630 research outputs found

    Symmetry, complexity and multicritical point of the two-dimensional spin glass

    Full text link
    We analyze models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J. Phys.

    Accuracy thresholds of topological color codes on the hexagonal and square-octagonal lattices

    Full text link
    Accuracy thresholds of quantum error correcting codes, which exploit topological properties of systems, defined on two different arrangements of qubits are predicted. We study the topological color codes on the hexagonal lattice and on the square-octagonal lattice by the use of mapping into the spin glass systems. The analysis for the corresponding spin glass systems consists of the duality, and the gauge symmetry, which has succeeded in deriving locations of special points, which are deeply related with the accuracy thresholds of topological error correcting codes. We predict that the accuracy thresholds for the topological color codes would be 1pc=0.109681-p_c = 0.1096-8 for the hexagonal lattice and 1pc=0.109231-p_c = 0.1092-3 for the square-octagonal lattice, where 1p1-p denotes the error probability on each qubit. Hence both of them are expected to be slightly lower than the probability 1pc=0.1100281-p_c = 0.110028 for the quantum Gilbert-Varshamov bound with a zero encoding rate.Comment: 6 pages, 4 figures, the previous title was "Threshold of topological color code". This is the published version in Phys. Rev.

    Exact Solution of the Infinite-Range Quantum Mattis Model

    Full text link
    We have solved the quantum version of the Mattis model with infinite-range interactions. A variational approach gives the exact solution for the infinite-range system, in spite of the non-commutative nature of the quantum spin components; this implies that quantum effects are not predominant in determining the macroscopic properties of the system. Nevertheless, the model has a surprisingly rich phase behaviour, exhibiting phase diagrams with tricritical, three-phase and critical end points.Comment: 14 pages, 11 figure

    Exact location of the multicritical point for finite-dimensional spin glasses: A conjecture

    Full text link
    We present a conjecture on the exact location of the multicritical point in the phase diagram of spin glass models in finite dimensions. By generalizing our previous work, we combine duality and gauge symmetry for replicated random systems to derive formulas which make it possible to understand all the relevant available numerical results in a unified way. The method applies to non-self-dual lattices as well as to self dual cases, in the former case of which we derive a relation for a pair of values of multicritical points for mutually dual lattices. The examples include the +-J and Gaussian Ising spin glasses on the square, hexagonal and triangular lattices, the Potts and Z_q models with chiral randomness on these lattices, and the three-dimensional +-J Ising spin glass and the random plaquette gauge model.Comment: 27 pages, 3 figure

    Typical performance of low-density parity-check codes over general symmetric channels

    Get PDF
    Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Theoretical framework for dealing with general symmetric channels is provided, based on which Gallager and MacKay-Neal codes are studied as examples of LDPC codes. It has been shown that the basic properties of these codes known for particular channels, including the property to potentially saturate Shannon's limit, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte

    Image restoration using the chiral Potts spin-glass

    Get PDF
    We report on the image reconstruction (IR) problem by making use of the random chiral q-state Potts model, whose Hamiltonian possesses the same gauge invariance as the usual Ising spin glass model. We show that the pixel representation by means of the Potts variables is suitable for the gray-scale level image which can not be represented by the Ising model. We find that the IR quality is highly improved by the presence of a glassy term, besides the usual ferromagnetic term under random external fields, as very recently pointed out by Nishimori and Wong. We give the exact solution of the infinite range model with q=3, the three gray-scale level case. In order to check our analytical result and the efficiency of our model, 2D Monte Carlo simulations have been carried out on real-world pictures with three and eight gray-scale levels.Comment: RevTex 13 pages, 10 figure

    Labyrinthic granular landscapes

    Full text link
    We have numerically studied a model of granular landscape eroded by wind. We show the appearance of labyrinthic patterns when the wind orientation turns by 9090^\circ. The occurence of such structures are discussed. Morever, we introduce the density nkn_k of ``defects'' as the dynamic parameter governing the landscape evolution. A power law behavior of nkn_k is found as a function of time. In the case of wind variations, the exponent (drastically) shifts from 2 to 1. The presence of two asymptotic values of nkn_k implies the irreversibility of the labyrinthic formation process.Comment: 3 pages, 3 figure, RevTe

    Duality and Multicritical Point of Two-Dimensional Spin Glasses

    Full text link
    Determination of the precise location of the multicritical point and phase boundary is a target of active current research in the theory of spin glasses. In this short note we develop a duality argument to predict the location of the multicritical point and the shape of the phase boundary in models of spin glasses on the square lattice.Comment: 4 pages, 1 figure; Reference updated, definition of \tilde{V} added; to be published in J. Phys. Soc. Jp

    Naive mean field approximation for image restoration

    Full text link
    We attempt image restoration in the framework of the Baysian inference. Recently, it has been shown that under a certain criterion the MAP (Maximum A Posterior) estimate, which corresponds to the minimization of energy, can be outperformed by the MPM (Maximizer of the Posterior Marginals) estimate, which is equivalent to a finite-temperature decoding method. Since a lot of computational time is needed for the MPM estimate to calculate the thermal averages, the mean field method, which is a deterministic algorithm, is often utilized to avoid this difficulty. We present a statistical-mechanical analysis of naive mean field approximation in the framework of image restoration. We compare our theoretical results with those of computer simulation, and investigate the potential of naive mean field approximation.Comment: 9 pages, 11 figure

    Duality in finite-dimensional spin glasses

    Full text link
    We present an analysis leading to a conjecture on the exact location of the multicritical point in the phase diagram of spin glasses in finite dimensions. The conjecture, in satisfactory agreement with a number of numerical results, was previously derived using an ansatz emerging from duality and the replica method. In the present paper we carefully examine the ansatz and reduce it to a hypothesis on analyticity of a function appearing in the duality relation. Thus the problem is now clearer than before from a mathematical point of view: The ansatz, somewhat arbitrarily introduced previously, has now been shown to be closely related to the analyticity of a well-defined function.Comment: 12 pages, 3 figures; A reference added; to appear in J. Stat. Phy
    corecore