2,792 research outputs found

    Unusual features in the nonlinear microwave surface impedance of Y-Ba-Cu-O thin films

    Full text link
    Striking features have been found in the nonlinear microwave (8 GHz) surface impedance Zs=Rs+jXsZ_s=R_s + jX_s of high-quality YBaCuO thin films with comparable low power characteristics [Rres3560μΩR_{res}\sim 35--60 \mu\Omega and λL(15K)130260nm\lambda_L(15 K)\sim 130--260 nm]. The surface resistance RsR_s is found to increase, decrease, or remain independent of the microwave field HrfH_{rf} (up to 60 mT) at different temperatures and for different samples. However, the surface reactance XsX_s always follows the same functional form. Mechanisms which may be responsible for the observed variations in RsR_s and XsX_s are briefly discussed.Comment: 4 pages, 4 figure

    Semileptonic B decays into even parity charmed mesons

    Get PDF
    By using a constituent quark model we compute the form factors relevant to semileptonic transitions of B mesons into low-lying p-wave charmed mesons. We evaluate the q^2 dependence of these form factors and compare them with other model calculations. The Isgur-Wise functions tau(1/2) and tau(3/2) are also obtained in the heavy quark limit of our results.Comment: 11 pages, 2 figure

    Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation

    Get PDF
    Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis and treatment. However, variations in MRI acquisition protocols result in different appearances of normal and diseased tissue in the images. Convolutional neural networks (CNNs), which have shown to be successful in many medical image analysis tasks, are typically sensitive to the variations in imaging protocols. Therefore, in many cases, networks trained on data acquired with one MRI protocol, do not perform satisfactorily on data acquired with different protocols. This limits the use of models trained with large annotated legacy datasets on a new dataset with a different domain which is often a recurring situation in clinical settings. In this study, we aim to answer the following central questions regarding domain adaptation in medical image analysis: Given a fitted legacy model, 1) How much data from the new domain is required for a decent adaptation of the original network?; and, 2) What portion of the pre-trained model parameters should be retrained given a certain number of the new domain training samples? To address these questions, we conducted extensive experiments in white matter hyperintensity segmentation task. We trained a CNN on legacy MR images of brain and evaluated the performance of the domain-adapted network on the same task with images from a different domain. We then compared the performance of the model to the surrogate scenarios where either the same trained network is used or a new network is trained from scratch on the new dataset.The domain-adapted network tuned only by two training examples achieved a Dice score of 0.63 substantially outperforming a similar network trained on the same set of examples from scratch.Comment: 8 pages, 3 figure

    S and P-wave heavy-light mesons in lattice NRQCD

    Full text link
    The mass spectrum of S and P-wave mesons containing a single heavy quark is computed in the quenched approximation, using NRQCD up to third order in the inverse heavy quark mass expansion. Previous results found third order contributions which are as large in magnitude as the total second order contribution for the charmed S-wave spin splitting. The present work considers variations such as anisotropic lattices, Landau link tadpole improvement, and a highly-improved light quark action, and finds that the second order correction to the charmed S-wave spin splitting is about 20% of the leading order contribution, while the third order correction is about 20%(10%) for D^*-D(D_s^*-D_s). Nonleading corrections are very small for the bottom meson spectrum, and are statistically insignificant for the P-wave charmed masses. The relative orderings among P-wave charmed and bottom mesons, and the sizes of the mass splittings, are discussed in light of experimental data and existing calculations.Comment: 21 pages including 6 figures, changed method of fitting correlators, this version to be published in Phys Rev

    One-way quantum computing in a decoherence-free subspace

    Full text link
    We introduce a novel scheme for one-way quantum computing (QC) based on the use of information encoded qubits in an effective cluster state resource. With the correct encoding structure, we show that it is possible to protect the entangled resource from phase damping decoherence, where the effective cluster state can be described as residing in a Decoherence-Free Subspace (DFS) of its supporting quantum system. One-way QC then requires either single or two-qubit adaptive measurements. As an example where this proposal can be realized, we describe an optical lattice setup where the scheme provides robust quantum information processing. We also outline how one can adapt the model to provide protection from other types of decoherence.Comment: 9 pages, 4 figures, RevTeX

    Ability to cause erythema migrans differs between Borrelia burgdorferi sensu lato isolates

    Get PDF
    Background: Lyme borreliosis is a tick-borne disease caused by Borrelia burgdorferi sensu lato. The variety of characteristic and non-specific clinical manifestations is partially explained by its genetic diversity. We investigated the ability of B. burgdorferi sl isolates to cause erythema migrans. Methods. The genetic constellation of isolates from ticks was compared to isolates found in erythema migrans. PCR and sequence analysis was performed on the plasmid-encoded ospC and the chromosomal 5S-23S rDNA spacer region (IGS). Results: Seven different B. burgdorferi sl genospecies were identified in 152 borrelia isolates from ticks and erythema migrans biopsies. B afzelii (51%) and B. garinii (27%) were the most common in ticks. From the 44 sequences obtained from erythema migrans samples 42 were B. afzelii, one B. garinii and one B. bavariensis. Significant associations with erythema migrans formation were found for four IGS and two ospC types. Five from 45 ospC types were associated with more than one genospecies. Conclusions: B. burgdorferi sl isolates differ in their propensity to cause erythema migrans. These differences were also found within genospecies. In other words, although B. afzelii was mostly associated with erythema migrans, some B. afzelii isolates had a low ability to cause erythema migrans. Our data further support the occurrence of plasmid exchange between borrelia genospecies under natural conditions

    Comparison Studies of Finite Momentum Correlators on Anisotropic and Isotropic Lattices

    Get PDF
    We study hadronic two- and three-point correlators relevant for heavy to light pseudoscalar meson semi-leptonic decays, using Symanzik improved glue, D234 light quark and NRQCD heavy quark actions. Detailed comparisons are made between simulations on anisotropic and isotropic lattices involving finite momentum hadrons. We find evidence that having an anisotropy helps in extracting better signals at higher momenta. Initial results for the form factors f_+(q^2) and f_0(q^2) are presented with tree-level matching of the lattice heavy-light currents.Comment: 43 pages with 50 postscript figure

    Relativistic Symmetry Suppresses Quark Spin-Orbit Splitting

    Get PDF
    Experimental data indicate small spin-orbit splittings in hadrons. For heavy-light mesons we identify a relativistic symmetry that suppresses these splittings. We suggest an experimental test in electron-positron annihilation. Furthermore, we argue that the dynamics necessary for this symmetry are possible in QCD.Comment: 16 pages, LaTeX. Two postscript figures. Final version to be published in Physical Review Letter

    Resonance Lifetimes from Complex Densities

    Full text link
    The ab-initio calculation of resonance lifetimes of metastable anions challenges modern quantum-chemical methods. The exact lifetime of the lowest-energy resonance is encoded into a complex "density" that can be obtained via complex-coordinate scaling. We illustrate this with one-electron examples and show how the lifetime can be extracted from the complex density in much the same way as the ground-state energy of bound systems is extracted from its ground-state density
    corecore