46 research outputs found

    Crustal Azimuthal Anisotropy Beneath the Central North China Craton Revealed by Receiver Functions

    Get PDF
    To characterize crustal anisotropy beneath the central North China Craton (CNCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54Â s, with an average of 0.25 ± 0.08Â s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to fossil crustal anisotropy due to lithospheric extension of the CNCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the CNCC varies spatially

    The etiologic, theory-based, ontogenetic hierarchical framework of alcohol use disorder: a translational systematic review of reviews.

    No full text
    Modern nosologies (e.g., ICD-11, DSM-5) for alcohol use disorder (AUD) and dependence prioritize reliability and clinical presentation over etiology, resulting in a diagnosis that is not always strongly grounded in basic theory and research. Within these nosologies, DSM-5 AUD is treated as a discrete, largely categorical, but graded, phenomenon, which results in additional challenges (e.g., significant phenotypic heterogeneity). Efforts to increase the compatibility between AUD diagnosis and modern conceptualizations of alcohol dependence, which describe it as dimensional and partially overlapping with other psychopathology (e.g., other substance use disorders) will inspire a stronger scientific framework and strengthen AUD's validity. We conducted a systematic review of 144 reviews to integrate addiction constructs and theories into a comprehensive framework with the aim of identifying fundamental mechanisms implicated in AUD. The product of this effort was the Etiologic, Theory-Based, Ontogenetic Hierarchical Framework (ETOH Framework) of AUD mechanisms, which outlines superdomains of cognitive control, reward, as well as negative valence and emotionality, each of which subsume narrower, hierarchically-organized components. We also outline opponent processes and self-awareness as key moderators of AUD mechanisms. In contrast with other frameworks, we recommend an increased conceptual role for negative valence and compulsion in AUD. The ETOH framework serves as a critical step towards conceptualizations of AUD as dimensional and heterogeneous. It has the potential to improve AUD assessment and aid in the development of evidence-based diagnostic measures that focus on key mechanisms in AUD, consequently facilitating treatment matching
    corecore