidence sentence ex-
traction (F1�0.76, MCC�0.65, iAUC�0.83). To explore the capability of BLM in the pharma-
cokinetics DDI context, where there are no existing directly-relevant corpora or experiments,
we pursued a thorough comparison of the performance of several linear classifiers using differ-
ent combinations of unigrams, bigrams, PubMed metadata, and NER features. We also tested
the effects of applying feature transforms and dimensionality reduction.

From a classification performance perspective, some results are noteworthy: in terms of tex-
tual features, bigrams in combination with unigrams performed significantly better than uni-
grams alone. However, performance in unigram versus bigram runs for the same classifier
differed by no more than one percent for iAUC and MCC. Thus, while bigram features did
contain some additional information about class membership, the amount of this information
was not large.

In our experiments, feature transforms and PCA-based dimensionality reduction signifi-
cantly improved performance for several classifiers (especially “naive” classifiers such as
dLDA, which assume feature independence), but did not significantly improve the overall best

Table 6. Sentence classification performance with NER features. Performance of different sentence classifiers with the count features obtained via the
BICEPP NER tool; also listed are the corresponding best classifiers using only textual features (bigram runs; indicated by -). F1, MCC, and iAUC performance
measures are listed; the rank of the classifiers according to each measure is reported in parenthesis in the respective column. Classifiers are ordered accord-
ing to the rank product (RP3) of the three measures (last column).

Classifier Type F1 MCC iAUC RP3

LDA BICEPP .757 (1) .650 (1) .831 (1) 1

SVM BICEPP .741 (4) .639 (3) .831 (1) 12

LDA – .752 (2) .642 (2) .826 (4) 16

Log Reg BICEPP .738 (5) .634 (4) .828 (3) 60

VTT BICEPP .742 (3) .629 (7) .805 (7) 147

SVM – .736 (6) .633 (5) .824 (5) 150

Log Reg – .734 (8) .630 (6) .823 (6) 288

VTT – .736 (6) .617 (8) .797 (8) 432

Naive Bayes – .734 (8) .619 (8) .796 (10) 640

dLDA BICEPP .711 (10) .603 (10) .797 (8) 800

dLDA – .710 (11) .600 (11) .794 (11) 1331

doi:10.1371/journal.pone.0122199.t006
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performance. We also found that a sophisticated version of the LDA classifier dominated per-
formance in both the abstract and sentence tasks. This classifier used SVD to eliminate rank-
deficiency in the feature occurrence matrices and performed shrinkage of the feature covari-
ance matrix for regularization (see “Materials and Methods”).

From the drug-interaction domain perspective, feature analysis in the abstract task revealed
that pharmacokinetic DDI evidence in the literature is highly correlated with terms that explic-
itly indicate interaction (including MeSH terms), enzyme inhibitors (including substance
names via the RN metadata field in PubMed), DDI administration protocols, and study design.
At the sentence level, drug interaction evidence from a pharmacokinetics perspective is highly
correlated with terms that express experimental results, such as numerical values, measures of
drug clearance, expressions of quantitative changes, as well as adverbs expressing significance
of evidence. Feature analysis at the abstract level also revealed that lack of DDI evidence in the
pharmacokinetics literature (irrelevant class) is highly correlated with some terms from
PubMed metadata fields, as well as those pertaining to genomic or general medical terminolo-
gy. At the sentence level, sentences in relevant abstracts but without DDI evidence tend to in-
clude terminology relevant to pharmacokinetics protocols, as well as more generic interaction
discourse or biomedical concepts.

Since many important features came from PubMed metadata fields, we looked at changes in
iAUC scores when features from different PubMed metadata fields were omitted. We found
that only the omission of MeSH terms significantly affected abstract classification performance.
Nonetheless, while statistically significant, the drop in performance was rather small (affecting
only millesimals of the iAUC, iAUC�0.98 without), indicating that abstract classification does
not depend strongly on the inclusion of MeSH term features. This is an important consider-
ation since MeSH terms may not be immediately added to publications, with statistics indicat-
ing that only 50% of citations are annotated within 60 days of inclusion in PubMed [59].
Therefore, classification and evidence extraction from brand new articles should not rely on
such metadata.

We also tested the effect of including features extracted using named entity recognition
(NER) and dictionary tools, namely those for detecting possibly-relevant chemical, genomic,
metabolomic, drug, and pharmacokinetic entities. Generally, dictionaries like BICEPP, i-Drugs,
and DrugBank, which counted the number of times drug names appeared, significantly im-
proved performance for several classifiers on both the abstract classification and evidence sen-
tence extraction tasks (an exception to this was the lack of improvement on abstracts when
including DrugBank features, an effect that needs further investigation). Nonetheless, as for
MESH term features in abstract classification, the resulting performance increases were mod-
est, even if statistically significant. This again demonstrates that relevant-class information can
be extracted from abstracts and sentences using solely the statistics of unigram and bigram
textual features.

Notably, relevant and irrelevant documents and sentences both derive from the pharmaco-
kinetics literature and therefore share similar feature statistics. This makes distinguishing be-
tween them a nontrivial text classification problem, though also a more practically relevant one
(e.g. for a researcher who needs to automatically label potentially relevant documents retrieved
from PubMed). Nonetheless, several classifiers reached high performance; for example, the ab-
stract ranking performance (iAUC�0.99) has little room for further improvement, though the
classification performance—while high for this type of problem—can still be improved.

We observed that many different pipeline configurations reached near-optimal perfor-
mance. Even though some performance differences between configurations were statistically
significant, they were small. For instance, iAUC differences between best and worst classifiers
varied by no more than 1 percent in the abstract task and 5 percent in the sentence task. This
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demonstrates that classification performance in our experiments was robust to the classifier
utilized, and that a BLM pipeline for this problem would do similarly well independently of
classifier chosen. In particular, while “non-naive” classifiers (which consider feature covari-
ances) performed better than naive classifiers, the latter are still capable of competitive perfor-
mance. These results suggest a fundamental limit on the amount of statistical signal present in
the labels and feature distributions of the corpora as extractable by linear classifiers. However,
it is worth noticing that an analysis of both abstract- and sentence-trained feature weight coef-
ficients shows systematic differences between weights selected by naive and non-naive classifi-
ers (see Supporting Information, S1 Text), indicating that different classifiers emphasize
distinct semantic features. Furthermore, it is possible that performance could be improved by
the use of non-linear classifiers or features produced by more finely DDI-tuned NER tools, re-
lation extraction or NLP methods, or other sophisticated feature-generation techniques. In-
deed, the larger performance variation observed in the sentence task suggests that sentence
extraction performance may improve with larger amounts of training data (which would per-
mit better estimates of feature covariances).

It is not trivial to compare our performance results with those previously reported in the lit-
erature. First, there is no gold standard for DDI evidence sentence extraction, especially for a
specific evidence-type such as pharmacokinetics. Second, most sentence extraction tasks in the
biomedical domain involve extraction of passages which can contain several sentences (e.g. the
protein-protein interaction subtask in Biocreative II) or passages relevant for a set of specific
targets (e.g. Gene Ontology annotations for specific gene names in Biocreative I [60] and IV
[61]). Due to these difficulties, the performance on those tasks has been comparatively low, e.g.
in BioCreative IV the best F1 score in the gene ontology evidence extraction task was 0.27 [61]
(in Biocreative II, due to possible overlap and multiple accepted passages, the preferred perfor-
mance measure was the mean reciprocal rank which reached 0.87 [12, 62]). Considering that
our performance on the sentence task is higher than what is typically reported for the abstract
classification in the biomedical domain (e.g. PPI abstract classification in the BioCreative Chal-
lenge III reached F1�0.61, MCC�0.55, iAUC�0.68 [17]), the classifiers trained on our sen-
tence corpus reached a very good level of performance, indicating that the corpus is well
annotated and that the task is highly feasible. Given the performance of our approach in ex-
tracting pharmacokinetic evidence, the classification methodology and associated corpus may
be useful in the previously explored task of extracting interacting drug pairs from the literature.
For example, it may be more effective to first identify DDI sentences containing specific types
of evidence and then extract the interacting drug names from them, using automated methods
or human expertise tailored to that specific type of DDI evidence.

To conclude, we provide a thorough report of the capability of linear classifiers to automati-
cally extract pharmacokinetics evidence of DDI from an abstract- and sentence-level annotated
corpus. Given the high performance observed on both abstract and sentence classification for
all classifiers, including the simplest ones, we conclude that under realistic classification scenar-
ios automatic BLM techniques can identify PubMed abstracts reporting DDI backed by phar-
macokinetic evidence, as well as extract evidence sentences from relevant abstracts. These
results are important because pharmacokinetic evidence can be essential in identifying causal
mechanics of putative DDI and as input for further pharmacological and pharmaco-epidemiol-
ogy investigation. More generally, our work shows that BLM can be safely included in DDI dis-
covery pipelines where attention to distinct types of evidence is necessary. In future work, we
intend to use our methodology to mine large corpora for both pharmacokinetic and other
types of DDI experimental evidence. Such evidence can help fill knowledge gaps that exist in
the DDI domain, with the ultimate goal of reducing the incidence of adverse drug reactions
and contributing to the development of alternative safe treatments.
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Supporting Information
S1 Text. Additional performance analysis. Detailed performance measures on both abstract
and sentence tasks, including when dimensionality reduction methods and NER and metadata
features are used. In addition, the most relevant and irrelevant features for different classifiers
and feature transform configuration are provided for both tasks. Feature weight coefficients for
different classifiers are compared using PCA.
(PDF)

Acknowledgments
The authors thank Shreyas Karnik for help with the preparation of the corpora.

Author Contributions
Conceived and designed the experiments: LL LMR. Performed the experiments: AK. Analyzed
the data: AK AL HW. Wrote the paper: AK LMR. Implemented the machine learning frame-
work: AK. Assisted with extraction of NER terms: AL. Prepared the text corpora: LL HW.

References
1. Becker ML, Kallewaard M, Caspers PWJ, Visser LE, Leufkens HGM, Stricker BHC. Hospitalisations

and emergency department visits due to drug-drug interactions: a literature review. Pharmacoepidemiol
Drug Saf. 2007; 16(6):641–651. doi: 10.1002/pds.1351 PMID: 17154346

2. Hall JM, DeFrances CJ, Williams SN, Golosinskiy A, Schwartzman A. National Hospital Discharge Sur-
vey: 2007 Summary. National Health Statistics Reports. 2010;( 29):1–20. PMID: 21086860

3. Nisha R, Bhuiya F, Xu J. National Hospital Ambulatory Medical Care Survey: 2007 Emergency Depart-
ment Summary. National Health Statistics Reports. 2010;( 26):1–32.

4. Percha B, Altman RB. Informatics confronts drug-drug interactions. Trends in Pharmacological Sci-
ences. 2013; 34(3):178–184. doi: 10.1016/j.tips.2013.01.006 PMID: 23414686

5. Jankel C, Fitterman L. Epidemiology of drug-drug interactions as a cause of hospital admissions. Drug
safety. 1993; 9(1):51. doi: 10.2165/00002018-199309010-00005 PMID: 8347291

6. Leape LL, Bates DW, Cullen DJ, Cooper J, Demonaco HJ, Gallivan T, et al. Systems analysis of ad-
verse drug events. JAMA. 1995; 274(1):35–43. doi: 10.1001/jama.1995.03530010049034 PMID:
7791256

7. Hajjar ER, Cafiero AC, Hanlon JT. Polypharmacy in elderly patients. Am J Geriatr Pharmacother. 2007;
5(4):345–351. doi: 10.1016/j.amjopharm.2007.12.002 PMID: 18179993

8. Boyce R, Collins C, Horn J, Kalet I. Computing with evidence Part I: A drug-mechanism evidence taxon-
omy oriented toward confidence assignment. J Biomed Inform. 2009; 42(6):979–989. doi: 10.1016/j.jbi.
2009.05.001 PMID: 19435613

9. Boyce R, Collins C, Horn J, Kale I. Computing with evidence Part II: An evidential approach to predict-
ing metabolic drug-drug interactionComputing with evidence Part II: An evidential approach to predict-
ing metabolic drug-drug interactions. J Biomed Inform. 2009; 42(6):990–1003. doi: 10.1016/j.jbi.2009.
05.010 PMID: 19539050

10. Hennessy S, Flockhart DA. The need for translational research on drug-drug interactions. Clinical Phar-
macology and Therapeutics. 2012; 91(5):771–773. doi: 10.1038/clpt.2012.39 PMID: 22513312

11. Tatonetti N, Denny J, Murphy S, Fernald G, Krishnan G, Castro V, et al. Detecting drug interactions
from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose
levels. Clinical Pharmacology & Therapeutics. 2011; 90(1):133–142. doi: 10.1038/clpt.2011.83

12. Abi-Haidar A, Kaur J, Maguitman A, Radivojac P, Retchsteiner A, Verspoor K, et al. Uncovering protein
interaction in abstracts and text using a novel linear model and word proximity networks. Genome Biolo-
gy. 2008; 9(2):S11. doi: 10.1186/gb-2008-9-s2-s11 PMID: 18834489

13. Shatkay H, Feldman R. Mining the biomedical literature in the genomic era: an overview. Journal of
Computational Biology. 2003; 10(6):821–855. doi: 10.1089/106652703322756104 PMID: 14980013

14. Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from information retrieval to biological dis-
covery. Nature Reviews Genetics. 2006; 7(2):119–129. doi: 10.1038/nrg1768 PMID: 16418747

Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions

PLOS ONE | DOI:10.1371/journal.pone.0122199 May 11, 2015 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0122199.s001
http://dx.doi.org/10.1002/pds.1351
http://www.ncbi.nlm.nih.gov/pubmed/17154346
http://www.ncbi.nlm.nih.gov/pubmed/21086860
http://dx.doi.org/10.1016/j.tips.2013.01.006
http://www.ncbi.nlm.nih.gov/pubmed/23414686
http://dx.doi.org/10.2165/00002018-199309010-00005
http://www.ncbi.nlm.nih.gov/pubmed/8347291
http://dx.doi.org/10.1001/jama.1995.03530010049034
http://www.ncbi.nlm.nih.gov/pubmed/7791256
http://dx.doi.org/10.1016/j.amjopharm.2007.12.002
http://www.ncbi.nlm.nih.gov/pubmed/18179993
http://dx.doi.org/10.1016/j.jbi.2009.05.001
http://dx.doi.org/10.1016/j.jbi.2009.05.001
http://www.ncbi.nlm.nih.gov/pubmed/19435613
http://dx.doi.org/10.1016/j.jbi.2009.05.010
http://dx.doi.org/10.1016/j.jbi.2009.05.010
http://www.ncbi.nlm.nih.gov/pubmed/19539050
http://dx.doi.org/10.1038/clpt.2012.39
http://www.ncbi.nlm.nih.gov/pubmed/22513312
http://dx.doi.org/10.1038/clpt.2011.83
http://dx.doi.org/10.1186/gb-2008-9-s2-s11
http://www.ncbi.nlm.nih.gov/pubmed/18834489
http://dx.doi.org/10.1089/106652703322756104
http://www.ncbi.nlm.nih.gov/pubmed/14980013
http://dx.doi.org/10.1038/nrg1768
http://www.ncbi.nlm.nih.gov/pubmed/16418747


15. Cohen KB, Hunter L. Getting started in text mining. PLoS Comput Biol. 2008; 4(1):e20. doi: 10.1371/
journal.pcbi.0040020 PMID: 18225946

16. Leitner F, Chatr-aryamontri A, Mardis SA, Ceol A, Krallinger M, Licata L, et al. The FEBS Letters/Bio-
Creative II. 5 experiment: making biological information accessible. Nature Biotechnology. 2010; 28
(9):897–899. doi: 10.1038/nbt0910-897 PMID: 20829821

17. Krallinger M, Vazquez M, Leitner F, Salgado D, Chatr-aryamontri A, Winter A, et al. The Protein-Protein
Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to
full text. BMC bioinformatics. 2011; 12(Suppl 8):S3. doi: 10.1186/1471-2105-12-S8-S3 PMID:
22151929

18. Rechtsteiner A, Luinstra J, Rocha LM, Strauss CE. Use of text mining for protein structure prediction
and functional annotation in lack of sequence homology. In: Joint BioLINK and Bio-Ontologies Meeting
(ISMB Special Interest Group); 2006.

19. McDonald RT, Winters RS, Mandel M, Jin Y, White PS, Pereira F. An entity tagger for recognizing ac-
quired genomic variations in cancer literature. Bioinformatics. 2004; 20(17):3249–3251. doi: 10.1093/
bioinformatics/bth350 PMID: 15180929

20. El-Shishiny H, Soliman TH, El-Asmar M. Mining drug targets based on microarray experiments. In:
Computers and Communications, IEEE Symposium on. IEEE; 2008. p. 175–181.

21. Segura-Bedmar I, Crespo M, de Pablo-Sánchez C, Martínez P. Resolving anaphoras for the extraction
of drug-drug interactions in pharmacological documents. BMC Bioinformatics. 2010; 11(Suppl 2):S1.
doi: 10.1186/1471-2105-11-S2-S1 PMID: 20406499

22. Percha B, Garten Y, Altman R. Discovery and explanation of drug-drug interactions via text mining. In:
Pacific Symposium on Biocomputing; 2012. p. 410.

23. Duke JD, Han X, Wang Z, Subhadarshini A, Karnik SD, Li X, et al. Drug Interaction Prediction from Lit-
eratures and Clinical Significance Assessment in Medical Records. PLoS Comput Biol. 2012; 8(8):
e1002614. doi: 10.1371/journal.pcbi.1002614 PMID: 22912565

24. Segura-Bedmar I, MartÃŋnez P, de Pablo-SÃąnchez C. A linguistic rule-based approach to extract drug-
drug interactions from pharmacological documents. BMC Bioinformatics. 2011; 12(suppl 2):S1. doi: 10.
1186/1471-2105-12-S2-S1 PMID: 21489220

25. Segura-Bedmar I, MartÃŋnez P, de Pablo-SÃąnchez C. Using a shallow linguistic kernel for drug-drug
interaction extraction. J Biomed Inform. 2011; 44(5):789–804. doi: 10.1016/j.jbi.2011.04.005 PMID:
21545845

26. WuH, Karnik SD, Subhadarshini A, Wang Z, Philips S, Han X, et al. An Integrated Pharmacokinetics
Ontology and Corpus for Text Mining. BMC Bioinformatics (In Press). 2013;.

27. Segura-Bedmar I, Martınez P, Sánchez-Cisneros D. The 1st DDIExtraction-2011 challenge task: Ex-
traction of Drug-Drug Interactions from biomedical texts. Challenge Task on Drug-Drug Interaction Ex-
traction. 2011; 2011:1–9.

28. Segura-Bedmar I, Martínez P, Herrero-Zazo M. Lessons learnt from the DDIExtraction-2013 shared
task. Journal of biomedical informatics. 2014;. doi: 10.1016/j.jbi.2014.05.007 PMID: 24858490

29. Herrero-Zazo M, Segura-Bedmar I, Martínez P, Declerck T. The DDI corpus: An annotated corpus with
pharmacological substances and drug-drug interactions. Journal of biomedical informatics. 2013; 46
(5):914–920. doi: 10.1016/j.jbi.2013.07.011 PMID: 23906817

30. Gonzalez G, Cohen K, Greene C, Kann M, Leaman R, Shah N, et al. Text and data mining for biomedi-
cal discovery-session introduction. In: Pacific Symposium on Biocomputing. Pacific Symposium on Bio-
computing. vol. 19; 2013. p. 312–315.

31. Gonzalez G, Cohen KB, Greene CS, Hahn U, Kann MG, Leaman R, et al. Text and data mining for bio-
medical discovery. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
World Scientific; 2012. p. 368–372.

32. Tatonetti NP, Patrick PY, Daneshjou R, Altman RB. Data-driven prediction of drug effects and interac-
tions. Sci Transl Med. 2012; 4(125). doi: 10.1126/scitranslmed.3003377 PMID: 22422992

33. DDIExtraction 2011 Task; 2011. Accessed: 2015-03-04. http://labda.inf.uc3m.es/DDIExtraction2011.

34. DDIExtraction 2013 Task; 2013. Accessed: 2015-03-04. http://www.cs.york.ac.uk/semeval-2013/
task9/.

35. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic acids research. 2008; 36(suppl 1):D901–D906. doi: 10.
1093/nar/gkm958 PMID: 18048412

36. Tari L, Anwar S, Liang S, Cai J, Baral C. Discovering drug-drug interactions: a text-mining and reason-
ing approach based on properties of drug metabolism. Bioinformatics. 2010; 26(18):i547–553. doi: 10.
1093/bioinformatics/btq382 PMID: 20823320

Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions

PLOS ONE | DOI:10.1371/journal.pone.0122199 May 11, 2015 22 / 24

http://dx.doi.org/10.1371/journal.pcbi.0040020
http://dx.doi.org/10.1371/journal.pcbi.0040020
http://www.ncbi.nlm.nih.gov/pubmed/18225946
http://dx.doi.org/10.1038/nbt0910-897
http://www.ncbi.nlm.nih.gov/pubmed/20829821
http://dx.doi.org/10.1186/1471-2105-12-S8-S3
http://www.ncbi.nlm.nih.gov/pubmed/22151929
http://dx.doi.org/10.1093/bioinformatics/bth350
http://dx.doi.org/10.1093/bioinformatics/bth350
http://www.ncbi.nlm.nih.gov/pubmed/15180929
http://dx.doi.org/10.1186/1471-2105-11-S2-S1
http://www.ncbi.nlm.nih.gov/pubmed/20406499
http://dx.doi.org/10.1371/journal.pcbi.1002614
http://www.ncbi.nlm.nih.gov/pubmed/22912565
http://dx.doi.org/10.1186/1471-2105-12-S2-S1
http://dx.doi.org/10.1186/1471-2105-12-S2-S1
http://www.ncbi.nlm.nih.gov/pubmed/21489220
http://dx.doi.org/10.1016/j.jbi.2011.04.005
http://www.ncbi.nlm.nih.gov/pubmed/21545845
http://dx.doi.org/10.1016/j.jbi.2014.05.007
http://www.ncbi.nlm.nih.gov/pubmed/24858490
http://dx.doi.org/10.1016/j.jbi.2013.07.011
http://www.ncbi.nlm.nih.gov/pubmed/23906817
http://dx.doi.org/10.1126/scitranslmed.3003377
http://www.ncbi.nlm.nih.gov/pubmed/22422992
http://labda.inf.uc3m.es/DDIExtraction2011
http://www.cs.york.ac.uk/semeval-2013/task9/
http://www.cs.york.ac.uk/semeval-2013/task9/
http://dx.doi.org/10.1093/nar/gkm958
http://dx.doi.org/10.1093/nar/gkm958
http://www.ncbi.nlm.nih.gov/pubmed/18048412
http://dx.doi.org/10.1093/bioinformatics/btq382
http://dx.doi.org/10.1093/bioinformatics/btq382
http://www.ncbi.nlm.nih.gov/pubmed/20823320


37. Cheng F, Zhao Z. Machine learning-based prediction of drug-drug interactions by integrating drug phe-
notypic, therapeutic, chemical, and genomic properties. Journal of the American Medical Informatics
Association. 2014; 21(e2):e278–e286. doi: 10.1136/amiajnl-2013-002512 PMID: 24644270

38. Wang Z, Kim S, Quinney SK, Guo Y, Hall SD, Rocha LM, et al. Literature mining on pharmacokinetics
numerical data: A feasibility study. J Biomed Inform. 2009; 42(4):726–735. doi: 10.1016/j.jbi.2009.03.
010 PMID: 19345282

39. Kolchinsky A, Lourenço A, Li L, Rocha LM. Evaluation of linear classifiers on articles containing phar-
macokinetic evidence of drug-drug interactions. Pacific Symposium on Biocomputing. 2013; 18:409–
420.

40. Wall ME, Rechtsteiner A, Rocha LM. Singular value decomposition and principal component analysis.
In: Berrar DP GranzowM Dubitzky W, editor. A Practical Approach to Microarray Data Analysis. Klu-
werKluwer: Norwell, MA; 2003. p. 91–109.

41. Lourenço A, Conover M, Wong A, Nematzadeh A, Pan F, Shatkay H, et al. A linear classifier based on
entity recognition tools and a statistical approach to method extraction in the protein-protein interaction
literature. BMC Bioinformatics. 2011; 12(Suppl 8):S12. doi: 10.1186/1471-2105-12-S8-S12 PMID:
22151823

42. Kolchinsky A, Abi-Haidar A, Kaur J, Hamed AA, Rocha LM. Classification of protein-protein interaction
full-text documents using text and citation network features. IEEE/ACM Trans Comput Biol Bioinf.
2010; 7(3):400–411. doi: 10.1109/TCBB.2010.55

43. Pharmacokinetic Corpus; 2014. Accessed: 2015-03-04. http://rweb.compbio.iupui.edu/corpus/
downloads.html.

44. Porter MF. An algorithm for suffix stripping. Program. 1980; 14(3):130–137. doi: 10.1108/eb046814

45. Bishop CM. Pattern Recognition and Machine Learning. Springer; 2006.

46. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. JMLR. 2011; 12:2825–2830.

47. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLINEAR: A library for large linear classification.
JMLR. 2008; 9:1871–1874.

48. Ye J, Xiong T, Li Q, Janardan R, Bi J, Cherkassky V, et al. Efficient model selection for regularized line-
ar discriminant analysis. In: Proceedings of the 15th ACM international conference on Information and
knowledge management. ACM; 2006. p. 532–539.

49. Bickel PJ, Levina E. Some theory for Fisher’s linear discriminant function, ‘naive Bayes’, and some al-
ternatives when there are many more variables than observations. Bernoulli. 2004; 10(6):989–1010.
doi: 10.3150/bj/1106314847

50. Leopold E, Kindermann J. Text categorization with support vector machines. how to represent texts in
input space? Machine Learning. 2002; 46(1):423–444. doi: 10.1023/A:1012491419635

51. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochimica et biophysica acta. 1975; 405(2):442. doi: 10.1016/0005-2795(75)90109-9 PMID: 1180967

52. Baldi P. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics.
2000 May; 16(5):412–424. doi: 10.1093/bioinformatics/16.5.412 PMID: 10871264

53. Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proc of the 23rd
International Conference on Machine Learning. ACM; 2006. p. 233–240.

54. Agresti A. An introduction to categorical data analysis. vol. 423. Wiley-Interscience; 2007.

55. Jessop DM, Adams SE, Willighagen EL, Hawizy L, Murray-Rust P. OSCAR4: a flexible architecture for
chemical text-mining. J Cheminf. 2011; 3(1):1–12. doi: 10.1186/1758-2946-3-41

56. Settles B. ABNER: an open source tool for automatically tagging genes, proteins and other entity
names in text. Bioinformatics. 2005; 21(14):3191–3192. doi: 10.1093/bioinformatics/bti475 PMID:
15860559

57. Lin F, Anthony S, Polasek T, Tsafnat G, Doogue M. BICEPP: an example-based statistical text mining
method for predicting the binary characteristics of drugs. BMC Bioinformatics. 2011; 12(1):112. doi: 10.
1186/1471-2105-12-112 PMID: 21510898

58. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehen-
sive resource for in silico drug discovery and exploration. Nucleic Acids Research. 2006; 34(suppl 1):
D668–D672. doi: 10.1093/nar/gkj067 PMID: 16381955

59. Huang M, Névéol A, Lu Z. Recommending MeSH terms for annotating biomedical articles. Journal of
the American Medical Informatics Association. 2011; 18(5):660–667. doi: 10.1136/amiajnl-2010-
000055 PMID: 21613640

Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions

PLOS ONE | DOI:10.1371/journal.pone.0122199 May 11, 2015 23 / 24

http://dx.doi.org/10.1136/amiajnl-2013-002512
http://www.ncbi.nlm.nih.gov/pubmed/24644270
http://dx.doi.org/10.1016/j.jbi.2009.03.010
http://dx.doi.org/10.1016/j.jbi.2009.03.010
http://www.ncbi.nlm.nih.gov/pubmed/19345282
http://dx.doi.org/10.1186/1471-2105-12-S8-S12
http://www.ncbi.nlm.nih.gov/pubmed/22151823
http://dx.doi.org/10.1109/TCBB.2010.55
http://rweb.compbio.iupui.edu/corpus/downloads.html
http://rweb.compbio.iupui.edu/corpus/downloads.html
http://dx.doi.org/10.1108/eb046814
http://dx.doi.org/10.3150/bj/1106314847
http://dx.doi.org/10.1023/A:1012491419635
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://www.ncbi.nlm.nih.gov/pubmed/1180967
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://www.ncbi.nlm.nih.gov/pubmed/10871264
http://dx.doi.org/10.1186/1758-2946-3-41
http://dx.doi.org/10.1093/bioinformatics/bti475
http://www.ncbi.nlm.nih.gov/pubmed/15860559
http://dx.doi.org/10.1186/1471-2105-12-112
http://dx.doi.org/10.1186/1471-2105-12-112
http://www.ncbi.nlm.nih.gov/pubmed/21510898
http://dx.doi.org/10.1093/nar/gkj067
http://www.ncbi.nlm.nih.gov/pubmed/16381955
http://dx.doi.org/10.1136/amiajnl-2010-000055
http://dx.doi.org/10.1136/amiajnl-2010-000055
http://www.ncbi.nlm.nih.gov/pubmed/21613640


60. Hirschman L, Yeh A, Blaschke C, Valencia A. Overview of BioCreAtIvE: critical assessment of informa-
tion extraction for biology. BMC bioinformatics. 2005; 6(Suppl 1):S1. doi: 10.1186/1471-2105-6-S1-S1
PMID: 15960821

61. Mao Y, Van Auken K, Li D, Arighi CN, Lu Z. The gene ontology task at biocreative IV. In: Proceedings
of the Fourth Biocreative Challenge Evaluation Workshop. vol. 1; 2013. p. 119–127.

62. Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A. Overview of the protein-protein interaction
annotation extraction task of BioCreative II. Genome biology. 2008; 9(Suppl 2):S4. doi: 10.1186/gb-
2008-9-s2-s4 PMID: 18834495

Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions

PLOS ONE | DOI:10.1371/journal.pone.0122199 May 11, 2015 24 / 24

http://dx.doi.org/10.1186/1471-2105-6-S1-S1
http://www.ncbi.nlm.nih.gov/pubmed/15960821
http://dx.doi.org/10.1186/gb-2008-9-s2-s4
http://dx.doi.org/10.1186/gb-2008-9-s2-s4
http://www.ncbi.nlm.nih.gov/pubmed/18834495

