3,309 research outputs found

    Existence of Long-Range Order for Trapped Interacting Bosons

    Full text link
    We derive an inequality governing ``long range'' order for a localized Bose-condensed state, relating the condensate fraction at a given temperature with effective curvature radius of the condensate and total particle number. For the specific example of a one-dimensional, harmonically trapped dilute Bose condensate, it is shown that the inequality gives an explicit upper bound for the Thomas-Fermi condensate size which may be tested in current experiments.Comment: 4 pages, 1 figure, RevTex4. Title changed at the request of editors; to appear in Phys. Rev. Letter

    A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    Get PDF
    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used

    Highly sensitive alkane odour sensors based on functionalised gold nanoparticles

    No full text
    We deposit dense, ordered, thin films of Au-dodecanethiol core/shell nanoparticles by the Langmuir-Schafer (LS) printing method, and find that their resistance at ambient temperature responds selectively and sensitively to alkane odours. Response is a rapid resistance increase due to swelling, and is strongest for alkane odours where the alkane chain is similar in length to the dodecane shell. For decane odours, we find a response to concentrations as low as 15 ppm, about 600 times below the lower explosive limit. Response is weaker, but still significant, to aromatic odours (e.g. Toluene, Xylene), while potential interferants such as polar and/or hydrogen-bonding odours (e.g. alcohols, ketones, water vapour) are somewhat rejected. Resistance is weakly dependent on temperature, and recovers rapidly and completely to its original value within the error margin of measurement. (C) 2011 Elsevier B.V. All rights reserved

    Anisotropic Spin Diffusion in Trapped Boltzmann Gases

    Get PDF
    Recent experiments in a mixture of two hyperfine states of trapped Bose gases show behavior analogous to a spin-1/2 system, including transverse spin waves and other familiar Leggett-Rice-type effects. We have derived the kinetic equations applicable to these systems, including the spin dependence of interparticle interactions in the collision integral, and have solved for spin-wave frequencies and longitudinal and transverse diffusion constants in the Boltzmann limit. We find that, while the transverse and longitudinal collision times for trapped Fermi gases are identical, the Bose gas shows diffusion anisotropy. Moreover, the lack of spin isotropy in the interactions leads to the non-conservation of transverse spin, which in turn has novel effects on the hydrodynamic modes.Comment: 10 pages, 4 figures; submitted to PR

    Embedding the affine complement of three intersecting lines in a finite projective plane

    Get PDF
    An (r, 1)–design is a pair (V, F) where V is a ν–set and F is a family of non-null subsets of V (b in number) which satisfy the following. (1) Every pair of distinct members of V is contained in precisely one member of F. (2) Every member of V occurs in precisely r members of F. A pseudo parallel complement PPC(n, α) is an (n+1, 1)–design with ν=n2−αn and b≦n2+n−α in which there are at least n−α a blocks of size n. A pseudo intersecting complement PIC(n, α) is an (n+1, 1)–design with ν=n2−αn+α−1 and b≦n2+n−α in which there are at least n−α+1 blocks of size n−1. It has previously been shown that for α≦4, every PIC(n, α) can be embedded in a PPC(n, α−1) and that for n>(α4−2α3+2α2+α−2)/2, every PPC(n, α) can be embedded in a finite projective plane of order n. In this paper we investigate the case of α=3 and show that any PIC(n, 3) is embeddable in a PPC(n,2) provided n≧14

    Giant viscosity enhancement in a spin-polarized Fermi liquid

    Get PDF
    The viscosity is measured for a Fermi liquid, a dilute 3^3He-4^4He mixture, under extremely high magnetic field/temperature conditions (B≤14.8B \leq 14.8 T, T≥1.5T \geq 1.5 mK). The spin splitting energy μB\mu B is substantially greater than the Fermi energy kBTFk_B T_F; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T≪TFT \ll T_F. Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a tt-matrix formalism.Comment: 4 pages, 4 figure

    Intermediate Code Generation for Portable Scalable, Compilers. Architecture Independent Data Parallelism: The Preliminaries

    Get PDF
    This paper introduces the goals of the Portable, Scalable, Architecture Independent (PSI) Compiler Project for Data Parallel Languages at the University of Missouri-Rolla. A goal of this project is to produce a subcompiler for data parallel scientific programming languages such as HPF(High Performance Fortran) where the input grammar is translated to a three-address code intermediate language. Ultimately we plan to integrate our work into automated synthesis systems for scientific programming because we feel that it should not be necessary to learn complicated programming techniques to use multiprocessor computers or networks of computers effectively. This paper shows how to compile a data parallel language to an arbitrary multiprocessor topology or network of CPUs given the number of processors, length of vector registers, and total number of components in an array assuming a message passing, distributed memory paradigm of send and receive. We emphasize that this paradigm is not only amenable to machines such as the CM5 and NCube but to LAN and WAN connected architectures. We do automatic program partitioning and mapping to processing elements of a multiprocessor architecture or distributed network of machines. No programmer intervention is required, hence, no errors will be introduced through data decomposition

    Classification of phase transitions of finite Bose-Einstein condensates in power law traps by Fisher zeros

    Get PDF
    We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose-systems in power law traps within a semi-analytic approach with a continuous one-particle density of states Ω(E)∼Ed−1\Omega(E)\sim E^{d-1} for different values of dd and to a three dimensional harmonically confined ideal Bose-gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein condensation phase transition sensitively depends on the confining potential.Comment: 7 pages, 9 eps-figures, For recent information on physics of small systems see "http://www.smallsystems.de

    Home Ranges of Rat Snakes (Colubridae: Elaphe) in Different Habitats

    Get PDF
    Based on our findings, we suggest that rat snakes represent not only a major predator of kites, but also of other canopy and mid-story nesting species in the southeastern United States. For example, rat snakes are the most dominant snake nest predator of bird nests throughout the Southeast (DeGregorio et al. 2014) and are skilled tree climbers that often occupy arboreal habitats (Jackson 1976, Keller and Heske 2000, Sperry et al. 2009), particularly in bottomland forests (Mullin et al. 2000, Carfagno and Weatherhead 2009). Thus, the role of rat snakes as predators of nests above the understory is likely underappreciated because of the paucity of information on causes of failure among mid-story and canopy nest
    • …
    corecore