401 research outputs found

    Caspase Control: Protagonists of Cancer Cell Apoptosis

    No full text
    Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”

    Proposal for an eHealth Based Ecosystem Serving National Healthcare

    Get PDF
    The European Union (EU)'s keen concern about citizens' health and well-being advancement has been expressed at all levels. It has been understood that at present, these can only be achieved through coordinated actions at the individual member states' level based on EU directives, as well as through promoting and funding R&D and expanding the use of eHealth technologies. Despite the diversities and particularities among member states, common values such as universal access to good quality healthcare, equity, and solidarity have been widely accepted across EU. That demanded the adoption of policies and follow directives, which streamlined actions to bridge healthcare gaps, and facilitate cross-border healthcare. This paper articulates a framework for deriving a national healthcare system, based on interoperable Electronic Health Record (EHR) with safeguarding healthcare quality, enabling quadruple helix (Public, Academia, Industry, NGOs) driven R&D and guided by a patient-centered approach. A methodology to develop an integrated EHR at National level is proposed as a prerequisite for eHealth and put into perspective. Recommendations are given for the steps needed, from the managerial, legal, technical, and financial concerns in developing an open access, patient-centered national healthcare system based on the context and constraints of a country. The example of a small country to apply the proposed methodology is demonstrated. Stakeholders, including citizens, healthcare professionals, academia, and the industry are mobilized, enabled, and incentivized for implementing the methodology. Experiences are aspired to be offered as lessons learned for other countries to adapt on their environment

    Coupling of alpha(1)-Adrenoceptors to ERK1/2 in the Human Prostate

    Get PDF
    Introduction: alpha(1)-Adrenoceptors are considered critical for the regulation of prostatic smooth muscle tone. However, previous studies suggested further alpha(1)-adrenoceptor functions besides contraction. Here, we investigated whether alpha(1)-adrenoceptors in the human prostate may activate extracellular signal-regulated kinases (ERK1/2). Methods: Prostate tissues from patients undergoing radical prostatectomy were stimulated in vitro. Activation of ERK1/2 was assessed by Western blot analysis. Expression of ERK1/2 was studied by immunohistochemistry. The effect of ERK1/2 inhibition by U0126 on phenylephrine-induced contraction was studied in organ-bath experiments. Results: Stimulation of human prostate tissue with noradrenaline (30 mu M) or phenylephrine (10 mu M) resulted in ERK activation. This was reflected by increased levels of phosphorylated ERK1/2. Expression of ERK1/2 in the prostate was observed in smooth muscle cells. Incubation of prostate tissue with U0126 (30 mu M) resulted in ERK1/2 inhibition. Dose-dependent phenylephrine-induced contraction of prostate tissue was not modulated by U0126. Conclusions: alpha(1)-Adrenoceptors in the human prostate are coupled to ERK1/2. This may partially explain previous observations suggesting a role of alpha(1)-adrenoceptors in the regulation of prostate growth. Copyright (C) 2011 S. Karger AG, Base

    Signal processing with Levy information

    Get PDF
    Levy processes, which have stationary independent increments, are ideal for modelling the various types of noise that can arise in communication channels. If a Levy process admits exponential moments, then there exists a parametric family of measure changes called Esscher transformations. If the parameter is replaced with an independent random variable, the true value of which represents a "message", then under the transformed measure the original Levy process takes on the character of an "information process". In this paper we develop a theory of such Levy information processes. The underlying Levy process, which we call the fiducial process, represents the "noise type". Each such noise type is capable of carrying a message of a certain specification. A number of examples are worked out in detail, including information processes of the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse Gaussian, and normal inverse Gaussian type. Although in general there is no additive decomposition of information into signal and noise, one is led nevertheless for each noise type to a well-defined scheme for signal detection and enhancement relevant to a variety of practical situations.Comment: 27 pages. Version to appear in: Proc. R. Soc. London

    On the harmonic measure of stable processes

    Full text link
    Using three hypergeometric identities, we evaluate the harmonic measure of a finite interval and of its complementary for a strictly stable real L{\'e}vy process. This gives a simple and unified proof of several results in the literature, old and recent. We also provide a full description of the corresponding Green functions. As a by-product, we compute the hitting probabilities of points and describe the non-negative harmonic functions for the stable process killed outside a finite interval

    Efficient Immortalization of luminal Epithelial Cells from Human Mammary gland by introduction of Simian virus 40 large Tumor antigen with a Recombinant Retrovirus

    Get PDF
    When defined in terms of markers for normal cell lineages, most invasive breast cancer cells correspond to the phenotype of the common luminal epithelial cell found in the terminal ductal lobular units. Luminal epithelial cells cultured from milk, which have limited proliferative potential, have now been immortalized by introducing the gene encoding simian virus 40 large tumor (T) antigen. Infection with a recombinant retrovirus proved to be 50-100 times more efficient than calcium phosphate transfection, and of the 17 cell lines isolated, only 5 passed through a crisis period as characterized by cessation of growth. When characterized by immunohistochemical staining with monoclonal antibodies, 14 lines showed features of luminal epithelial cells and of these, 7 resembled the common luminal epithelial cell type in the profile of keratins expressed. These cells express keratins 7, 8, 18, and 19 homogeneously and do not express keratin 14 or vimentin; a polymorphic epithelial mucin produced in vivo by luminal cells is expressed heterogeneously and the pattern of fibronectin staining is punctate. Although the cell lines have a reduced requirement for added growth factors, they do not grow in agar or produce tumors in the nude mouse. When the v-Ha-ras oncogene was introduced into two of the cell lines by using a recombinant retrovirus, most of the selected clones senesced, but one entered crisis and emerged after 3 months as a tumorigenic cell line

    Large deviations for clocks of self-similar processes

    Full text link
    The Lamperti correspondence gives a prominent role to two random time changes: the exponential functional of a L\'evy process drifting to \infty and its inverse, the clock of the corresponding positive self-similar process. We describe here asymptotical properties of these clocks in large time, extending the results of Yor and Zani

    Embryo size regulates the timing and mechanism of pluripotent tissue morphogenesis.

    Get PDF
    Mammalian embryogenesis is a paradigm of regulative development as mouse embryos show plasticity in the regulation of cell fate, cell number, and tissue morphogenesis. However, the mechanisms behind embryo plasticity remain largely unknown. Here, we determine how mouse embryos respond to an increase in cell numbers to regulate the timing and mechanism of embryonic morphogenesis, leading to the formation of the pro-amniotic cavity. Using embryos and embryonic stem cell aggregates of different size, we show that while pro-amniotic cavity formation in normal-sized embryos is achieved through basement membrane-induced polarization and exocytosis, cavity formation of increased-size embryos is delayed and achieved through apoptosis of cells that lack contact with the basement membrane. Importantly, blocking apoptosis, both genetically and pharmacologically, alters pro-amniotic cavity formation but does not affect size regulation in enlarged embryos. We conclude that the regulation of embryonic size and morphogenesis, albeit concomitant, have distinct molecular underpinnings

    Embryo Size Regulates the Timing and Mechanism of Pluripotent Tissue Morphogenesis

    Get PDF
    Mammalian embryogenesis is a paradigm of regulative development as mouse embryos show plasticity in the regulation of cell fate, cell number, and tissue morphogenesis. However, the mechanisms behind embryo plasticity remain largely unknown. Here, we determine how mouse embryos respond to an increase in cell numbers to regulate the timing and mechanism of embryonic morphogenesis, leading to the formation of the pro-amniotic cavity. Using embryos and embryonic stem cell aggregates of different size, we show that while pro-amniotic cavity formation in normal-sized embryos is achieved through basement membrane-induced polarization and exocytosis, cavity formation of increased-size embryos is delayed and achieved through apoptosis of cells that lack contact with the basement membrane. Importantly, blocking apoptosis, both genetically and pharmacologically, alters pro-amniotic cavity formation but does not affect size regulation in enlarged embryos. We conclude that the regulation of embryonic size and morphogenesis, albeit concomitant, have distinct molecular underpinnings
    corecore