25,366 research outputs found

    Technical advantages for weak value amplification: When less is more

    Get PDF
    The technical merits of weak value amplification techniques are analyzed. We consider models of several different types of technical noise in an optical context and show that weak value amplification techniques (which only use a small fraction of the photons) compare favorably with standard techniques (which uses all of them). Using the Fisher information metric, we demonstrate that weak value techniques can put all of the Fisher information about the detected parameter into a small portion of the events and show how this fact alone gives technical advantages. We go on to consider a time correlated noise model, and find that a Fisher information analysis indicates that while the standard method can have much larger information about the detected parameter than the postselected technique. However, the estimator needed to gather the information is technically difficult to implement, showing that the inefficient (but practical) signal-to-noise estimation of the parameter is usually superior. We also describe other technical advantages unique to imaginary weak value amplification techniques, focusing on beam deflection measurements. In this case, we discuss combined noise types (such as detector transverse jitter, angular beam jitter before the interferometer and turbulence) for which the interferometric weak value technique gives higher Fisher information over conventional methods. We go on to calculate the Fisher information of the recently proposed photon recycling scheme for beam deflection measurements, and show it further boosts the Fisher information by the inverse postselection probability relative to the standard measurement case

    CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features

    Full text link
    In this paper we propose a crossover operator for evolutionary algorithms with real values that is based on the statistical theory of population distributions. The operator is based on the theoretical distribution of the values of the genes of the best individuals in the population. The proposed operator takes into account the localization and dispersion features of the best individuals of the population with the objective that these features would be inherited by the offspring. Our aim is the optimization of the balance between exploration and exploitation in the search process. In order to test the efficiency and robustness of this crossover, we have used a set of functions to be optimized with regard to different criteria, such as, multimodality, separability, regularity and epistasis. With this set of functions we can extract conclusions in function of the problem at hand. We analyze the results using ANOVA and multiple comparison statistical tests. As an example of how our crossover can be used to solve artificial intelligence problems, we have applied the proposed model to the problem of obtaining the weight of each network in a ensemble of neural networks. The results obtained are above the performance of standard methods

    Non-monotonic entanglement of physical EM field states in non-inertial frames

    Full text link
    We develop a general technique to analyse the quantum effects of acceleration on realistic spatially-localised electromagnetic field states entangled in the polarization degree of freedom. We show that for this setting, quantum entanglement may build up as the acceleration increases, providing a clear signature of the quantum effects of relativistic acceleration.Comment: 5 pages, 3 figure

    Van der Waals spin valves

    Get PDF
    We propose spin valves where a 2D non-magnetic conductor is intercalated between two ferromagnetic insulating layers. In this setup, the relative orientation of the magnetizations of the insulating layers can have a strong impact on the in-plane conductivity of the 2D conductor. We first show this for a graphene bilayer, described with a tight-binding model, placed between two ferromagnetic insulators. In the anti-parallel configuration, a band gap opens at the Dirac point, whereas in the parallel configuration, the graphene bilayer remains conducting. We then compute the electronic structure of graphene bilayer placed between two monolayers of the ferromagnetic insulator CrI3_3, using density functional theory. Consistent with the model, we find that a gap opens at the Dirac point only in the antiparallel configuration.Comment: 5 pages, 4 figure

    An Improved GPU Simulator For Spiking Neural P Systems

    Get PDF
    Spiking Neural P (SNP) systems, variants of Psystems (under Membrane and Natural computing), are computing models that acquire abstraction and inspiration from the way neurons 'compute' or process information. Similar to other P system variants, SNP systems are Turing complete models that by nature compute non-deterministically and in a maximally parallel manner. P systems usually trade (often exponential) space for (polynomial to constant) time. Due to this nature, P system variants are currently limited to parallel simulations, and several variants have already been simulated in parallel devices. In this paper we present an improved SNP system simulator based on graphics processing units (GPUs). Among other reasons, current GPUs are architectured for massively parallel computations, thus making GPUs very suitable for SNP system simulation. The computing model, hardware/software considerations, and simulation algorithm are presented, as well as the comparisons of the CPU only and CPU-GPU based simulators.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08-TIC-0420
    corecore