682 research outputs found

    Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe

    Full text link
    The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph

    Didactical use of a remote lab: a qualitative reflection of a teacher

    Get PDF
    This work describes the teacher reflections about a didactical implementation using a remote laboratory and their impact on his practice. These reflections are analyzed from three different perspectives: how the literature review influenced the design of the didactical implementation (namely the first); how his reflection upon his practice influenced its modifications; how his research activity impacted and affected his teaching practices in the subsequent implementations and guided the modifications made. The remote lab was introduced in a Physics Course in an Engineering degree and was intended to be a learning space where students had the opportunity to practice before the lab class, supporting the development of experimental competences, fundamental in an engineer profile. After the first implementation in 2016/17 academic year it has undergone two subsequent editions with adjustments and modifications. Some features previously reported in literature such as: teacher’s experience with VISIR, the importance of an introductory activity and defining VISIR tasks objectives, were corroborated by the teacher during his practice and research. Others, such as the difficulty some students have in understanding the difference between simulation and remote labs appeared directly from his practice and were pursued in his research in order to deeply understand its implications

    Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    Get PDF
    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs

    Quantum Entanglement in Second-quantized Condensed Matter Systems

    Full text link
    The entanglement between occupation-numbers of different single particle basis states depends on coupling between different single particle basis states in the second-quantized Hamiltonian. Thus in principle, interaction is not necessary for occupation-number entanglement to appear. However, in order to characterize quantum correlation caused by interaction, we use the eigenstates of the single-particle Hamiltonian as the single particle basis upon which the occupation-number entanglement is defined. Using the proper single particle basis, we discuss occupation-number entanglement in important eigenstates, especially ground states, of systems of many identical particles. The discussions on Fermi systems start with Fermi gas, Hatree-Fock approximation, and the electron-hole entanglement in excitations. The entanglement in a quantum Hall state is quantified as -fln f-(1-f)ln(1-f), where f is the proper fractional part of the filling factor. For BCS superconductivity, the entanglement is a function of the relative momentum wavefunction of the Cooper pair, and is thus directly related to the superconducting energy gap. For a spinless Bose system, entanglement does not appear in the Hatree-Gross-Pitaevskii approximation, but becomes important in the Bogoliubov theory.Comment: 11 pages. Journal versio

    Realistic Equations of State for the Primeval Universe

    Full text link
    Early universe equations of state including realistic interactions between constituents are built up. Under certain reasonable assumptions, these equations are able to generate an inflationary regime prior to the nucleosynthesis period. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of curvature parameter \kappa equal to 0 or +1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ

    The need to promote behaviour change at the cultural level: one factor explaining the limited impact of the MEMA kwa Vijana adolescent sexual health intervention in rural Tanzania. A process evaluation

    Get PDF
    Background - Few of the many behavioral sexual health interventions in Africa have been rigorously evaluated. Where biological outcomes have been measured, improvements have rarely been found. One of the most rigorous trials was of the multi-component MEMA kwa Vijana adolescent sexual health programme, which showed improvements in knowledge and reported attitudes and behaviour, but none in biological outcomes. This paper attempts to explain these outcomes by reviewing the process evaluation findings, particularly in terms of contextual factors. Methods - A large-scale, primarily qualitative process evaluation based mainly on participant observation identified the principal contextual barriers and facilitators of behavioural change. Results - The contextual barriers involved four interrelated socio-structural factors: culture (i.e. shared practices and systems of belief), economic circumstances, social status, and gender. At an individual level they appeared to operate through the constructs of the theories underlying MEMA kwa Vijana - Social Cognitive Theory and the Theory of Reasoned Action – but the intervention was unable to substantially modify these individual-level constructs, apart from knowledge. Conclusion - The process evaluation suggests that one important reason for this failure is that the intervention did not operate sufficiently at a structural level, particularly in regard to culture. Recently most structural interventions have focused on gender or/and economics. Complementing these with a cultural approach could address the belief systems that justify and perpetuate gender and economic inequalities, as well as other barriers to behaviour change

    Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200, 62.4, and 39 GeV

    Full text link
    We present measurements of elliptic flow (v2v_2) of electrons from the decays of heavy-flavor hadrons (eHFe_{HF}) by the STAR experiment. For Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV we report v2v_2, for transverse momentum (pTp_T) between 0.2 and 7 GeV/c using three methods: the event plane method (v2v_{2}{EP}), two-particle correlations (v2v_2{2}), and four-particle correlations (v2v_2{4}). For Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 62.4 and 39 GeV we report v2v_2{2} for pT<2p_T< 2 GeV/c. v2v_2{2} and v2v_2{4} are non-zero at low and intermediate pTp_T at 200 GeV, and v2v_2{2} is consistent with zero at low pTp_T at other energies. The v2v_2{2} at the two lower beam energies is systematically lower than at sNN=\sqrt{s_{\rm NN}} = 200 GeV for pT<1p_T < 1 GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to sNN=200\sqrt{s_{\rm NN}} = 200 GeV.Comment: Version accepted by PR
    corecore