239 research outputs found

    Detecting the Cold Spot as a Void with the Non-Diagonal Two-Point Function

    Full text link
    The anomaly in the Cosmic Microwave Background known as the "Cold Spot" could be due to the existence of an anomalously large spherical (few hundreds Mpc/h radius) underdense region, called a "Void" for short. Such a structure would have an impact on the CMB also at high multipoles l through Lensing. This would then represent a unique signature of a Void. Modeling such an underdensity with an LTB metric, we show that the Lensing effect leads to a large signal in the non-diagonal two-point function, centered in the direction of the Cold Spot, such that the Planck satellite will be able to confirm or rule out the Void explanation for the Cold Spot, for any Void radius with a Signal-to-Noise ratio of at least O(10).Comment: v1: 6 pages, 2 figures; v2: 6 pages, 2 figures, text improved, to appear on JCA

    A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory

    Get PDF
    The set of equations for global ocean biogeochemistry deterministic models have been for-mulated in a comprehensive and unified form in order to use them in numerical simulations of the marine ecosystem for climate change studies (PELAGOS, PELAgic biogeochemistry for Global Ocean Simulations). The fundamental approach stems from the representation of marine trophic interactions and major biogeochemical cycles introduced in the European Regional Seas Ecosystem Model (ERSEM). Our theoretical formulation revisits and generalizes the stoichiometric approach of ERSEM by defining the state variables as Chemical Functional Families (CFF). CFFs are further subdivided into living, non-living and inorganic components. Living CFFs are the basis for the definition of Living Functional Groups, the biomass-based functional prototype of the real organisms. Both CFFs and LFGs are theoretical constructs which allow us to relate measurable properties of marine biogeochemistry to the state variables used in deterministic models. This approach is sufficiently generic that may be used to describe other existing biomass-based ecosystem model

    How Sensitive is the CMB to a Single Lens?

    Full text link
    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by LCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.Comment: Accepted for publication in JCAP, 24 pages, 5 figure

    An exploratory study of students' understandings and experiences of vaccination : implications for future HIV vaccine trials in South Africa.

    Get PDF
    Thesis (M.Soc.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2004.As Africa faces the challenges of its renewal or renaissance, the HIV/AIDS epidemic poses the greatest potential barrier to the attainment of this vision (Makgoba, 2001 in Dorrington, Bourne, Bradshaw, Laubscher & Timaeus, 2001). The development of an HIV vaccine that is safe, effective and affordable, has been widely contemplated as a necessary supplement to already established interventions. In preparation for HIV vaccine trials in South Africa the current project aimed to assess students' understanding (knowledge and perceptions) and experiences of vaccination in general, and to explore if these were associated with demographics such as motherhood and gender. A parallel aim was to assess students' knowledge and expectations of HIV vaccination and trial participation. A sample of 33 students was recruited from university residences at the University of Natal, Pietermaritzburg. Participants were interviewed via a semi-structured interview schedule. The data collected was then coded and analysed using content analysis, while Chi - square analysis was used to evaluate if demographics such as gender and motherhood were systematically associated with various responses. The results revealed that the vast majority of participants (97%) knew the purpose of vaccination, stating that it was to promote health and prevent illness. Most participants (67%) knew that vaccination works by mobilising the immune system (vaccination mechanism). The vast majority of participants (91%) could name at least one vaccine preventable disease. Uptake of childhood immunisation was reportedly high (88%) while adult uptake of immunisation was low (33%). A significant minority (36%) reported that they had experienced side effects but understood these to be an integral part of vaccination. Thirty percent of participants stated they were willing to participate (WTP) in a hypothetical vaccine trial, 33 % of participants were not WTP and 15% were not sure. Motivations for trial participation were reportedly influenced most by personal incentives of altruism (39%) and barriers such as perceived significant physical risk (61%). In general, knowledge and experiences of vaccination were not associated with gender or with motherhood. The results suggest that more awareness of HIV vaccine trials is needed. In this regard education should emphasise that the prospective vaccine will be preventive, that only healthy people can volunteer and that the HIV vaccine will not guarantee immunity to HIV infection. Suggestions are made for future research into motivations, barriers and incentives to facilitate an ethical process of vaccine trial participation

    Inflation from the Higgs field false vacuum with hybrid potential

    Full text link
    We have recently suggested [1,2] that Inflation could have started in a local minimum of the Higgs potential at field values of about 1015101710^{15}-10^{17} GeV, which exists for a narrow band of values of the top quark and Higgs masses and thus gives rise to a prediction on the Higgs mass to be in the range 123-129 GeV, together with a prediction on the the top mass and the cosmological tensor-to-scalar ratio rr. Inflation can be achieved provided there is an additional degree of freedom which allows the transition to a radiation era. In [1] we had proposed such field to be a Brans-Dicke scalar. Here we present an alternative possibility with an additional subdominant scalar very weakly coupled to the Higgs, realizing an (inverted) hybrid Inflation scenario. Interestingly, we show that such model has an additional constraint mH<125.3±3thm_H<125.3 \pm 3_{th}, where 3th3_{th} is the present theoretical uncertainty on the Standard Model RGEs. The tensor-to-scalar ratio has to be within the narrow range 104r<0.00710^{-4}\lesssim r<0.007, and values of the scalar spectral index compatible with the observed range can be obtained. Moreover, if we impose the model to have subplanckian field excursion, this selects a narrower range 104r<0.00110^{-4} \lesssim r<0.001 and an upper bound on the Higgs mass of about mH<124±3thm_H <124 \pm 3_{th}.Comment: v1: 9 pages, 3 figures; v2: 9 pages, 3 figures, improvements in the text, version matching the JCAP published on

    Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Get PDF
    This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins

    Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Get PDF
    This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999 – May 2001. A tight coupling is observed between the upper and deep traps and the deduced particle settling rates are larger than 200 m/day. The current vertical velocity field is computed from a high resolution Ocean General Circulation Model (OGCM) simulation and from the wind stress curl. Values are generally smaller than 1 m/day: we therefore exclude a direct effect of downward vertical velocities in determining sedimentation rates. However we find that upward vertical velocities in the subsurface layers of the water column are significantly correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels - thus stimulating primary productivity and grazing - a few weeks before an enhanced vertical flux is found in the sediment traps. The role of ocean vertical velocities on deep particle fluxes would therefore be indirect. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton organisms. Other sedimentation mechanisms, such as dust deposition, are also taken into account in explaining large pulses of deep particle fluxes

    Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Get PDF
    This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500m and 2800m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200mday−1. The current vertical velocity field is computed from a 1/16 ×1/16 Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1mday−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evi- Correspondence to: L. Patara ([email protected]) dence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins

    MyD88 and TLR9 dependent immune responses mediate resistance to Leishmania guyanensis infections, irrespective of Leishmania RNA virus burden.

    Get PDF
    Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites
    corecore