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Chapter 1
Motivation and Methods

Acousto-Ultrasonics (AU) combines acoustic-emission (AE) reception
techniques and normal incidence ultrasonic surface loading to determine the
distributed damage state in a composite materials (as opposed to macro-defects
such as large delaminations or cracks). Although researchers have been able to
show that the AU technique can describe the decline in material properties
associated with increased porosity or reduced inter-laminar shear strength, the
scientific community has not universally welcomed AU because a strong
theoretical basis does not yet exist for the method. This technical report addresses
this lack. It models the Acousto-Ultrasonic stress waves as Lamb Wave modes so
that the effect of the size of the transducer can be studied. This work provides a
better physical understanding of the wave propagation principles involved in AU,

so that the technique can be used most effectively.

Need

When AU was first used, most analyses relied on empirical results that
neglected frequency and guided wave effects. The results were not extremely
conclusive because the mechanics of the chosen features were not well
understood. Stress Wave Factors (SWF’s) were developed to try to quantify the
material attenuation, assuming that the internal damage increases the attenuation.
Many different time-domain SWF’s have been used, for example the counts
above threshold (Vary, 1978), average time to arrival (Kautz, 1990), the

integrated time-domain signal after passing the signal through a filter (Kautz,



1985), the signal amplitude (Das, 1993), or the integrated square of the time-
domain signal (Das, 1993).

Currently, most researchers base their SWF’s on the frequency (or power)
domain of the signal. Some of the common SWF's in this class are the area under
the power spectrum (Reis, 1993), the first moment of the power spectrum, the
center frequency (Hore and Duke, 1993), pattern recognition routines (Thomsen
and Lund, 1990, Barton, 1993, Hinton, 1993) or the area under the power
spectrum within certain frequency bounds (Kautz, 1990). By basing their SWF’s
in the frequency-domain, these researchers are able to approximate the amount of
energy contained in the signal, just as was done in the time-domain. In addition,
the behavior of the different frequency components can be compared.

To gain more insight into the differences between the frequency
components and create wavestructures that are more sensitive and accurate, many
researchers are treating the stress waves as Lamb Waves (Tang, 1988, Alleyne
1991, 1992, Ditri 1993b, 1992, Rose 1993, Costley and Berthelot, 1993).
Generating specific modes provides a much stronger theoretical basis. However,
the physical understanding of AU’s unique wave propagation characteristics is
still far from complete. In addition to the inhomogeneous nature of composite
materials, normally incident transducers are a limiting wave propagation case that
has not yet been fully explored.

Little work has been done on the generation of waves by finite-sized
transducers. Viktorov (1967), Pursey (1957), Fulton and Sneddon (1958), and
Nikiforov and Kharitonov (1981) began work in this area. Most recently Ditri et
al. (1993) and Rose et al. (1993a) have continued this work. However, most of
the work to date has concentrated on the "wedge" technique, which can allows the
angle of incidence to be adjusted so the phase of the desired mode can be
matched. Very little work has been done that studies the finite source influence
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on the generation of Lamb waves at normal incidence. Rose et al. (1993a)
qualitatively showed a frequency shift that is associated with changing the
transducer's size in composite layers. Ditri et al. (1993) derived the time-
harmonic solutions due to axisymmetric normal surface loading (which models
AU).

Although the currently used SWF’s work well for determining porosity or
microstructure cracking, they can only compare samples to a known set, and they
cannot separate the effects of different types of defects or the effects associated
with the experimental setup such as the couplant, the contact pressure, or
transducer parameters. This incomplete physical understanding restricts the
researchers' ability to apply results from one specimen and one transducer to
another. Studying the influence of the source can significantly narrow the gap
between experiment and theory. It will also help determine which modes and

frequencies can be used most effectively to detect certain types of damage.

Goals and Elements of This Report

The goal of this thesis is to gain a better physical understanding of the
wave propagation principles used in Acousto-Ultrasonic non-destructive
evaluation. By enhancing the physical basis and understanding of AU, inherent
limitations can be recognized and adjustments can be made to compensate for
these limitations or even take advantage of them. This will help researchers
develop sophisticated defect analysis methodologies and allow AU to become a
very powerful method of NDE.

This work builds upon recent investigations of frequency effects and the
time-harmonic wave solutions by closely examining the influence that the source

and the plate thickness have on transient loadings of an isotropic layer. It



concentrates on the generation of guided waves via transient normal axisymmetric
surface loading.

A FORTRAN program was created that generalizes the time-harmonic
solutions to simulate realistic transient solutions. Using this program and
experimental results, the following questions were addressed:

« How does the size of the transducer affects mode generation
» How does a finite source modify the frequency-thickness normalization
» How does the pressure distribution and shape of the wavepacket affect mode
generation
Physical interpretations and practical guidelines for the generation of guided

waves using Acousto-Ultrasonics are given for each of these areas.

Methodology

In order to find the wave propagation principles that control the effect of
the transducers size, three methods are used. These methods include discussion of
the time harmonic solutions proposed by Ditri et al., computer modeling via linear
superposition of the time harmonic solutions, experimental data, and a general

discussion of the physical concepts involved.

Time Harmonic Solutions

Ditri et al. propose the guided isotropic plate wave solutions due to
loading by an axisymmetric normal surface load, which models the AU technique.
Although the solutions are derived for an isotropic plate, which allows the stress
waves to be considered as Lamb Waves, the general principles derived from them
will also apply to anisotropic plates (and composite plates) as long as only one
direction is considered. Previous work has shown that this a valid conclusion
because composite structures can support waves that behave in the same manner

4



as Lamb waves propagating in isotropic materials (Tang and Henneke, 1988,
Kautz, 1993).

The time-harmonic solutions that are derived take into account the size of
the transducer (as well as the pressure distribution) for the limiting case of
normally incident waves. The mathematics of the solution helps build an
understanding of the underlying physical principles.

The rest of this section summarizes the derivation of the time-harmonic
solutions that were developed by Ditri (1993a) and that form the basis for this
study. A complete derivation of the solution can be found in Appendix A.

The problem of normal incidence pressure loading of a linearly elastic,
homogeneous, isotropic layer is investigated for the coordinate axes that are
shown in figure 1.1. From the theory of elasticity, it can be determined that the

displacement field, u(r.t), will satisfy Navier’s equation of motion,

d’u

/,1V2u+(,l +2[1)VV'II =p-ét_2

(1.1)

for all r interior to the layer (where p is the mass density of the material and A and
M are its Lamé constants).

The AU technique uses normal incidence longitudinal wave transducers,
which tend to apply only normal tractions to the surface of the plate because shear
stresses cannot be effectively transmitted across the oil film that couples the
transducer to the plate. To model this situation, the following boundary
conditions are used,

fre™ 0O<r<a

O'u(r,z=d/2,t)={
0 r>a

o,(r.z= -d/2,0)=0

g(re™ 0<r<a
r>a

(1.2a-d)
o, (r,z=d/2,n)=

o, (r.z=-d/2.1) =0



where f(r) and g(r) are the normal and transverse traction distributions applied to
the surface of the plate. As indicated by equations (1.2), the surface loading is
assumed to be time-harmonic and axisymmetric, applied over a circular region of

radius a.

iax

f(r)e—\ ~—a—-|

Figure 1.1 The upper surface of a layer is subjected to a time-harmonic axisymmetric normal
traction loading in the circular region r = 1{ X +y' <a

The displacement field is uncoupled into irrotational and equivoluminal
parts using the Helmholtz decomposition. The Hankel transform is then applied
and the boundary conditions are satisfied. After solving for the unknown
amplitudes in the general solution, the inverse Hankel transform is applied, using

residue calculus to evaluate the resulting integrals. This procedure yields the



following results for the symmetrical (s) and anti-symmetrical (a) components of

the in-plane (r) and out-of-plane (z) particle displacements, u;:

I.05..)
" ALL(S)
I(5..)
AL G)

u:"'(r,z)zi%ZF(’(fs'a,a)é HOE,.,) r>a (133
[

uz"“(r,z)=i2—7:l-2F°(§:_a,a)§ HOE.r)  r>a  (L3b)
Sea

where the solution is summed over &;,, the wavenumber roots of the symmetric

and anti-symmetric dispersion equations, A;,g. A’ , represents the derivative with
respect to wavenumber of these dispersion equations. FO is the zero order Hankel
transform of the normal pressure distribution, fr), and H," is the Hankel function

of the first kind of order n. The ™% terms are defined in Appendix B. A

description of the significance of each of these terms is given below.

The summation sign in the problem solution indicates that every
propagating mode contributes to the solution. For a given circular frequency, ®,
the function is evaluated at all of the roots of the symmetric and anti-symmetric
Rayleigh-Lamb dispersion equations, which correspond to the wavenumbers at
which each mode propagates. This result follows directly from the residue
calculus used to solve the problem. The denominator of the solution (before the
residue calculus is used to evaluate the integral) is either the symmetric or anti-
symmetric dispersion equation, for u; , and u;, respectively. So the poles of the
solution coincide with the roots of dispersion equation. Later, the solution will be
generalized so that a range of frequencies (as opposed to a single frequency) is
excited. In this case, the summation over the modes becomes integration over the
dispersion curves.

The source term, F°, is the Hankel transform of the normal pressure
distribution f(r), defined in the boundary conditions. This term accounts for the

interference effects across the face of a finite source. For a point source (which
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does not experience this type of interference) the Hankel transform has a constant
value with respect to the transform variable, &, which is also the wavenumber.
Exciting every wavenumber equally means that every frequency and phase
velocity are also excited equally since £=9 v, for a planar wavefront. For a
finite source, the value of the Hankel transform of the pressure distribution will
fluctuate at high wavenumbers (low phase velocities), and approach a maximum
value (0.5 Pa2 for the piston case) as the wavenumber goes to zero (and the phase
velocity goes to infinity). Ditri (1993a) showed that the solution may be
generalized to include the Hankel transform of any axisymmetric time-harmonic
pressure distribution.

’
sa?

The material response term, I';5 /A is a function of the material

properties (bulk longitudinal and shear wave velocities), the wavenumber and the
frequency-thickness product. It represents what wavestructures the plate can
support and still satisfy the zero traction boundary conditions. If the material
response term includes the wavenumber term that appears immediately before it,
it represents the system’s response to a point source, which decays to zero as the
phase velocity approaches infinity. However, this wavenumber term has been
pulled out so that the material response is dependent on the frequency-thickness
product instead of being dependent on the frequency and thickness independently.
By separating the wavenumber in this manner, the finite-size effects are separated
and the material response better indicates the modes’ behavior at infinite phase
velocities (tending to be infinitely excitable or unexcitable). Expressions for
gamma and delta can be found in Appendix B.

The wavenumber that has been pulled out from the material response term
is first introduced to the solution by the Hankel transform to account for its
cylindrical nature. Although the Hankel transform operates on only one variable,

r, itis actually a two dimensional transform. The implied integration over the
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angle, 6, leads to a constant value times r since the function is assumed to be
axially symmetric, not varying with 8. Physically, this phenomenon can be
related to the dissipation of energy as a wave packet moves away from the source
and spreads over a greater region. At times in this thesis, the wavenumber term is
included in the source term because the energy considerations can be related to
the finite nature of the source. Including the wavenumber as a part of the source
term concentrates all of these finite-size source effects in the source term and
allows the material response to be independent of the frequency (and dependent
on the frequency-thickness product instead). However, the material response term
may also be multiplied by the wavenumber term, so that the material response
term reflects the response of the system to a point source.

The radial term, H"(&,,r) or H{"(, r), describes how the wave
behaves as the distance from the source increases. The distance between
consecutive local maxima (the radial “wavelength™) decreases as the separation
from the source increases, which will affect the group velocity and interference
effects. In the large radius limit, however, the Hankel function behaves more

traditionally, fluctuating with a near constant wavelength.

2 n T
@ == il -2 — p=
HP (x) exp(ﬂ(x 2 P > )) (1.4)
x>>1

In this limit, the expression relating the wavenumber to the frequency and phase

velocity approaches what it would be for a planar wavefront (& = @fv,,).

Computer Model
The solution technique explained above assumes a time-harmonic source
(continuous wave). However, before it can be applied to realistic circurnstances,

the solution needs to be expanded to include transient sources. In order to do this,



the solution needs to account for the excitation of waves over a portion of the
frequency spectrum, as opposed to excitation at one speciﬁc‘ frequency.

The various components of the frequency spectrum are combined by
simple linear superposition. In practice, the complex Fourier transform of the
source is used as a weighting function (replacing the constant pressure amplitude
function P with p(®)). The complex transform is used so that the phasing
information of each of the frequency components can be conserved. Because the
governing equation is a hyperbolic differential equation, causality is "built in" and
does not need to be explicitly added. The superposition of sources suffices.

From the frequency spectrum, the time domain signal can be generated by
two techniques. The first method, the harmonic summation method, multiplies
each term by e-i®t, integrates over the dispersion curves in the region of interest,
and then repeats the process after incrementing the time. The solution may also
be obtained by taking the inverse Fourier transform of the complex frequency
response of the system. The inverse FFT technique is much faster and yields
identical results. However, the harmonic summation method must still be used to
obtain a cross sectional profile (through the plate thickness), since, by definition,
the inverse Fourier transform transforms a frequency spectrum to the time
domain. The inverse transforms are unique as long as the functions are
continuous, as they are in this case.

A FORTRAN program was created to implement this transient solution.
The program was created to run under VS FORTRAN in Penn State’s VM
environment. Its code is approximately 1500 lines long, and it takes anywhere
from five seconds to twenty five minutes to run, depending on the task and the
present load on the system. The data files were downloaded to a Quadra 900 and
graphed using Microsoft Excel. The computerized solution allows each of the
factors which affect the wave propagation to be studied separately. It also takes
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into account the changes in phase velocity and excitability that occur because a
portion of the frequency spectrum, and not a single frequency, is excited.
Experimental Testing

Experimental results are used to confirm the analytical ones. For
comparison, three different size Gamma transducer pairs (6.35 mm, 12.7 mm, and
25.4 mm) from Krautkramer-Branson and a tone burst generator setup (HP3441A
and HP8166 Function Generators, MATEC 350 Amplifier, and a LECROY 9310
digital oscilloscope) are used.

The experimental setup can be seen in figure 1.2. A Hewlett Packard 3314
function generator created a continuous wave at the desired center frequency.
This signal lead to a Hewlett Packard 81 16A function generator which modulated
the signal so that each burst contained 20 cycles. This modulated tone-burst
technique allows the center frequency of the pulse to be controlled regardless of
the frequency characteristics of the individual transducers. A MATEC model 350
tone burst amplifier was coupled to an attenuator to increase the signal voltage to
20 volts. The amplification was linear for all signals whose center frequency was
between one and ten megahertz for a pulse repetition setting of 10 ms, as
witnessed by propagating the wave through a PMMA delay block. The matched
transmitting and receiving transducers were coupled to the aluminum plates using
Krautkramer Branson Ultrasonic Couplant. Surface tension between the
transducer and the couplant was used to hold the transducers on the plate, so that
shear tractions would not be induced on the plate. The signal was analyzed by a
LECROY 9310 digital oscilloscope with a 2 ns accuracy. Two thousand points
were sampled at 50 ns intervals (100 ps total) and transferred to a NCR computer
that was running Lab Windows, where standard IMSL routines were used to find
the frequency spectrum of the signal. All of the graphing was done using
Microsoft Excel on a Macintosh Quadra 900.
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These test methods are used to evaluate the effect that the transducer’s size

has on AU wave propagation which is described in the rest of this report.
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Figure 1.2 The experimental configuaration used to create tone burst signals. This set-up allows
the center frequency of the source to be controlled so optimurmn frequencies can be chosen.
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Chapter 2
General Considerations in Acousto-Ultrasonic
Wave Propagation

This chapter addresses some general principles that will be used in the rest
of this thesis. It begins by explaining the concept of excitabilities and how they
are related to the wavestructure. The pressure distribution across the face of the

transducer and the effect of the pulse shape are also discussed.

Excitabilities and Cross Sectional Profiles

In plates, waves can only propagate at certain frequency-phase velocity
combinations that correspond to the roots of the Rayleigh-Lamb dispersion
equations. Where these roots would fall for an aluminum plate is shown in figure
2.1. Each of these roots has a certain excitability associated with it that represents
how easily that mode can be generated. This excitability is related to the
wavestructure of that root (point on the dispersion curve) and is generally defined
as the ratio of the normal component of the particle velocity on the surface of the
plate to the total power carried by the mode. The out-of-plane and in-plane
particle velocity components change for each of the points on the dispersion

curve, causing certain points to be more excitable than others.

Near the Cutoff Frequencies

In AU, the mode's excitability at its cutoff frequency is extremely
important. The cutoff frequency corresponds to the frequency at which the
mode’s wavenumber is zero and the frequency below which a mode is evanescent.
(Table 2.1 lists the theoretical values of the cutoff frequencies for an aluminum
plate.) Since the wavenumber is zero at these points, the phase velocity is infinite.

Consequently, AU will tend to generate modes at these frequencies, since



20 ' : - L o
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Phase Velocity (mm/us)
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Figure 2.1 Dispersion curves for a traction free plate, whose bulk wave speeds
are V1 = 6.3 mm/us and Vi = 3.2 mm/us (aluminum). Only real roots are shown,
which accounts for the apparent ends of modes S1, A2, and S4.

Table 2.1 Cutoff Frequencies for a one mm thick traction free plate, whose bulk wave
speeds are V1 = 6.3 mm/us and Vt = 3.2 mm/us (aluminum}.

QOrder Symmetric Modes Antisymmetric Modes

First (1) 3.15 1.6
Second (2) 3.2 4.8
Third (3) 6.4 6.3
Fourth (4) 9.45 8
Fifth (5) 9.6 11.2
Sixth (6) 12.8 12.6

15



normally incident waves tend to generate plate waves with very high phase
velocities. This is the limiting case of the "wedge" technique, which generally
allows the experimenter to vary the angle of incidence so that the ultrasonic
wavefront travels down the surface of the plate and preferentially excites a plate
wave with a phase velocity that matches the wavefront's delay.

As the mode approaches its cutoff frequency, the particle velocities will
become either entirely out-of-plane or entirely in-plane. (Auld 1990, p.84.,
Vitkorov 1969) As a result, the modes that have entirely out-of-plane particle
velocities at their cutoff frequency become infinitely excitable, and the modes
with only in-plane particle velocities become completely unexcitable.

The excitabilites cannot be directly derived from the time-harmonic
solutions presented in this thesis. However, the material response term contains
similar information, combining information about both the excitabilities and the
wavestructure. This term is shown in figure 2.2, a plot of the out-of-plane
displacement component of the material response as function of the frequency-
thickness product and the phase velocity (=w/§, assuming the point of observation
is far away from the source). The response of the second order symmetric mode
(S2) and the third and fifth order anti-symmetric modes (A3 and A5) are
increasing with the phase velocity, indicating that these modes are very excitable
at high velocities. On the other hand, the responses of the third order symmetric
(S3) and the fourth order anti-symmetric mode (A4) are quickly decreasing. Asa
result, the high phase velocities associated with a normally incident wave packet
will not tend to excite these modes. In this manner, figure 2.2 can be used to
indicate which modes can be efficiently generated using AU techniques.

When multiplied by the wavenumber, the material response term tells
what particle displacements would be excited by a point source (that tends to
excite all frequencies and phase velocities equally), as shown in figure 2.3. The

16
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Figure 2.2 Out-of-plane displacement component of the material response as a function of the frequency-thickness
product and the phase velocity. The responses of modes S2, A3, and A6 are increasing with the phase
velocity, indicating that these modes are very excitable at high velocities. On the other band,
the material responses of modes S3 and A4 quickly decrease and the modes will therefore not be

effectively excited by normal tractions.
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Figure 2.3 Out-of-plane displacement response to a point source, shown as a function of the frequency-thickness
product and the phase velocity. Numerically, the response represents the material response term multiplied
by the wavenumber. [t decays 10 zero at infinite phase velocity, since a point source cannot generate an

infinite amount of energy.
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response to a point source decays for all modes as the phase velocity approaches
infinity, indicating that the system contains a finite amount of energy. As for the
material response term, it can be observed that modes S2, A3, S4, and A5 will be

more strongly excited than modes Al, S1, A2, and S3 at high phase velocities.

Cross-Sectional Profile

The wavestructure relates to both how excitable a mode is and how
sensitive it is to certain defects. The cross sectional profile of the out-of-plane
normal stress, the out-of-plane displacement and the in-plane displacement, which
are characteristics of the wavestructure, are shown in figure 2.4. The solid lines
represent the symmetric modes and the dashed lines represent the anti-symmetric
modes. There are large out-of-plane displacements on the surface of the plate
when the frequency-thickness product (fd) is both 3.4 mm-MHz (where S2
dominates) and 6.4 mm-MHz (where A3 dominates). As a result, these modes
can be efficiently generated by a normal traction. On the other hand, the 5.0 mm-
MHz frequency-thickness products plots (figures 2.4b,e,h) are dominated by the
A2 mode which is transverse (all in-plane displacements) at its cutoff frequency
(at f{d=4.8 mm-MHz). Although the in-plane displacements are not very large, the
out-of-plane displacements are almost zero making the mode very difficult to
excite via normal traction.

The differences in wavestructure can be exploited for defect detection and
characterization. For example, the second order symmetric mode (S2) at fd=3.4
mm-MHz has a large in-plane displacement near the plate’s surface allowing it to
find critical surface cracks effectively, in addition to having a large out-of-plane
displacement component. The A3 mode at 6.4 mm-MHz, on the other hand, has a
maximum in-plane displacement approximately one third of the way through the
plate and has a very small in-plane displacement on the surface. Since the A3
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mode’s maximum in-plane displacement occurs at a location where the S2 mode
has no in-plane displacement, the difference in the propagation characteristics of

the two modes can be exploited to help characterize defects such as cracks or

pores.

Effect of the Varying the Pressure Distribution

When angle beam transducers are used, the experimenter can effectively
control which area of the dispersion curves are generated by controlling the
transducer’s center frequency, the frequency bandwidth, and the angle of
incidence. However, in Acousto-Ultrasonics, all of the experiments are conducted
at normal incidence, which limits the control that the experimenter has over which
modes are generated. To regain some of this control, other characteristics of the
transducer, such as its pressure distribution, must be adjusted.

The pressure distribution is affected by many factors, including the
electrical contacts, the pulse shape, the backing material, the type of piezo-
electric, and the physical shape of the housing and the transducer construction.
Although many of these parameters cannot be changed after the transducer is
manufactured, they should be considered when the transducer is designed.
Different distributions favor different phase velocities, which may be chosen so
that the transducer can excite a particular mode more effectively. Special
transducers can also be created that target a specific mode by using discontinuous
faces or sequencing. Laser generated ultrasound will allow these special
distributions to be easily changed and adapted depending on the desired
applications.

Most theoretical studies model a piston-like source since it is the simplest
one to describe (being constant below the transducer and zero everywhere else).
However, the discontinuities at the edge of the transducer are unrealistic and they
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unnecessarily complicate the mathematical results. High-frequency components
appear that are not present in continually distributed sources such as the parabolic
distribution. Comparing the simulated and experimental results indicates that the
parabolic distribution does model the realistic situation more closely.

The Hankel transform technique can be used to model any axisymmetric
time-harmonic pressure distribution, although numerical integration may be
needed to compute the result for a complicated distribution. For example, a more
realistic pressure distribution may be a "mixed” parabolic-piston source, which
behaves like a piston source near the center of the transducer, but declines towards

the edge as a parabolic source would. This distribution could be represented by

the following equation:
r>a
,— 2
Press = 1—( ) a>r>b
r—a
1 r<b

where a is the radius of the transducer and b is the transition point (for example

2/3 of a).

Pulse Shape Influences

One of the easiest ways to control the frequency spectrum of the source 1s
modifying the shape of the wave packet (including its frequency, duration, and
modulation). In both the experimental set-up and the simulation, "tone burst”
techniques were used, in which 20 cycle packets of a certain frequency are square
or sine-modulated. The experimental set-up that was used for all of the
experiments is shown in figure 2.5. This set-up allows the center frequency of the
transducer to be controlled, although the transducer will retain some of its
frequency characteristics and generate frequencies near its natural frequency more

strongly than other frequencies.
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22



The number of cycles in the pulse greatly affects the frequency bandwidth,
which in turn affects the ability to excite a mode. Figure 2.6 shows the
experimental waveform for signals of 10 and 80 cycles. Figure 2.7 shows the
frequency spectrums of these signals. The frequency peaks are much narrower for
the 80 cycle pulse, since the extra cycles reduce the frequency bandwidth of the
source. This causes modes to only be excited when the center frequency is very
close to the mode’s cutoff frequencies. The 10 cycle pulse, on the other hand,
excites each mode over a broader frequency range. It is also able to excite more
modes (for example Al at fd=1.6 mm-MHz), since its frequency bandwidth is
larger. Figure 2.8 shows the simulated maximum RF amplitude as a function of
center fd for signals with three different number of pulses, 2, 10, and 30. From
this figure, it is clearly evident that frequency peaks associated with the cutoff
frequencies are broadened when less cycles are included in a wave packet. Asa
result, if many cycles are used, the test procedure can be much more selective.
However, this will reduce the range of possible wavestructures.

The modulation envelop of the wave packet does not appear to have a
large effect on the amplitude of the received wave packet, as figure 2.9 of the
simulated maximum RF amplitude shows. However, the frequency response and
the RF waveform do change considerably, as can be seen in figures 2.10 and 2.11.
The sudden increase at the edge of the square modulated signals causes higher
order harmonics to be generated that result in large "side lobes” in the frequency
response. The interference caused by the different frequency components
attributed to these side lobes complicates the received signal because more modes
(with different group velocities) are generated. As aresult, it is more difficult to

extract useful defect analysis information.
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Chapter 3
The Effect of the Transducer's Size

Traditionally, the transducer's size is dictated primarily by the physical constraints
of the testing location, the amount of power that needs to be put into the sample, and the
center frequency of the transducer (since higher frequency ceramic transducers need to be
thinner.) However, the effect that the size of the transducer has on what modes can be
generated and on the phase velocities of the generated modes has frequently been
neglected.

In AU, since the angle of incidence cannot be changed (as it can in the wedge
technique) to select a certain phase velocity, the size of the transducer becomes the
principle means that the experimenter has to control the phase velocity at which the wave
is generated. Transducers placed normal to a plate’s surface tend to generate plate waves
with very high phase velocities. As the size of the transducer is increased, this effect
becomes stronger and the preferred phase velocity also increases. So, by changing the
size of the transducer, the phase velocity can be controlled, affecting which modes are

generated.

Physical Understanding

In AU, modes tend to be generated at infinite phase velocities because the entire
wavefront hits the material sample simultaneously. On the other hand, when an angle
beam transducer is used the wavefront progresses down the material surface. By
selecting an angle, a specific phase velocity can be selected by matching phases (Snel's
law). However, because AU always uses normally incident transducers, it loses this
ability to select any phase velocity, tending to generate waves at very high phase

velocites.



The phase velocities at which modes can be generated is dictated by interference
effects. Following Huygens’ Principle, waves are generated simultaneously from all
points on the transducer’s face. These waves then interfere with each other. Waves that
have short wavelengths (less than the transducer radius) corresponding to low phase
velocities (the frequency is assumed to be constant = the frequency of the forcing
function) experience more interference because they have a larger phase difference across
the face of the transducer. This interference causes the response to fluctuate rapidly as
the phase velocity changes. Longer wavelengths (higher phase velocities) mean that
fewer wavelengths are created across the face of the transducer and the fluctuations occur
less rapidly, because a greater change in wavelength is needed to transition from
completely destructive to completely constructive interference. When half of the
wavelength is approximately larger than the transducer diameter the response no longer
fluctuates rapidly, because only one part of one wavelength is affected. All higher phase
velocities are very excitable. As the phase velocity and wavelength continue to increase,
the phase difference across the face of the transducer continues to decrease. The source’s
contribution reaches its maximum value when the phase velocity is infinite and each
portion of the transducer creates a wave that has the same phase.

An infinitely large transducer will only generate waves at infinite phase velocities,
while a point source will tend to generate every phase velocity. Finite sources fall in
between these limits. In general, as the transducer diameter is increased, the phase
velocities at which a wave is generated also increase because there will be a larger phase
difference across the face of a larger transducer, increasing the wavelength and phase
velocity above which the response no longer fluctuates and reaches a value near its
maximum value. The practical consequence of this effect is that a transducer whose
diameter is smaller than the wave packet’s wavelength will be able to reach down into the
lower phase velocities effectively, but a larger transducer will only effectively excite high
phase velocities. At low phase velocities, a large transducer’s response fluctuates rapidly.
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Mathematical Modeling

The relationship between the transducer size and the phase velocity is clearly
demonstrated by the solution to the time-harmonic problem. The source-dependent term
of the solution is defined as the Hankel transform of the pressure distribution. In the
piston case, for example, the source term becomes -aPlJi(Ea)/&, where a is the
transducer’s radius, & is the wavenumber, and J; is the first order Bessel function. As can
be seen from this term, larger diameter transducers cause the source term to fluctuate
more rapidly than smaller diameter sources do. This has two consequences. At low
phase velocities (corresponding to high wavenumbers) the source term changes more
rapidly for larger sources. The consequence of this effect will be discussed below. Also,
the wavenumber at which the source term reaches its first null is larger for a smaller
source. This first null corresponds to the phase velocity beyond which the source term no
longer fluctuates. So, a small source will reach down to lower phase velocities than a
larger source (or reach up to higher wavenumbers since the wavenumber is related to the
phase velocity, as &= @/vps, far enough away from the source). Figures 3.1 and 3.2 show
these effects. Figure 3.1a shows the value of the source term (essentially a Bessel
function) at one MHz vs. the wavenumber for the piston source. Figure 3.1b shows the
same information plotted against the phase velocity, demonstrating how smaller sources
can excite lower phase velocities than large sources. A parabolic pressure distribution
displays the same type of behavior, as seen in figure 3.2.

Since the wavenumber term helps account for energy considerations associated
with finite-size sources, it is helpful to lump the source and wavenumber terms together
and study the response. Although the source term by itself reaches a maximum value
when the phase velocity is infinite (figure 3.1), the value of the source-wavenumber term
fluctuates rapidly at lower phase velocities, reaches a maximum value at a finite phase
velocity, and then decays asymptotically to zero at infinite phase velocity (figure 3.3).
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This creates a profile that closely resembles the amplitude profile that describes the
near/far field of a transducer impinging on a bulk material (which is another expression of
Huygens' Principle). Because of the minima that occur before the “far field” phase
velocity, modes with low phase velocities at that particular frequency may or may not be
generated, just as a defect very close to a transducer may or may not be seen.

The decay in the total response as the phase velocity becomes infinite can be
interpreted physically. As the phase velocity and wavelength increase, the transducer
drives a smaller portion of the wave. This causes the wave’s energy to be distributed
over a wider range of frequencies. However, because of the plate’s boundaries, only
certain frequencies that correspond to Lamb waves are “allowed” at a particular phase
velocity. As a result, once, less energy is transferred into a mode as the phase velocity
increases. The radiation condition also requires that the response decays to zero as the
phase velocity goes to infinity. Otherwise, a finite source would need to create an infinite
amount of the energy. In addition to these two energy conditions, wave propagation
principles indicate that infinite phase velocities cannot be generated by a finite source. A
mode’s group velocity is zero at every point on the dispersion curve where the phase
velocity is infinite (corresponding to the cutoff frequencies). Asa result, the waves with
infinite phase velocities do not propagate.

An expression for the location of the “far field” phase velocity can be found by
solving for the first maximum of the wavenumber-source term and then converting the
result to phase velocity. The first maximum of J1(z) occurs at z = 1.84118 (Abramowitz
and Stegun, 1972), therefore, assuming that the material response is constant, the phase

velocity at which a mode tends to be most strongly excited by a piston source is,

2 ntfa
= 3.1
' T T8a118 G-1
and for the parabolic source, the maximum will occur near
2nfa
v, = 3.2
72300 G2
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where f is the frequency and a is the transducer’s radius. These values are only
approximate because they do not take into account that each mode's material response is
also function of wavenumber. This will cause the "far field" phase velocity to be
different for each mode. For example, the A3 mode should be excited at higher phase
velocities than the S2 mode, because it's material response (out-of-plane surface
displacement) increases more dramatically with increasing phase velocity.

The "far field" phase velocity value can be used to determine what phase
velocities are sure to be excited. For example, equation (3.2) indicates that a 4 mm
diameter source can generate the fundamental symmetric mode (SO) consistently at 1.0
MHz, but at 3.0 MHz, the source would need to be smaller than 1 mm in diameter.
Although this small of a transducer is not very practical with conventional techniques,
laser generated ultrasound may be able to generate a wave efficiently at a low enough
diameter. However, if such a small transducer is used, not only the fundamental mode,
but also all of the higher order modes that exist at that frequency will be generated, since
the value of the source term decays very slowly as the phase velocity is increased. As a
result, the signal will be complicated by the many modes propagating in the plate.

To fully understand which modes will be generated, the total response of the
system must be considered. Neglecting the constants and the radial wave term, this total
response is equal to the source term multiplied by the wavenumber and the material
response. Figure 3.4 shows the source term in fd-phase velocity space and figure 3.5
shows the total response obtained by multiplying figure 3.4 and figure 2.3, the response
to a point source. The 0.77 mm source, shown in figure 3.5a, has very few nulls and can
generate almost any mode. As the size of the transducer is increased, however, more
nulls appear and certain parts of the dispersion curve become impossible to generate. If
high enough phase velocities were examined, it would be seen that each of the modes
(except those that become complex) reach a maximum response at some phase velocity
and then they decay. This maximum can be seen in the response of the 6.35 mm source.
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The value of the Al mode peaks around 12 mm/ps and then begins to decay as the phase
velocity continues to increase. The S2 mode, which is much larger than the surrounding
peaks, is just about to reach its maximum. The phase velocities shown are not high
enough to detect the maximum values for the 12.7 mm or the 25.4 mm sources. These
maxima should occur near 70 and 150 mm/us respectively. The erratic behavior of the
modes in this low phase velocity region explains the “hit or miss” nature of generating

modes at low phase velocities by normal surface tractions.

Pressure Distribution

Figure 3.3 allows the comparison of the values of the source-wavenumber term
for piston and parabolic pressure distributions. By comparing figure 3.3a and b, it can be
seen that the parabolic profile reaches its maximum amplitude at a lower phase velocity
that the piston does, as predicted by equations (3.1) and (3.2). Sample RF signals and for
the two types of sources (piston and parabolic) at 1 MHz are shown in Figure 3.6. The
rapid fluctuation of the source term at low phase velocities accounts for the large change

in the signals, as described below.

Comments on Fundamental Modes

Figure 3.7 shows how the simulated frequency response and RF signal of a
system changes for three typical transducer diameters ( f =1 MHz, d = 1 mm, 10 cycle
sine modulated parabolic source). The width of the main envelop of the received
frequency spectrum is primarily dependent on the frequency spectrum of the source and
the material response. However, since a range of frequencies are excited, interference
causes minima to occur in the received frequency spectrum. The exact interference
pattern is hard to predict for the fundamental modes since the source profile varies so
rapidly at low phase velocities. However, in general, the number of minima will increase

as the size of the transducer is increased because there will be a larger phase difference
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across the face of the transducer, resulting in more points of destructive interference. In
figure 3.7, the size of the transducer is of the same order of the magnitude as the
thickness of the plate (the diameter/wavelength ratios are approximately 1.2, 2.3, and 3.8
for the quarter, half and one inch transducers respectively), causing relatively strong
minima. As a result, small changes in the material or the transducer properties have a
large effect on the received signal. The solutions only become stable for modes whose
phase velocities are larger than the “far field” phase velocity given by equations (3.1) and
(3.2).

The simulated RF signal (figure 3.7b) shows that the A0 mode (with the lowest
phase velocity and a slower group velocity) dominates the signal from the 6.35 mm
source, while SO dominates the 12.7 mm source and the two fundamental modes are
excited equally by the 25.4 mm source. However, figure 3.8 demonstrates how erratic
this behavior is. These two figures show the frequency response and the simulated RF
waveform for a 1.1 MHz source. The 0.1 MHz-mm change drastically modified the
interference pattern and the system's response.

In figures 3.7a and 3.8a (simulated FFTs of a 1 MHz and a 1.1 MHz transducer),
it can be observed that only the fundamental modes (SO and AO) are generated, since the
next highest mode, the second anti-symmetric mode (A1), does not propagate below fd =
1.6 mm-MHz. Because the phase velocities of the zero modes are always finite the small
transducer is able to generate these modes more efficiently than the larger transducers.
As a result, the absolute magnitudes of the RF signals from the different size sources in
Figures 3.7b and 3.8b are approximately equal although the largest transducer’s contact
area is 16 times greater than the smallest transducer. This has significant practical
effects. Using a larger transducer will not increase the power transmitted to the
fundamental modes, as long as the pressure density (proportional to driving voltage)

remains the same.
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Figure 3.7 The (a) simulated frequency response and (b) simulated RF signal for three different size
parabolic sources on a | mm Al plate at fd=1.0. The amplitude of the RF signal from the
6.35 mm source is greater than the signal from the larger sources because the smaller transducer
is able to excite lower phase velocities and therefore "reach down" to the fundamental modes.
There is also a change in the ratio of the modes as the size of transducer is changed.
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Higher Order Modes

Although the fundamental modes can be generated using Acousto-Ultrasonics,
unless a small transducer or very low frequency is used, the received signals are generally
weak. To avoid complicated signal processing routines and to take advantage of different
wavestructures, higher frequencies can be used to generate higher order modes at their
cutoff frequencies. Modes that have predominately longitudinal displacements at these
points (for example, S2, A3, S6) are extremely excitable.

Figures 3.9 demonstrates how strongly the cutoff frequency peaks influence the
excitability of a wave for three different size transducers. Each point on the graphs
represents the maximum amplitude of a simulated time-domain waveform for a source
that is centered on that fd and has a fixed fd bandwidth. Plots are shown for a quarter,
half, and one inch transducer. As expected, the larger transducers have much larger
peaks at the cutoff frequencies. At other frequencies, almost no wave propagates.
However, the smaller sources, which generate waves at lower phase velocities are not as
influenced by the high excitabilities at modes’ cutoff frequencies and show a more even

distribution over changing frequency ranges.

Experimental Results

Figure 3.10 compares simulated and experimental results. Figure 3.10a is similar
to figure 3.9a, the simulated maximum RF amplitude vs center fd for three different size
transducers, except that the simulated frequency response was multiplied by the
magnitude spectrum of the transducer used in the experiments, to account for its
frequency characteristics. Figure 3.10b, which contains the experimental data, was
created by directly measuring the maximum time-domain voltage from a LECROY 9310
digital oscilloscope. Krautkramer-Branson Gamma (narrow band) transducers were
driven by a modulated 20 cycle pulse and oil coupled to a four by six foot 87 mil
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Figure 3.9 The (a) simulated maximum RF amplitude and (b) the maximum simulated RF amplitude

normalized by the area of the transducer, shown versus the center frequency-thickness for

three different size transducers. (Assuming a 10 cycle sine-modulated signal created by

a parabolic source on an 87 mil plate.) The 6.35 mm transducer is able to generate waves
effectively at more frequencies than the 25.4 mm transducer because it can excite modes at

lower phase velocities and is therefore not as affected by the modes' cutoff frequencies.
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multiplied by the frequency response of the experimental transducer
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aluminum plate. Two one inch transducers were used, with 5.0 MHz and 2.25 MHz
center frequencies. The quarter and half inch transducers both had 5.0 MHz center
frequencies. Although he relative amplitudes of the three different size sources can not
be directly compared because the pressure amplitude and the transmission through the
couplant could vary, the qualitative trends of each of the curves should be accurate.
There is good qualitative correlation between the simulated and experimental
results. At low fd's. the maximum RF amplitude fluctuates rapidly, as the simulation
predicted. At higher fd’s, the one inch transducer shows a much larger and steeper S2
peak (fd = 3.2) than the smaller transducers, after which it decays. The quarter inch
transducer, on the other hand, peaks before the S2 mode even comes in (primarily due to
the excitability of the fundamental modes). Its A3 (fd = 6.3) and S5 (fd = 9.6) peaks are
as large as the S2 peak, as opposed to the larger transducers, which generate the S2 mode
much more strongly than any others, as the simulation predicted. These results show that
the maximum RF amplitude plot can be used as a quick way of identifying frequencies
that efficiently generate a mode and it also serves an easy way to compare the effects of

certain parameters.

Application to Adhesive Bonding

The size of the transducer can have a large influence on many practical
applications, for example in adhesive bond testing on aircraft. The bonding of
reinforcement plates on the back of an aircraft's skin can be tested by sending a guided
wave across the area where the reinforcement should be. If the reinforcement is well-
bonded, some of the energy "leaks" into it, if it is poorly bonded the guided wave travels
undisturbed. In essence, a well-bonded plate increases the thickness of the plate and
changes the dispersion curves in that region. A small transducer will be less able to
detect this difference than a large transducer because it is excitable at many frequencies
and may be able to adapt to the new boundary conditions. The opposite may be true for
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the evaluation of lap-shear joints. Since in that setup energy must be transferred from one
sheet to another of similar thickness, a large transducer's (small bandwidth) signal may be
unduly affected by the thin layer of adhesive. More work should be done to explore these
effects. The reader may wish to refer to Rose (1994) or Rokhlin (1991) for more

information on adhesive bonding evaluation.

Frequency Shift

The size of the transducer also affects the frequency at which a mode tends to be
generated, as previous researchers have noted (Ditri 1992, Rose 1993). Since the phase
velocity of all real outward propagating waves decreases as the frequency increases,
exciting waves at a higher phase velocity (by a larger diameter probe) causes the
frequency to decrease. Figures 3.11 and 3.12 show this effect. The frequency responses
in figure 3.11 were taken at the frequencies and at which the time domain amplitude
peaks (1.80, 1.60, and 1.50 MHz respectively). The responses in figure 3.12 were all
taken at 1.5 MHz center frequency (fd = 3.35 mm-MHz). Figure 3.13 shows
representative time domain signals for this region of interest.

It is interesting to note that in figures 3.11 and 3.12 the S1 peak (the short one at
1.4 MHz) stays at 1.4 MHz for all three size transducers, while the S2 peak (the big one)
shifts to the left as the diameter of the transducer increases. The dispersion curves help
explain this phenomenon. The S1 dispersion curve ends at a relatively low phase velocity
(8.0), since at that point the wavenumber becomes complex, causing the wave to quickly
attenuate. (See Mindlin (1960) p. 445 [219]) for more information on the development of
the dispersion curves.) As a result, S1 will be excited at nearly the same frequency,
regardless of the transducer's preferred phase velocity. Although the frequency stays
constant, the size of the peak changes depending on the location and amplitude of the
local maxima of the source term. The S2 dispersion curve, on the other hand, rises
gradually as the frequency decreases. Consequently, the S2 peak shifts as it responds to
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Figure 3.12 Frequency spectra of three experimental signals created by different size transducers at
1.5 MHz (3.35 mm-MHz) on an 87 mil plate. An change in the phase velocity at which the
S2 mode is generated explains why the trequency peak associated with it shifts as the size of the
transducer is changed. The S1 mode, on the other hand. is generated at the approximately the
same phase velocity for all three source sizes so its corresponding frequency peak does not shift.
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the change of phase velocity. This shift effect was also noted in anisotropic materials by

Rose et al. (1993)

Concluding Thoughts on Power Transmission and Wave Generation

Exciting modes at their cut-off frequencies creates certain limitations. It has
already been shown that certain modes exhibit only shear displacements at their cut-off
frequencies (Pilarski et al (1993), Auld (1991), Vikortov(1969)). Asa result, these
modes will not be excited by a normal incidence transducer which only transmits
longitudinal waves through the couplant.

Even for modes that are excitable at infinite phase velocities, normal incidence
limits the amount of power transmitted, since normally incident waves excite plate waves
at high phase velocities. As a result, unless the frequency is near a mode's cut-off
frequency, very little energy is transferred to the medium. In addition, there is no
directivity associated with a normal incidence transducer. The waves spread
symmetrically in all directions, so only a small proportion is seen at the receiver, as
opposed to angle beam probes which can direct their energy.

Often, larger transducers will be used to compensate for the loss of power
transmission. (A bigger transducer will be able to push more.) However, if the frequency
is not correctly chosen, a larger transducer will increase the phase velocity, only "see” the
upper portion of the dispersion curves, and actually reduce the proportion of energy
transmitted., (as was seen in figures 3.7 and 3.8).

If modes need to be generated at lower phase velocities, a smaller transducer must
be used. In order to transfer the same amount of power to the structure as a larger
transducer would, various tricks need to be explored. For example, a focusing element
and a delay line may be added onto the transducer which could concentrate all of the
energy within a smaller diameter. Laser generated ultrasound or special pressure
distributions may also be used to concentrate more energy into lower phase velocities.
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sine-modulated pulse).
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Chapter 4
The Effects of Changing the Plate's Thickness

Lamb waves can only propagate at certain frequencies and phase velocities
(Lamb 1917). These modes depend on the resonances formed across the
thickness of the plate. By assuming a harmonic time dependence and solving the
Rayleigh-Lamb equations, the phase velocity, group velocity, and excitabilities
can be determined as functions of the frequency-thickness (fd) product.

However, the frequency-thickness normalization is not valid for finite-size
sources. When a finite-size source is taken into account, the Lamb waves become
functions of the frequency and the thickness separately instead of their product.
As a result, different thickness plates display different excitabilities, interference
patterns, and wave shapes, than would be expected if only the fd product was
considered.

In a broad sense, the system's change in response is similar to the changes
that occur when the size of the transducer is changed. The ratio between the size
of the transducer and the thickness of the plate (which is related to the wave's
wavelength) strongly influences what interference effects occur and what phase
velocity the excited wave has. Increasing the thickness of the plate or shrinking
the diameter of the source reduces this ratio and tends to excite waves at lower
phase velocities. For waves to only be functions of the frequency-thickness
product, the frequency-transducer radius product and the frequency-transducer
separation product must also be held constant.

Parallels can be drawn to the effect of changing the transducer size that
has already been explained by the simple physical principle that more of the

surface is driven directly by a larger transducer, increasing interference effects.



Waves are generated simultaneously from all points on the transducer face. The
waves generated by one part of the transducer interfere with those generated
elsewhere (by Huygens’ Principle). The shorter wavelengths that are associated
with a thinner plate will have a much larger phase difference across the transducer
face than the longer wavelengths will have. This stronger interference pattern
reduces the frequency bandwidth of each peak. In addition, it tends to only excite
waves at high phase velocities, since low phase velocities (short wavelengths) will
interfere with each other. The only waves that are not interfered with are those
which have an infinitely long wavelength, corresponding to an infinite phase
velocity. However, as was shown for the size dependence, energy considerations
and wave propagation rules cause the value of the excitability to reach a
maximum at a certain phase velocity and then decay asymptotically to zero at an

infinite phase velocity.

Physical Solution

The solution to the time-harmonic wave propagation problem clearly
shows how thicker plates are able to excite waves at lower phase velocities. In
this solution, the material response is only a function of the frequency-thickness
product. However, when a finite source, instead of an infinite or point source, is
considered the solution develops a dependence on the frequency and the thickness

separately.

Material Response
As long as the point of observation is far away from the source and the
wavenumber term is neglected, the material response is only a function of the fd

product as can be seen from the following definition:
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where (taking the symmetric out-of-plane example)
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where A’ represents the derivative with respect to the wavenumber of the
Rayleigh-Lamb dispersion equation.
By using the following relations, (where ¢; is the bulk shear wave speed

and c; is the bulk longitudinal wave speed)

R R D CED R

it can be shown that the resulting expression is only a function of the fd product

(provided z is taken on the top surface (z = d/2).) After canceling fd products,
both the gamma functions and the delta prime functions are of the order of w3 and
the frequency dependence cancels. The value of the material response is shown as
a function of the frequency-thickness and phase velocity in figure 2.2.

In the above derivation, for the frequency dependence to cancel, two
assumptions are made. The observation point is assumed to be far from the
source. This assumption allows the complicated cylindrical wavefront
relationship of the wavenumber and phase velocity to be replaced by the relatively

simple planar wavefront expression, § = @/v,,. It was also assumed that the
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wavenumber term, which was pulled out of the material response, could be
neglected. If this term is included with the material response, the combined
expression then becomes frequency (and thickness) dependent. However, because
of the assumption of planar wavefronts ( £ = @/v,,), the frequency dependence is
not complicated. As long as the frequency-thickness product remains constant,
the phase velocity is constant, so the wavenumber becomes linearly proportional
to the frequency. The material response-wavenumber term would then also be

linearly proportional to the frequency.

Source Influence

When the source and wavenumber terms are added, the displacement
equation becomes a function of frequency and thickness separately instead of their
product. Mathematically, the source term is given by the Hankel transform of the

pressure distribution. For the piston source this becomes:

Irf(r)fo<5r>dr=—Pa11—(§“—’ .52)
where °
-P r<a
f(n= {O (4.5b)
r>a

a is the transducer radius and J, is the Bessel function of the first kind of order n.
The wavenumber term in the Bessel function causes nulls in the simulated
frequency response of the source, as seen in figure 4.1. Because the wavenumber
is smaller for thicker plates, there are fewer nulls in the 5 mm plate than the 0.2
mm plate. Because there are fewer nulls caused by interference effects across the
transducer’s face, the shape of the received signal is more similar to the original

shape in the thicker plate, as can be seen in figure 4.2.
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Figure 4.1 Frequency responses from three different frequency simulated transducers, (a) 0.2 MHz
(b) 1.0 MHz (c¢) 5.0 MHz, at fd = 1.0 mm-MHz. The nuils, which are due to interference effects
across the face of the transducer, occur more frequently in the frequency spectrums of the higher
frequency sources.

55



0.0001 ¢

! 20 so VIV g0 100

-0.0001 -
(a) 0.2 MHz, 5 mm (microseconds)
0.000003
O ahdahdadha AH ﬂAIxI\
MM ‘Vh g' |\
0 20 40 : 80 100
-0.000003 ¢
(b) 1.0 MHz, 1 mm (microseconds)
0.0000003 1
0 PRI W. W, PV.VAaN
0 20 60 80 100
-0.0000003 -
(c) 5.0 MHz, 0.2 mm (microseconds)
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Radial Effects and Group Velocity

The radial displacement term (Ho(§r) or Hy (§r), for out-of-plane and in-
plane displacements respectively) is also frequency-dependent. This term comes
from the Hankel transform technique and represents the solution of the wave
equation in circular cylindrical coordinates. For the same frequency-thickness
product, a thinner plate propagates waves with higher wavenumbers since the
wavenumber is equal to the circular frequency divided by the phase velocity and
the frequency will increase while the phase velocity remains the same. The higher
wavenumbers cause the Hankel function to fluctuate more rapidly in space as the
transducers are spread apart, corresponding to a higher frequency.

Although the frequency and wavelength of the guided waves change as the
thickness does, the group velocities of each mode generated stays approximately
the same, as long as the frequency-thickness product (fd) is kept the same. Figure
4.3 shows simulated waveforms that correspond to two, four, and six inch
transducer separations for two different thickness plates at fd = 1.0 mm-MHz.

The group velocities calculated from these simulated signals are 5.4 mm/s for
the SO mode and 3.4 mm/ps for the AO mode. These results agree with the known
group velocities for planar wavefronts, which are 5.25 mm/ps for SO and 3.21
mm/us for AQ. The difference in group velocities can be attributed to mistakes in
modeling the material and the assumption that the expression for planar
wavefronts could be used.

Experiments confirm the simulated data. Figure 4.4 shows four RF
waveforms that were obtained experimentally on two different thickness plates, at
the same fd product. The group velocities are nearly the same except that the
signal arrives a little earlier for the thicker plate as can be seen in the four inch
separation plot (b,d). Figure 4.5 compares the frequency responses of the
simulated data and the experimental data. Figures 4.5a and c are experimental
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Figure 4.3 Simulated waveforms for two thicknesses of plates, (a) 1.0 mm and (b) 0.33 mm,
and three different radial separation distances, 2, 4, and 6 inches. A 12.7 mm, 10 cycle,
sine-moduated, parabolic source was simulated at Fd = 1.0 mm-MHz
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results and figures 4.5b and d are the simulated responses, taking into account the
characteristics of the transducer. The general behavior is the same. However,
subtle differences near the cutoff frequencies and non-exact models for the
pressure distribution and material properties, cause differences, as can also be
seen in the simulated time signals in figure 4.6. The experimental data has
sharper peaks in the frequency domain (corresponding to generation of waves
with higher phase velocities than the simulation could handle) that cause the

experimental pulses to be more drawn out than the simulated signals.

Maximum RF Amplitude Profiles

Figure 4.7 represents the maximum RF amplitude that would be generated
by a simulated 12.7 mm sine-modulated parabolic source as its center frequency
was varied from fd = 1 to fd = 12. The results for a 1, 3, and 5 mm plate are
shown. Combining the effects of the source and the material, they demonstrate
how the amplitude of the out-of-plane displacement changes with the thickness of
the plate.

Several traits of the graphs should be noted. The amplitude of the main
peak (S2 fd = 3.2) varies approximately as 1/€ as indicated by the source term for
a Parabolic source. Also, the bandwidths of the peaks increase as the thickness
increases, as was discussed earlier. A more important physical consideration is
the dramatic change in the ratio of the main S2 peak to the other modes which are
also excited. In the three and five mm plates (figures 4.7b.c) there is a dramatic
increase in the amplitudes of the SO, AOQ, S1, Al, S4, and A3 modes in
comparison to the S2 peak. This indicates that the ratio of the transducer's size to

the plate thickness should be kept small, if one these latter modes is desired.
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Figure 4.6 Four simulated RF waveforms created at the same fd=3.5 for two thickness plates (40 and 87 mil)

and for two separation distances (2 and 4 inches). The signals were created with a half inch
piston source, driven by a 20 cycle sine-modulated signal.
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Figure 4.7 Simulated maximum RF amplitude response vs center frequency-thickness tor three

thickness plates, (a) 1 mm, (b) 3 mm, and (c) 5 mm. (Created fora 12.7 mm parabolic source
on an aluminum plate.)
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Experimental verification

A half inch, 5.0 MHz center frequency Krautkramer-Branson Gamma
transducer was used to generate tone bursts on two different thickness plates
(1.016 mm and 2.2352 mm). The results for when the fd product was kept
constant at 3.5 mm-MHz (Figure 4.4) were already discussed. Each plate was
also swept through a reasonable frequency range and the maximum experimental
RF amplitudes were noted. Figure 4.8 shows the comparisons. The general
trends are the same. For both the experimental and simulated case, the S2 peak is
smaller, narrower , and at a lower frequency in the 40 mil plate.

Figure 4.9 shows a few representative waveforms in the S2 frequency
cutoff region. In the 40 mil plate, the waveform, and the underlying
wavestructure, is essentially constant throughout the entire region that the plate is
very excitable. However, the 87 mil plate is excitable over a much wider range of
fd, which allows the experimenter to choose a convenient waveform or
wavestructure for the application. Figure 4.10 shows the frequency spectrum
corresponding to some of the signals in figure 4.9. The bandwidth of the 87 mil
peaks is much larger than the bandwidth of the 40 mil peaks. There is also a
much larger change in the location and shape of the frequency spectrum (because

a wave will propagate in a wider range of fd’s in the thicker plate).

In the Large Thickness Limit

As the thickness increases in relation to the wavelength, the plate begins to
act as a semi-infinite half space. The quantities ky and k¢ become large
imaginary numbers, which bind the wave the near the surface. In this limit, the
Lamb waves superimpose and behave as a single Rayleigh surface wave, which
has a constant phase velocity and is consequently non-dispersive. As a result, the
maximum RF amplitude becomes constant for all fd and the modes become
inseparable. Auld (1990, p.88) gives more information on the Rayleigh wave

solution.
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Figure 4.8 The (a) simulated and (b) experimental maximum RF amplitude profiles for two plate
thicknesses (for a 12.7 mm parabolic source, 10 cycle sine-modulated signal, sampled two
inches from the center of the transmitting transducer on an aluminum plate).
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Figure 4.10 Frequency spectrums of experimental waveforms sampled on two plate thicknesses,
(a) 40 mil and (b) 87 mil, in the region near mode S2's cutoff frequency (fd = 3.2 mm-
MHz). The resuits show that a larger range of frequencies is available for the thicker plate.
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Chapter 5
Conclusions and Future Developments

Conclusions

This report explores the effects that a finite axisymmetric source has on
wave propagation in Acousto-Ultrasonics. Although it also addresses the effects
of the transducer pressure distribution and pulse shape, this work concentrates in
two main areas:

» the effect of changing the transducer's diameter, and

» the effect of changing the plate's thickness.

The mathematics of the time harmonic wave propagation solution, the physical
principles, and the practical considerations for AU wave generation are explained
for both of these areas.

The transducer's diameter affects the phase velocity at which the wave is
produced. In general, a larger source excites higher phase velocities. As a result,
a larger diameter source narrows and shifts the frequency range over which a
large RF amplitude is received especially for the Lamb wave modes that contain
only normal displacements at their cutoff frequencies. Because it increases the
phase velocity at which a mode is generated, a larger source excites the
fundamental modes much less efficiently (and more erratically) than a smaller
source. Recognizing this effect allows the size of the transducer to be adapted to
optimize the desired application.

A finite source causes the wave solutions to become a function of
frequency and thickness independently, instead of being a function of the
frequency-thickness product (as they are if it is assumed that a plane wave is
incident on the plate). Increasing the plate thickness affects the response in a

similar way to reducing the size of transducer, indicating that the ratio of the



transducer diameter to the plate thickness can provide an easy way intuitively
determining which phase velocities are preferred. This conclusion also implies
that Stress Wave Factors cannot be accurately applied to different thickness
specimens without retraining the system first.

Dispersion curves are very useful for indicating what wavestructures are
possible in a plate; however, they do not tell the whole story. The source also has
a large influence and this influence must be combined with the material response
before the wave propagation characteristics and each mode's amplitude can be
understood. Because Acousto-Ultrasonics employs the limiting case of normal
incidence, the dispersion curves do not provide enough information. The
wavestructure of each of the modes, the size and pressure distribution of the
transducer, and the plate thickness take on a more important role than they do in

angle beam techniques.

Areas Calling for Future Exploration
There are many questions that still need to be answered before Acousto-
Ultrasonics can be quantitatively understood. The tools created as a part of this

thesis can be used to begin this process.

Stress Wave Factor (SWF) Definitions

Many of the current definitions of the SWF have been created by trial and
error, measuring such ambiguous quantities as the number of ringdown counts,
the first moment of the frequency spectrum, or simply the ratio of the amplitude
of the received signal to the input signal. Such empirical formulas may be
significantly affected by parameters other than defects, although they may work
well in a single class problem. By providing insight about AU wave propagation
and modeling realistic situations, the research begun here should be able to help
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create an improved definition of the SWF which is more precise and has a strong
physical foundation or at least it will be able to evaluate the numerous SWFs that
are used. This standardization and physical basis will allow AU to be expanded to
new areas.

Some early ideas for this new definition include a weighted criteria which
compares received mode amplitude ratios to those that were sent. Since modes
convert as they interact with defect, this should allow for a detailed defect
detection and characterization. This research on finite source generation will need
to be combined with work on scattering, which is already being explored by
researchers such as Alleyne (1992) and Rokhlin (1991), before this problem can
be fully addressed.

Anisotropic Material

AU is most commonly used to evaluate composite materials, which can
usuaily be modeled as anisotropic, homogeneous materials. Although the general
wave propagation principles that are described in this thesis still apply in
anisotropic materials, analytical solutions for anisotropic materials will be needed
to study more complex effects, for example skew effects. However, the Hankel
transform technique will no longer be able to be used, since it requires

axisymmetric properties.

Dispersion Curve Shifts caused by a Finite Source

Wave excitation theory assumes that the Lamb wave dispersion curves are
generated at single points on the dispersion curve. However, because all
transducers have a finite size, modes are generated over a portion of their
dispersion curve. This integration over a portion of the dispersion curve shifts the
location of the effective, or experimental, dispersion curve and affects the wave
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structure. These changes may turn out to be insignificant, but they definitely need

to be studied.

Circular Comb Type Transducer

The Acousto-Ultrasonic technique cannot effectively generate modes at
precise phase velocities. Phased array transducers or 'comb’ type transducers
(which have projections corresponding to the locations of the crests of a wave that
is desired) combined with particular pressure distributions may make this
possible. A particular mode could be chosen and generated very efficiently,
gaining some of the advantages of the angle beam technique while keeping the

simplicity of AU.

Laser Generated Ultrasound

Using lasers to generate ultrasonic waves opens up many new possibilities.
Lenses can focus the energy into a very small radius or they can reshape the beam
to create unusual pressure distributions. In addition, laser ultrasound can create
transverse tractions in the plate, as opposed to contact transducers which tend to
only create normal tractions. This will open the possibilities for even more modes

to be generated.

Better Transducer Model

In this work, a transducer was modeled by an equivalent normal traction.
This assumption is not valid for every ultrasonic transducer. A better model,
which can adapt to different kinds of transducers, needs to be developed. Without
doubt, there needs to be a better model for Laser generated ultrasound before it

can be modeled by this technique.
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Summary

Before Acousto-Ultrasonics can reach its full potential as a NDE tool,
there must be a better understanding of the wave propagation principles that are
involved. To address this need, this report studies the effect that the size of the
transducer can have on the resulting ultrasonic signal. Many of the Stress Wave
Factors that are currently used can be greatly affected by this size effect. This
variation causes the results to be inconsisent if the size of the transducer or the

thickness of the plate is changed.

72



Appendix A

The Time Harmonic Solution



In this appendix, the problem of normal incidence pressure loading of a
linearly elastic, homogeneous, isotropic layer is studied. The loading 1s assumed
to be time-harmonic and axisymmetric, applied over a circular region of radius a.
The solution of this problem was taken from Ditri (1993a), but parts of it may be
found elsewhere (for example Pursey (1957), Fulton and Sneddon (1958),
Viktorov (1967), and Scott and Miklowitz (1969)).

Problem Formation

The goal of this work is to model the Acousto-Ultrasonic technique
applied to in isétropic plates, so that the effects of the size and the pressure
distribution of the modeled source can be studied.

Deriving the relevant equations of motion is the first step involved in
solving this problem. Euler’s equation of motion can be found by applying
Newton’s second law and the principle of conservation of mass to an arbitrary
volume within the elastic solid. This leads to the following relation between the

particle displacement field, u(r,t), and the stress dyadic, G,

2
%:V-c (A.1)

when mass density of the layer, p, is assumed to be constant, the material is

assumed to be linearly elastic, and body forces (i.e. gravity) are neglected. The

generalized Hooke's law then relates the stress dyadic, ©, to the elastic constants
of the material. The theory of elasticity shows that for a homogenous, isotropic

material, the 81 possible components of the elastic stiffness tensor reduce to two



material constants, A and g, which are called the Lamé constants. In this case,

Hooke’s law simplifies to

c=AIV.-u+u(Vu+uV) (A.2)
Combining equations (A.1) and (A.2) leads to Navier’s displacement equation of
motion,

Jtu

or?

which is actually a coupled set of three homogeneous partiai differential

pVx(Vxu)+ (A +2u)V(V-u)= (A.3)

equations, one for each of the displacement field components.

Equations (A.1) - (A.3) describe the behavior of the wave in the bulk
material. To model wave propagation in a plate of thickness, d, rectangular and
polar cylindrical coordinates are defined as shown in figure A.1 with the mid-

plane of the layer corresponding to z = 0.

2 |

Figure A.1 Cartesian and polar cylindrical coordinates defined for an isotropic, homogeneous
layer of thickness d.

This work only considers the case where the upper surface of a layer is
subjected to a time-harmonic, axially symmetric traction loading in the circular

region r =+/x’ +y* <a,as seen in figure A.2. Because of the axial symmetry of
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the problem, the angular transverse traction, ., is identically zero. The

boundary conditions on the other two stress components at the surface can be

written:

O'z(r,z=d/2,t)={f(rée O<r<a

r>a
o (rz=-d/2,/)=0

g(re™ 0O<r<a
r>a

(A.4)
o, (rz= d/2,t)=

o,(r,z=-d/2,8)=0
where f(r) is the axial distribution of normal tractions applied to the surface of the

layer and g(r) is the distribution of the transverse tractions in the radial direction.

k r
f(r)ei-"\ ‘- a-l

Figure A.2 Upper surface of the layer is subjected to a time-harmonic, axially symmetric traction
loading in the circular region r = sz + y2 <a.
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Probiem Solution
Uncoupling the Displacement Equations

The displacement field, u(r,t), can be uncoupled into irrotational and
equivoluminal parts by using the Helmholtz decomposition of the elastic
displacement field. Thus, the displacement is written

u=Vp+VxY¥, V¥=0 (A.5)

where ¢ and W are the scalar and vector Helmholtz potentials. Substituting
equation (A.S5) into Navier’s equation of motion (A.3) , and separately taking the

divergence and curl of the resulting equation results in the following two

equations:
2, 00
\% (l+2u)V ¢—p—a—t-2— =0 (A.62)
and
2
Vx[—qu(Vx‘P)—paa:fiFO (A.6b)

By requiring that these two equations be applicable for an arbitrary volume within

the plate, and using the vector identity,

UVxVx¥=V¥+V(V-¥) (A7)

these equations can be rewritten in the more convenient form

)
1 3%¢ A+2u %
Vip=—a—"s = A8
R CL(p ) (A5
and
5 1 3*¥ U &
VVY=——— , == A.8b
C7z_ o Cr (P) ( )

where c; and cyrepresent the longitudinal and shear wave speeds in the bulk
material.

Due to the axial symmetry, the displacement field will be independent of
angle, 6, and the angular component of the displacement field, ug, will vanish.

These requirements can be satisfied by setting the 'r' and '8 components of the
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vector potential, ¥, equal to zero. Thus, the vector potential can be reduced to a
scalar field, ¥ = y,, the component in the 'z’ direction,.
Assuming a harmonic time dependence of e-i®t equations (A.8) can be

rewritten (in polar cylindrical coordinates),
2 2 2
990,196 99, 0, ¢ (A.92)
and |
dy loy vy dy o

(A.9b)

Applying the Hankel Transform

Because of the axisymmetric nature of the problem, the Hankel transform
provides a convenient way of obtaining a closed-form solution. The Hankel
transform and the inverse Hankel transform of order n are defined (for an arbitrary

function b(r)) as:
B =H (b(r)}= J;rb(r)Jn(Er)dr (A.10a)
b(r)=H;'{B (&)} = [ €B"(§)V,(§r)dE (A.10b)

where J,() represents the Bessel function of the first kind of order n. Through

integration by parts, it can be shown that,

2
}{a{d g(’)+ldg(’)}=_§2(;°(r) (A.1la)

dr’ r dr

and

" {dzggr) LLde(n ()
dr- r dr ro

}=_§2G‘(r) (A.11b)

as long as b(r) and its derivatives with respect to r vanish at /=0 and in the limit as

r— oo,
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Taking advantage of the properties of the equations (A.11), the zero order
Hankel transform applied to equation (A.92) and the first order Hankel transform

is applied to equation (A.9b), resulting in ordinary differential equations,

d*®°

. (k2-&)@°=0 k, = 0fc, (A.12a)
and
— +(k.r—-§)‘¥ =0 , k, =wfc, (A.12b)

where £ is the wavenumber (and the transform parameter) and ki and kg are the

longitudinal and transverse wavenumbers respectively. The general solution to

this set of equations (A.12) is

®°(E,2) = A(E)cos(k,z) + B(§)sin(k,2) (A.13a)
and

W'(&,2) = C(E)cos(k,z) + D(&)sin(k,z) (A.13b)

where &2 = (@/c,) - & and k2 =(w/c;)’ - & and A@E), B(&), C(8), and D(E) are

arbitrary functions of the wavenumber, &.

Satisfying the Boundary Conditions
The amplitudes in the general equations (A. 13) can be found by satisfying
the boundary conditions (traction free except within a circular region of radius a).
The boundary conditions are imposed on the stress components at the
surface of the plate and not on the displacement potentials, so the solutions must
also be expressed in terms of the potentials. Using equations (A.2), (A.5), and
(A.7a), the stress components that appear in the boundary conditions in equations

(A.2) can be expressed in terms of the potentials,

*¢ 2u o dy
o (r.7)=—Ak;+ 2#-8-27 +—r—'a—r(’d—z) (A.14a)

9 Fv 1w _v Vv
oroz o ror r 9
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Applying the zero order Hankel transform to the expression for &, and the first

order transform to the expression for orz results in,

24,0 1
2‘;@,z>sﬂ°{ou}=—1ki<b°+2uddf§ +2u5% (A.152)
0 gl
Z;(é,z)sH‘{a,z}=-u{2§ a® + &y .4 \}2’ } (A.15b)
dz dz

Applying the same transforms to the boundary conditions '(equations (A.4)),

yields the following equations:

22.(&.d2)=H {f(N}=F°(&) (A.16a)

22 (&,-df2)=0 (A.16b)
and

I.(&.d/2)=H {g(nN}=G"(&) (A.16¢)

Z.(&-d/2)=0 (A.16d)

Substituting the general forms of the transformed potentials, equations (A.13),
into the formulas for the transformed traction components, equations (A.15), and
imposing the transformed boundary conditions, equations (A.16), on the resulting
expressions, results in four linear homogeneous equations in the four unknown

amplitudes, A(€), B(E), C(§), and D(E), which can be written in matrix form as,

Al [F°
B 0

[a] I (A.17a)
D 0

where {4] is given by:

[—p(k2 - E)cos(k, dj2) —p(k; - & )sin(k,d[2)  -2uék,sin(k,d/2)  2utk,cos(k,d/2)
~p(k2 - E)costhk, dj2)  p(ki-&)sintk,d/2)  2ugk,sin(k, d/2) 2uék, cos(k, d/2)

2uék, sin(k, d/2) -2uék,cos(k,d/2)  p(kl - & )cos(k, dj2) p(k: - &*)sin(k,d/2)
~2uék,sin(k, d/2) ~2uék,cos(k,dj2)  p(kl - & )cos(k,d/2) -ulk; - &*)sin(k,d/2)]
) (A.17b)
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The determinant of [4] can be expressed in the form,

[a]=4p‘A.8, (A.18)
where (using the relation Ak? +2uk; = #(k,i _ 52)),

A, = (k2 = &% cos(k, d/2)sin(k, d/2) + 457k k,sin(k, d/2)cos(k, d/2)  (A.19)

represents the dispersion function for straight crested symmetric Lamb waves in a
- free layer, and

A, = (k2 - €2 sin(k, d/2)cos(k, d/2) + 457k k,, cos(k, d[2)sin(k, d/2) (A.20)
represents the dispersion function for straight crested anti-symmetric Lamb waves
in a free layer. The dispersion curves can be generated by setting equations
(A.19) and (A.20) equal to zero and solving for the real roots. Even though the
plate contains circularly crested waves, straight crested Lamb wave dispersion
equations are expected because the dispersion equations represent resonant effects
across the thickness of the plate, in the 'z coordinate, which is the same for both
Cartesian or cylindrical coordinates systems.

The system of four equations (A.17) can be solved using Cramer's rule,

leading to the following values for the unknown amplitudes:

A, (§)G'(§) = A (EIF°(S)

A(G) = TINE (A.21a)
! o

Be) = 20 ;f;;aﬁ(x?)(w (&) (A21b)

&)= %2<5>F°2<52;aﬁ(1g)(5)6‘<5> (A210)

D(E) = %,(6)F°§izgs?%l)(é)6‘(é> (A21d)

where A; are the elements of the matrix, A
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Appéying the Inverse Hankel Transform

Subsfituting the calculated amplitudes for A, B, C, and D (equations
(A.21)) into the transformed potentials, equations (A.15), and applying the inverse
Hankel transforms of the appropriate orders, gives formal solutions for the two

Helmhoitz potentials,
= A, (E)G (&) - A, (EF° (&)
o=, 2A,(8)
+f A(8)GY(E) = A, (HIF°(E)
0 2u%A,(8)

cos(k,z)J,(§r)édé
(A.223)

sin(k,2)J,(Er)EdE

and

J" Ay (E)F° (&)~ A,(§)G'(§)

° 2u’A,(8)

L [P OFE)= 2,6 )
0 2u’A (&)

y(r,z) = cos(k,z)J,(ér)édé

(A.22b)

sin(k,z)J,(&r)édé

The potentials in equations (A.22) can be broken into "symmetric" and
“anti-symmetric” potentials,
¢(r.2)=¢"(r,2)+¢°(r,2) ° (A.23a)
y(r,2)=y'(r,0)+y*(r,2) (A.23b)
The superscripts refer to whether the displacements associated with the potentials
are symmetric (the integrais with A (&) in their denominator) or anti-symmetric
(the integrals with A (&) in their denominator) with respect to the mid-plane of
the layer.
The Helmholtz decomposition equation (A.5) can be used to express the
particle displacements in terms of the potentials. These displacements can be

broken into their in-plane, '7, and out-of-plane, 'z', components,

a a¢s.a aw.r.a

: = A A 24
u“(r,z) 5 En (A.24a)
wi(rgy =0 YL oY (A.24b)
: o0z r or
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After differentiating under the integrals in equations (A.22) and
performing the necessary algebra, the following equations are found for the

particle displacement fields:

5 rir kts’ktl Gl ri" kt.r’ktl FO 3
= [ T é)z;i(f,)(:mk,,(é) OFE) ) n2as

5 1_sr er’klt GI I":,, ku’kl FO
uZ(r’Z) - ‘L‘ z ( 5) 2;23)(-;“7](;1(5) lé) (5) JO(ér)édg

a Tk, k,E)G () + T2 (K, K, E)F (&) (A.25 a-d)
u(r=| TSI, J(Er)EdE

a r?x kr.r’krl Gl +r; k:t’ktl F-O
i) = [ Tillah)C ;t(zf‘,)(k“,k,,(éj OFE) ) e

The T'j; functions are defined in both the appendix of Ditri (1993a) and in

Appendix B of this thesis. The subscript alpha refers to whether the function
belongs to the ' or 'z’ components, and the beta refers to the whether the function

relates the displacement to normal or transverse tractions.

Normal Pressure Loading

The Acousto-Ultrasonic technique generally uses normal incidence
Jongitudinal wave transducers, which tend to apply only normal tractions to the
plate surface because shear stresses cannot be transmitted across the oil film that
AU typically uses as a couplant. As a result, although equation (A.25) is valid for
both normal and transverse traction loading, only the normal case will be
examined in detail.

One possible model of the pressure distribution is the "piston" example,
which represents a uniform normal pressure distribution across the face of the

transducer, thus

-P, r<a
f(r)= { (A.26a)

0, r>a
and

g(r)=0 (A.26Db)
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Taking the transforms of these loading functions results in

F &= -Paﬁ%—a-) (A.27a)

and

G'(&)=0 (A.27b)

Contour Integration
Through contour integration, residue calculus can be used to evaluate the
infinite integrals in equation (A.25), provided the integrand vanishes as E—>0on

the large semicircle enclosing the upper half plane, the function has an

exponential component ei and the equation is defined for all real £. As they are,

equations (A.25) do not satisfy these requirements. However, if the substitutions,

J(2) = Y[ B () - HY (2)(2e™)] (A.282)
and
L= B[H @+ H"@)(ze")] . (Az8y)

are made, each of the integrals can be rewritten in one of two forms (after making

the change of variable from -z to z where appropriate),

L= n@H G L=[ n®H"ENd (A29)
where H'" represents the Hankel function of the first kind of order n., ¥ is and
odd function of &, and %3 is and even function of &..

With this substitution, coutour integration is now possible and the
integrands behave as ¢ /£? §r>>1. However, the poles associated with
propagating waves fall on the real axis, which leads to a standing wave solution
since the solution physically consists of both incoming and outgoing waves. A
small amount of material attenuation, which is set to zero after the integration, is
added by allowing the wavenumber to become complex, & = o+i7. Addinga

small imaginary component, T, to the wave number causes the location of the

g4



poles to be shifted from the real axis, so that only incoming or outgoing waves are
included in a half-plane contour. To ensure outgoing waves (for the e-iot time
dependence), the poles that were shifted from the negative real axis are chosen.

Except at &, =0, all these poles are simple poles which simply occur at
the roots of the Rayleigh-Lamb frequency equation, &, ,. As cutoff frequencies
are approached, the wavenumber tends to zero and the Hankel function tends to
behave in the following manner:

H = i log(én) H" = 1-2-[—2—)
4 and (4

Er (A.30a,b)

gr—0 ér—0

indicating that the singularity as ¢ — 0 may not be a simple pole. However,
further research is needed to determine the nature of the this singularity, so in this
solution it is assumed that all of the singularities are simple poles, even at the
mode’s cut-off frequency (corresponding to & = 0). The summation of the
residues of these single poles leads to the two following equations for the

displacement fields:

T Zpa J](és_aa); r:n(gs.a)

w(r,z)=—i—

W g, TUALGL

(€, .2, TL(.)
P I\s5.a"/ £ ;n\Vsa
% ’ 6-‘-ﬂ e A:.a(gx.a)

HY(E, ) r>a (A31a)

ue(r,7) = —i-z—ﬂ; HPE r)  r>a  (A3Ib)
where & and &, are the roots of the dispersion equations (A.19) and (A.20),
respectively.
Arbitrary Pressure Distribution

Examining the solutions (A.31) reveals that the transform of the normal
loading function, F9, (equation (A.27)), remains unchanged in by the inverse
Hankel transform. Building on this simple concept, Ditri (1993a) shows the

solution may be generalized to any arbitrary pressure distribution, which vanishes
&5



identically for r greater than some value a* by replacing -PaJ)(§a)/g by the zero
order Hankel transform of the given pressure distribution, FO(§). For example, for

a parabolic normal pressure distribution defined by,

-Pj1- 2 . r<a
fr) = [1-Cray} - (A332)
0, r>a

and

g(r)=0 | (A.33b)
the zero order Hankel transform is given by,

J,(8a) )

Fr= —2P—Ez—— (A.34a)
and

Gpora =0 (A.34b)
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Appendix B

Summary of Final Functions and Symbols
Used in the Time-Harmonic Solution



This appendix lists the equations that are needed to obtain a numerical solution

to the time-harmonic problem:

u(r,z) = i—z%gzutf'o(ﬁs'a,a)és'a%%H{”(ﬁmr) r>a (A.31a)
I (5.)

HP(E,,r)  r>a (A.31b)

s.a ——'L A (E )
D) = i L G S

where,
T4 (kg ko &) = —ku[2§2 cos(k, d/2)cos(k,z)+ (k2 — & )cos(k, d/2)cos(k,sz)] (B.1)
T4, (kyokyo &) = E|~2kk, sin(k, d/2)cos(k,z)+ (K: — £ )sin(k, d/2)cos(k,z)|  (B.2)

T (kg b £) = E[ 2K,k cos(k, d/2)sin(k,z) + (kZ — £ )cos(k, d/2)sin(k,z)] (B3)
T, (ky k. &) = k,[28% sin(k, d/2)sin(k,2) + (k; — &7)sin(k, d/2)sin(k,2)] (B.4)
T (ky ok, €) = k|27 sin(k, df2)sin(k,z) + (k2 - & )sin(k, d/2)sin(k.z)] (B.5)
I (ky.k,. &) = 5[ 2k,k, cos(k, df2)sin(k,z)+ (k2 — £*)cos(k, d/2)sm(k,,z)] (B.6)
T (kys ko &) = E[~2k,k, sin(k, d/2)cos(k,z) + (k2 - & )sin(k, d/2)cos(k,z)]  (B.7)
T3 (kg Ky, 6) ——Ic,,[2§2 cos(k, df2)cos(k,z)+ (k2 — £ )cos(k, df2)cos( ,,z)] (B.8)
A =(k-¢& )2 cos(k, df2)sin(k, d/2)+ 4&E>k.k, sin(k, df2)cos(k, df2) (A.19)
A, =(k2-¢& )2 sin(k, df2)cos(k, d/2) + 4Ek,k, cos(k, d/2)sin(k, d/2) (A.20)

Fu(£) =—Pa) (fa) (A.27a)
o, (&)=-2P2 2?") (A.34a)
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List of Symbols Used in Time-Harmonic Solution

Symbol Name Defining Relation
a Coefficient Matrix used to satisfy boundary

conditions
A() Amplitude for the symmetric part of the scalar

Helmbholtz potential, ¢
a Transducer radius (finite circular region over

which tractions are applied)
B(&) Amplitude for the anti-symmetric part of the

scalar Helmholtz potential, ¢
b(r), Br(&)  Arbitrary function in r, and its Hankel

transform of order n
C(& Amplitude for the symmetric part of the vector

Helmholtz potential, y
cL Longitudinal bulk wave speed A+2u Y%

)
cr Shear bulk wave speed i Y
9

D(&) Amplitude for the anti-symmetric part of the

vector Helmholtz potential, y
d Plate thickness
fir), FO(§)  Radially axisymmetric normal traction

distribution and its zero order Hankel transform
g(r), G°(&) Radially axisymmetric transverse traction

distribution and its first order Hankel transform
HO Hankel function of the first kind of order n
I Identity Dyadic
L.1, Integrals of odd and even functions in &
Jn Bessel function of order n
H {g(r)} Hankel transform of order n of the function g(r) -

L rg(r)J (&r)dr
HHG" (&)} Inverse Hankel transform of order n of the e
[T &6 &), (&nds

transformed function G*(&)
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Name

Defining Relation

u(r,p)

s.a
r

i

A, Al

s? 5

A, A

a’ a

Longitudinal wavenumber
Transverse wavenumber

Longitudinal wavenumber
Transverse wavenumber

Maximum pressure/per area applied by the
transducer on the plate

Position vector in space

Radial distance in the x-y plane away from the
center of the source

Time variable
Particle displacement field

Symmetric and anti-symmetric components of
the in-plane and out-of-plane displacements

Coordinate perpendicular to the plane of the
plate. (z = 0 corresponds to the mid-plane of
the plate)

Coefficent functions

Dispersion function for straight crested
symmetric Lamb waves in free layer

Dispersion function for straight crested anti-
symmetric Lamb waves in free layer

Angle to the point r from the x axis in the x-y
plane

Lamé’s constants

Odd and even functions in &

Wavenumber

Roots of the Rayleigh-Lamb Dispersion
Equations (A.19) and (A20)

950

Eqn. (A31)

Eqn. (B.1)-(B.8)
Eqn. (A.19)

Eqn. (A.20)



V-¥=0

V-¥=0

Symbol Name Defining Relation
p Mass density
o Stress Dyadic Hooke’s Law
c=AIV-u+u(Vu+uV)
Oo; Shear stress component perpendicular to the
angular unit vector, 6, acting in the ‘z’
direction
Or» ! Shear stress component perpendicular to the
" radial unit vector, acting in the ‘z” direction and
its Hankel transform
Oy Z° Normal stress component in the ‘2’ direction
= and its Hankel transform
i) Helmbholtz scalar potential u=Vop+VxVY,
o Symmetric and anti-symmetric parts of the
Helmbholtz scalar potential
b 4 Helmholtz vector potential u=Vep+VxYV¥,
¥, ¥, ‘z> component of the Helmholtz vector
potential
Ys.a Symmetric and anti-symmetric parts of the ‘2’
component of the Helmholtz vector potential
0] Circular frequency
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