20 research outputs found

    The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes

    Get PDF
    Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell

    Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria

    No full text
    Balanced induction of proinflammatory and type I IFN responses upon activation of Toll-like receptors (TLRs) determines the outcome of microbial infections and the pathogenesis of autoimmune and other inflammatory diseases. Mast cells, key components of the innate immune system, are known for their debilitating role in allergy and autoimmunity. However, their role in antimicrobial host defenses is being acknowledged increasingly. How mast cells interact with microbes and the nature of responses triggered thereby is not well characterized. Here we show that in response to TLR activation by Gram-positive and -negative bacteria or their components, mast cells elicit proinflammatory but not type I IFN responses. We demonstrate that in mast cells, bound bacteria and TLR ligands remain trapped at the cell surface and do not undergo internalization, a prerequisite for type I IFN induction. Such cells, however, can elicit type I IFNs in response to vesicular stomatitis virus which accesses the cytosolic retinoic acid-inducible gene I receptor. Although important for antiviral immunity, a strong I IFN response is known to contribute to pathogenesis of several bacterial pathogens such as Listeria monocytogenes. Interestingly, we observed that the mast cell-dependent neutrophil mobilization upon L. monocytogenes infection is highly impaired by IFN-β. Thus, the fact that mast cells, although endowed with the capacity to elicit type I IFNs in response to viral infection, elicit only proinflammatory responses upon bacterial infection shows that mast cells, key effector cells of the innate immune system, are well adjusted for optimal antibacterial and antiviral responses

    Mast cells kill Candida albicans in the extracellular environment but spare ingested fungi from death.

    No full text
    Mast cells (MCs) reside in tissues that are common targets of Candida spp. infections, and can exert bactericidal activity, but little is known about their fungicidal activity. MCs purified from rat peritoneum (RPMC) and a clinical isolate of C. albicans, were employed. Ingestion was evaluated by flow cytometry (FACS) and optical microscopy. The killing activity was assayed by FACS analysis and by colony forming unit method. RPMC degranulation was evaluated by \u3b2-hexosaminidase assay and phosphatidylserine externalization by FACS. Phagocytosing RPMC were also analyzed by transmission electron microscopy. Herein, we show that the killing of C. albicans by RPMC takes place in the extracellular environment, very likely through secreted granular components. Ultrastructural analysis of the ingestion process revealed an unusual RPMC-C. albicans interaction that could allow fungal survival. Our findings indicate that MCs have a positive role in the defense mechanism against Candida infections and should be included among the cell types involved in host-defense against this pathogen

    Bacteria Induce Prolonged PMN Survival via a Phosphatidylcholine-Specific Phospholipase C- and Protein Kinase C-Dependent Mechanism

    Get PDF
    Polymorphonuclear leukocytes (PMNs) are essential for the human innate immune defense, limiting expansion of invading microorganisms. PMN turnover is controlled by apoptosis, but the regulating signaling pathways remain elusive, largely due to inherent differences between mice and humans that undermine use of mouse models for understanding human PMN biology. Here, we aim to elucidate signal transduction mediating survival of human peripheral blood PMNs in response to bacteria, such as Yersinia pseudotuberculosis, an enteropathogen that causes the gastro-intestinal disease yersiniosis, as well as Escherichia coli and Staphylococcus aureus. Determinations of cell death reveal that uninfected control cells undergo apoptosis, while PMNs infected with either Gram-positive or -negative bacteria show profoundly increased survival. Infected cells exhibit decreased caspase 3 and 8 activities, increased mitochondrial integrity and are resistant to apoptosis induced by a death receptor ligand. This bacteria-induced response is accompanied by pro-inflammatory cytokine production including interleukin-8 and tumor necrosis factor-a competent to attract additional PMNs. Using agonists and pharmacological inhibitors, we show participation of Toll-like receptor 2 and 4, and interestingly, that protein kinase C (PKC) and phosphatidylcholine-specific phospholipase C (PC-PLC), but not tyrosine kinases or phosphatidylinositol-specific phospholipase C (PI-PLC) are key players in this dual PMN response. Our findings indicate the importance of prolonged PMN survival in response to bacteria, where general signaling pathways ensure complete exploitation of PMN anti-microbial capacity

    Membrane Interactions and Cellular Effects of MACPF/CDC Proteins

    No full text
    corecore