5,922 research outputs found

    Temporal solitons in optical microresonators

    Full text link
    Dissipative solitons can emerge in a wide variety of dissipative nonlinear systems throughout the fields of optics, medicine or biology. Dissipative solitons can also exist in Kerr-nonlinear optical resonators and rely on the double balance between parametric gain and resonator loss on the one hand and nonlinearity and diffraction or dispersion on the other hand. Mathematically these solitons are solution to the Lugiato-Lefever equation and exist on top of a continuous wave (cw) background. Here we report the observation of temporal dissipative solitons in a high-Q optical microresonator. The solitons are spontaneously generated when the pump laser is tuned through the effective zero detuning point of a high-Q resonance, leading to an effective red-detuned pumping. Red-detuned pumping marks a fundamentally new operating regime in nonlinear microresonators. While usually unstablethis regime acquires unique stability in the presence of solitons without any active feedback on the system. The number of solitons in the resonator can be controlled via the pump laser detuning and transitions to and between soliton states are associated with discontinuous steps in the resonator transmission. Beyond enabling to study soliton physics such as soliton crystals our observations open the route towards compact, high repetition-rate femto-second sources, where the operating wavelength is not bound to the availability of broadband laser gain media. The single soliton states correspond in the frequency domain to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low phase-noise microwave generation.Comment: Includes Supplementary Informatio

    Hamiltonian equation of motion and depinning phase transition in two-dimensional magnets

    Full text link
    Based on the Hamiltonian equation of motion of the ϕ4\phi^4 theory with quenched disorder, we investigate the depinning phase transition of the domain-wall motion in two-dimensional magnets. With the short-time dynamic approach, we numerically determine the transition field, and the static and dynamic critical exponents. The results show that the fundamental Hamiltonian equation of motion belongs to a universality class very different from those effective equations of motion.Comment: 6 pages, 7 figures, have been accept by EP

    Correlation in states of two identical particles

    Full text link
    We identify the correlation in a state of two identical particles as the residual information beyond what is already contained in the 1-particle reduced density matrix, and propose a correlation measure based on the maximum entropy principle. We obtain the analytical results of the correlation measure, which make it computable for arbitrary two-particle states. We also show that the degrees of correlation in the same two-particle states with different particle types will decrease in the following order: bosons, fermions, and distinguishable particles.Comment: 3.6 page

    Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3

    Get PDF
    We report on high-field angle-dependent magneto-transport measurements on epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At low temperature, we observe quantum oscillations that demonstrate the simultaneous presence of bulk and surface carriers. The magneto- resistance of Bi2Se3 is found to be highly anisotropic. In the presence of a parallel electric and magnetic field, we observe a strong negative longitudinal magneto-resistance that has been consid- ered as a smoking-gun for the presence of chiral fermions in a certain class of semi-metals due to the so-called axial anomaly. Its observation in a three-dimensional topological insulator implies that the axial anomaly may be in fact a far more generic phenomenon than originally thought.Comment: 6 pages, 4 figure

    Discrete Symmetries and Localization in a Brane-world

    Get PDF
    Discrete symmetries are studied in warped space-times with one extra dimension. In particular, we analyze the compatibility of five- and four-dimensional charge conjugation, parity, time reversal and the orbifold symmetry Z_2 with localization of fermions on the four-dimensional brane-world and Lorentz invariance. We then show that, when a suitable topological scalar field (the ``kink'') is included, fermion localization is a consequence of (five-dimensional) CPT invariance.Comment: REVTeX, 8 pages, 1 EPS figure include

    Axiomatic formulations of nonlocal and noncommutative field theories

    Get PDF
    We analyze functional analytic aspects of axiomatic formulations of nonlocal and noncommutative quantum field theories. In particular, we completely clarify the relation between the asymptotic commutativity condition, which ensures the CPT symmetry and the standard spin-statistics relation for nonlocal fields, and the regularity properties of the retarded Green's functions in momentum space that are required for constructing a scattering theory and deriving reduction formulas. This result is based on a relevant Paley-Wiener-Schwartz-type theorem for analytic functionals. We also discuss the possibility of using analytic test functions to extend the Wightman axioms to noncommutative field theory, where the causal structure with the light cone is replaced by that with the light wedge. We explain some essential peculiarities of deriving the CPT and spin-statistics theorems in this enlarged framework.Comment: LaTeX, 13 pages, no figure

    The massive analytic invariant charge in QCD

    Get PDF
    The low energy behavior of a recently proposed model for the massive analytic running coupling of QCD is studied. This running coupling has no unphysical singularities, and in the absence of masses displays infrared enhancement. The inclusion of the effects due to the mass of the lightest hadron is accomplished by employing the dispersion relation for the Adler D function. The presence of the nonvanishing pion mass tames the aforementioned enhancement, giving rise to a finite value for the running coupling at the origin. In addition, the effective charge acquires a "plateau-like" behavior in the low energy region of the timelike domain. This plateau is found to be in agreement with a number of phenomenological models for the strong running coupling. The developed invariant charge is applied in the processing of experimental data on the inclusive τ\tau lepton decay. The effects due to the pion mass play an essential role here as well, affecting the value of the QCD scale parameter Λ\Lambda extracted from these data. Finally, the massive analytic running coupling is compared with the effective coupling arising from the study of Schwinger-Dyson equations, whose infrared finiteness is due to a dynamically generated gluon mass. A qualitative picture of the possible impact of the former coupling on the chiral symmetry breaking is presented.Comment: 13 pages, 7 figures, revtex

    Depinning transition and thermal fluctuations in the random-field Ising model

    Full text link
    We analyze the depinning transition of a driven interface in the 3d random-field Ising model (RFIM) with quenched disorder by means of Monte Carlo simulations. The interface initially built into the system is perpendicular to the [111]-direction of a simple cubic lattice. We introduce an algorithm which is capable of simulating such an interface independent of the considered dimension and time scale. This algorithm is applied to the 3d-RFIM to study both the depinning transition and the influence of thermal fluctuations on this transition. It turns out that in the RFIM characteristics of the depinning transition depend crucially on the existence of overhangs. Our analysis yields critical exponents of the interface velocity, the correlation length, and the thermal rounding of the transition. We find numerical evidence for a scaling relation for these exponents and the dimension d of the system.Comment: 6 pages, including 9 figures, submitted for publicatio
    corecore