532 research outputs found
Capacity analysis of suburban rail networks
As is well known, capacity evaluation and the identification of bottlenecks on rail networks are complex issues depending upon several technical elements. This is even more perceptible in metropolitan areas where different services (freight, long distance, metro/regional, etc.) are operated using the same limited infrastructures; as a consequence, these facilities may represent bottlenecks of the rail system since they are often highly utilized and congested. This paper tries to explore the issue of capacity evaluation of complex rail networks, proposing synthetic indicators
and analyses for feasibility studies or strategic planning. The presented methodology suggests taking into account the main differences in infrastructure characteristics (e.g. single or double lines, signalling systems, terminus or passing stations, etc.) and rail services (e.g. diverse rolling stock, various frequencies, average distances and number of stops, etc.) in order to propose a general approach applicable for capacity analysis of a network as a whole, hence evaluating the utilization rate and the congestion on both lines and stations. To better explore and
validate the methodology, an application to a line of the Naples’ suburban network is presented. The results confirm the applicability and effectiveness of the proposed approach; the outcomes indicate the capacity utilization rate of the considered facilities, pointing out likely bottlenecks and possible actions to improve the system efficiency
The effect of the environment on the Faber Jackson relation
We investigate the effect of the environment on the Faber Jackson (FJ)
relation, using a sample of 384 nearby elliptical galaxies and estimating
objectively their environment on the typical scale of galaxy clusters. We show
that the intrinsic scatter of the FJ is significantly reduced when ellipticals
in high density environments are compared to ellipticals in low density ones.
This result, which holds on a limited range of overdensities, is likely to
provide an important observational link between scaling relations and formation
mechanisms in galaxies.Comment: accepted by Ap
PD-L1/PD-1 axis in multiple myeloma microenvironment and a possible link with CD38-mediated immune-suppression
The emerging role of the PD-1/PD-L1 axis in MM immune-microenvironment has been highlighted by several studies. However, discordant data have been reported on PD-1/PD-L1 distribution within the bone marrow (BM) microenvironment of patients with monoclonal gammopathies. In addition, the efficacy of PD-1/PD-L1 blockade as a therapeutic strategy to reverse myeloma immune suppression and inhibit myeloma cell survival still remains unknown. Recent data suggest that, among the potential mechanisms behind the lack of responsiveness or resistance to anti-PD-L1/PD-1 antibodies, the CD38 metabolic pathways involving the immune-suppressive factor, adenosine, could play an important role. This review summarizes the available data on PD-1/PD-L1 expression in patients with MM, reporting the main mechanisms of regulation of PD-1/PD-L1 axis. The possible link between the CD38 and PD-1/PD-L1 pathways is also reported, highlighting the rationale for the potential use of a combined therapeutic approach with CD38 blocking agents and anti-PD-1/PD-L1 antibodies in order to improve their anti-tumoral effect in MM patients
Experimental and RELAP5-3D results on IELLLO (Integrated European Lead Lithium LOop) operation
The experimental facility IELLLO (Integrated European Lead Lithium LOop) was designed and installed at the ENEA Brasimone Research Centre to support the design of the HCLL TBM (Helium Cooled Lithium Lead Test Blanket Module).This work presents the results of the experimental campaign carried out within the framework of F4E-FPA-372 and which had three main objectives. First, to produce new experimental data for flowing LLE (Lead-Lithium Eutectic) for an analysis of the loop and the characterization of its main components. Then, to evaluate performances of commercial instrumentation as available instrumentation is not designed for use in LLE. Lastly, to use the data for validation of the model developed with the system code RELAP5-3D. The data collected could prove helpful to analyze the behavior of the LLE loop of ITER and DEMO in accidental conditions.The results show that the regenerative countercurrent heat exchanger has an efficiency ranging from 70 to 85%, mainly depending on the LLE mass flow rate. It was verified that the air cooler has the capability to keep the cold part of the loop at 623. K, even in the most demanding situation (700. rpm and maximum temperature of the hot part). The instrumentation tested showed good accuracy, with the exception of the turbine flow meter. Nevertheless, specific limitations in the upper operative temperatures were found for the LLE direct contact pressure transducer. RELAP5-3D simulations fit very well the associated experimental results achieved
The circular life of human CD38: From basic science to clinics and back
Monoclonal antibodies (mAbs) were initially considered as a possible “magic bullet” for in vivo elimination of tumor cells. mAbs represented the first step: however, as they were murine in nature (the earliest experience on the field), they were considered unfit for human applications. This prompted the development of techniques for cloning the variable regions of conventional murine antibodies, genetically mounted on human IgG. The last step in this years-long process was the design for the preparation of fully human reagents. The choice of the target molecule was also problematic, since cancer-specific targets are quite limited in number. To overcome this obstacle in the planning phases of antibody-mediated therapy, attention was focused on a set of normal molecules, whose quantitative distribution may balance a tissue-dependent generalized expression. The results and clinical success obtained with anti-CD20 mAbs revived interest in this type of strategy. Using multiple myeloma (MM) as a tumor model was challenging first of all because the plasma cells and their neoplastic counterpart eluded the efforts of the Workshop on Differentiation Antigens to find a target molecule exclusively expressed by these cells. For this reason, attention was turned to surface molecules which fulfill the requisites of being reasonably good targets, even if not specifically restricted to tumor cells. In 2009, we proposed CD38 as a MM target in virtue of its expression: it is absent on early hematological progenitors, has variable but generalized limited expression by normal cells, but is extremely high in plasma cells and in myeloma. Further, regulation of its expression appeared to be dependent on a variety of factors, including exposure to all-trans retinoic acid (ATRA), a potent and highly specific inducer of CD38 expression in human promyelocytic leukemia cells that are now approved for in vivo use. This review discusses the history of human CD38, from its initial characterization to its targeting in antibody-mediated therapy of human myeloma
Indexed left atrial volume, C-reactive protein and erythrocyte sedimentation rate as predictors of recurrence of non-valvular atrial fibrillation after successful cardioversion
Indexed left atrial volume, C-reactive protein and erythrocyte sedimentation rate as predictors of recurrence of non-valvular atrial fibrillation after successful cardioversio
Indexed left atrial volume is superior to left atrial diameter in predicting nonvalvular atrial fibrillation recurrence after successful cardioversion: a prospective study.
BACKGROUND: Although indexed left atrial volume (iLAV) is the most accurate measure of left atrial size, it has not been evaluated prospectively as predictor of recurrence of atrial fibrillation (AFib) after successful cardioversion (CV).
METHODS: We prospectively selected 76 patients (mean age 66.1 ± 13.6 years, 65.8% men) with AFib who underwent successful CV. Baseline clinical and echocardiographic characteristics were obtained before CV. LAV was measured using Simpson's method and indexed to body surface area. All patients were scheduled for follow-up visit at 1, 6, 12 months, and then annually. A 24-hour Holter ECG was performed within 6 months and each time the patients reported symptoms suggestive of arrhythmia.
RESULTS: The 52 patients (68.4%) with AFib recurrence had larger iLAV (35.5 ± 8.9 mL/m(2) vs 27.0 ± 6.7 mL/m(2) , P < 0.001). Anteroposterior LA diameter was not associated with AFib relapse (OR 1.08, 95% CI: 0.96-1.21, P = 0.09). Each unit increase in iLAV was associated with a 1.15-fold increased risk of recurrence (OR 1.15, 95% CI: 1.06-1.25, P < 0.001). In a multivariable model, iLAV remained the only independent predictor of relapse (adjusted OR 1.14, 95% CI: 1.02-1.28, P = 0.02). The area under ROC curves, generated to compare LA diameter, and iLAV as predictors of AFib recurrence were 0.56 (SE 0.07) versus 0.78 (SE 0.05), respectively (P = 0.003).
CONCLUSION: This is the first prospective study to show that larger iLAV, as a more accurate measure of LA remodeling than anteroposterior diameter, is strongly and independently associated with a higher risk of AFib recurrence after CV
Nanosized Sodium-Doped Lanthanum Manganites: Role of the Synthetic Route on their Physical Properties
In this paper we present the results of the synthesis and characterisation of
nanocrystalline La1-xNaxMnO3+delta samples. Two synthetic routes were employed:
polyacrylamide-based sol-gel and propellant synthesis. Pure, single phase
materials were obtained with grain size around 35 nm for the sol-gel samples
and around 55 nm for the propellant ones, which moreover present a more broaden
grain size distribution. For both series a superparamagnetic behaviour was
evidenced by means of magnetisation and EPR measurements with peculiar features
ascribable to the different grain sizes and morphology. Preliminary
magnetoresistivity measurements show enhanced low-field (< 1 T)
magnetoresistance values which suggest an interesting applicative use of these
manganites.Comment: 31 Pages 10 Figures to appear in Chem. Mate
Anti-tumor therapy with macroencapsulated endostatin producer cells
<p>Abstract</p> <p>Background</p> <p>Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors.</p> <p>Results</p> <p>Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 10<sup>7 </sup>recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments.</p> <p>Conclusions</p> <p>This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors.</p> <p>Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors.</p
- …