25,076 research outputs found

    Gauge singlet scalar as inflaton and thermal relic dark matter

    Full text link
    We show that, by adding a gauge singlet scalar S to the standard model which is nonminimally coupled to gravity, S can act both as the inflaton and as thermal relic dark matter. We obtain the allowed region of the (m_s, m_h) parameter space which gives a spectral index in agreement with observational bounds and also produces the observed dark matter density while not violating vacuum stability or nonperturbativity constraints. We show that, in contrast to the case of Higgs inflation, once quantum corrections are included the spectral index is significantly larger than the classical value (n = 0.966 for N = 60) for all allowed values of the Higgs mass m_h. The range of Higgs mass compatible with the constraints is 145 GeV < m_h < 170 GeV. The S mass lies in the range 45 GeV < ms < 1 TeV for the case of a real S scalar with large quartic self-coupling lambdas, with a smaller upper bound for smaller lambdas. A region of the parameter space is accessible to direct searches at the LHC via h-->SS, while future direct dark matter searches should be able to significantly constrain the model.Comment: 13 pages, 7 figures. Published versio

    Automated Identification of Unhealthy Drinking Using Routinely Collected Data: A Machine Learning Approach

    Get PDF
    Background: Unhealthy drinking is prevalent in the United States and can lead to serious health and social consequences, yet it is under-diagnosed and under-treated. Identifying unhealthy drinkers can be time-consuming for primary care providers. An automated tool for identification would allow attention to be focused on patients most likely to need care and therefore increase efficiency and effectiveness. Objectives: To build a clinical prediction tool for unhealthy drinking based solely on routinely collected demographic and laboratory data. Methods: We obtained demographic and laboratory data on 89,325 adults seen at the University of Vermont Medical Center from 2011-2017. Logistic regression, support vector machines (SVM), k-nearest neighbor, and random forests were each used to build clinical prediction models. The model with the largest area under the receiver operator curve (AUC) was selected. Results: SVM with polynomials of degree 3 produced the largest AUC. The most influential predictors were alkaline phosphatase, gender, glucose, and serum bicarbonate. The optimum operating point had sensitivity 31.1%, specificity 91.2%, positive predictive value 50.4%, and negative predictive value 82.1%. Application of the tool increased the prevalence of unhealthy drinking from 18.3% to 32.4%, while reducing the target population by 22%. Limitations: Universal screening was not used during the time data was collected. The prevalence of unhealthy drinking among those screened was 60% suggesting the AUDIT-C was administered to confirm rather than screen for unhealthy drinking. Conclusion: An automated tool, using commonly available data, can identify a subset of patients who appear to warrant clinical attention for unhealthy drinking

    Limits on entanglement in rotationally-invariant scattering of spin systems

    Full text link
    This paper investigates the dynamical generation of entanglement in scattering systems, in particular two spin systems that interact via rotationally-invariant scattering. The spin degrees of freedom of the in-states are assumed to be in unentangled, pure states, as defined by the entropy of entanglement. Because of the restriction of rotationally-symmetric interactions, perfectly-entangling S-matrices, i.e. those that lead to a maximally entangled out-state, only exist for a certain class of separable in-states. Using Clebsch-Gordan coefficients for the rotation group, the scattering phases that determine the S-matrix are determined for the case of spin systems with σ=1/2\sigma = 1/2, 1, and 3/2.Comment: 6 pages, no figures; v.2: sections added, edited for clarity, conclusions and calculation unchanged, typos corrected; v.3: new abstrct, revised first two sections, added reference

    The Influence of Finite-size Sources in Acousto-ultrasonics

    Get PDF
    This work explores the effects that the finite normal axisymmetric traction loading of an infinite isotropic plate has on wave propagation in acousto-ultrasonics (AU), in which guided waves are created using two normal incidence transducers. Although the work also addresses the effects of the transducer pressure distribution and pulse shape, this thesis concentrates on two main questions: how does the transducer's diameter control the phase velocity and frequency spectrum of the response, and how does the plate thickness relate to the plate's excitability? The mathematics of the time-harmonic solution and the physical principles and the practical considerations for AU wave generation are explained. Transient sources are modeled by the linear superposition of the time-harmonic solutions found using the Hankel transform and they are then compared to experimental data to provide insight into the relation between the size of the transducer and the preferred phase velocity

    Data clustering and noise undressing for correlation matrices

    Full text link
    We discuss a new approach to data clustering. We find that maximum likelihood leads naturally to an Hamiltonian of Potts variables which depends on the correlation matrix and whose low temperature behavior describes the correlation structure of the data. For random, uncorrelated data sets no correlation structure emerges. On the other hand for data sets with a built-in cluster structure, the method is able to detect and recover efficiently that structure. Finally we apply the method to financial time series, where the low temperature behavior reveals a non trivial clustering.Comment: 8 pages, 5 figures, completely rewritten and enlarged version of cond-mat/0003241. Submitted to Phys. Rev.

    Time evolution of the Partridge-Barton Model

    Full text link
    The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time tt is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t1t^{-1} power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.Comment: 10 pages, Latex, 1 postscript figure, published in Phys. Rev. E 61, 5664 (2000

    Guided Waves for the Inspection of Titanium Diffusion Bonds

    Get PDF
    The aggressive environment encountered by the high speed civil transport (supersonic) aircraft (HSCT) places severe requirements on the types of materials used in its construction. The state-of- the-art materials available to the commercial aerospace industry will not meet these severe environmental requirements. New materials have been evaluated that will meet these severe environmental requirements. One such material is the super plastic formed/diffusion bonded (SPF/DB) titanium. Structures with this material have been fabricated to be used on the HSCT aircraft. Because the HSCT is a commercial program, the FAA requires that nondestructive evaluation techniques must be developed for the inspection of these structures

    Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen

    Full text link
    A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and expressed in terms of BB splines and BB polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 10 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.Comment: 8 pages, 5 figure

    The Heumann-Hotzel model for aging revisited

    Full text link
    Since its proposition in 1995, the Heumann-Hotzel model has remained as an obscure model of biological aging. The main arguments used against it were its apparent inability to describe populations with many age intervals and its failure to prevent a population extinction when only deleterious mutations are present. We find that with a simple and minor change in the model these difficulties can be surmounted. Our numerical simulations show a plethora of interesting features: the catastrophic senescence, the Gompertz law and that postponing the reproduction increases the survival probability, as has already been experimentally confirmed for the Drosophila fly.Comment: 11 pages, 5 figures, to be published in Phys. Rev.
    corecore