2,101 research outputs found

    Planning the forest transport systems based on the principles of sustainable development of territories

    Get PDF
    The article identifies a new method of dynamic modeling in the design of the transport system in the forest fund (TSFF), which is based on economic and mathematical modeling and fuzzy logic tools. The combination of the indicated methods is designed to reduce the disadvantages of their use and increase the benefits. The article substantiates the choice of assessing the forecast level of the impact of risks on the activities of forestry enterprises (the method of expert assessments), using the methodological tools of fuzzy logic. The indicated method makes it possible to take into account a large variety of risk factors of the internal and external environment. At the same time, methodological aspects of fuzzy logic make it possible to formulate a quantitative assessment of qualitative indicators. The article substantiates the choice of tools for economic and mathematical modeling in order to state the design problem of the planned TSFF. Since the indicated method enables the formalization of the functioning of the timber transport system in the given conditions. The article presents a developed model that correctly takes into account the influence of risk factors when planning a TSFF, through the combination of fuzzy logic methods and economic and mathematical modeling. The advantages of the developed model include: considering the multivariance of material flows, vehicles, points of overload, etc.; automated processing of input parameters and effective data; using the model for forecasting, i.e. the possibility of deriving a fuzzy estimate of the efficiency of the timber transport system by identifying cause-effect relationships between the modeling object and the influence of risk factors on its functioning. © 2019 IOP Publishing Ltd

    Group analysis and renormgroup symmetries

    Get PDF
    An original regular approach to constructing special type symmetries for boundary value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries, based on modern group analysis are described. Application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model.Comment: 17 pages, RevTeX LATeX file, to appear in Journal of Mathematical Physic

    Patterns of load distribution among the legs in small water striders during standing and striding

    Get PDF
    Water striders (Gerris argentatus) move across the water surface by taking advantage of the surface tension, which supports their bodyweight without breaking. During locomotion, the midlegs are primarily responsible for generating thrust, whereas the other legs support the body. Although the aspects of standing and locomotion on the water surface are well understood, relatively fewer studies concerned the coordinated biomechanical movements of the legs. In order to maintain buoyancy of the body on the water surface, the leg positions must be adjusted to distribute the bodyweight appropriately. The present study investigates distribution of the bodyweight on the legs in relatively small water striders. We aimed to understand how loading on the legs changes during sculling that leads to sliding of the body on the water surface. The assistance of all legs at every moment enables the body to maintain its floating during standing and striding. Water striders can achieve a gentle striding through the midlegs driving phase in association with smooth load shifting among their legs, which are positioned in a specific configuration to support the insect on the water surface

    Energy rationale for the Use of the Thermophilic Mode of Anaerobic Bioconversion of Liquid Organic Waste in the Climatic Conditions of the Russian Federation

    Get PDF
    The transition of livestock production to industrial processes and the concentration of animals associated with this process on large farms and complexes has caused a sharp increase in the volume of manure that must be disposed of without pollution. One of the ways of processing organic waste (biomass) is its anaerobic digestion in biogas plants through the vital activity of microorganisms (methanogenesis).Biogas obtained using microbiological processing of biomass can be used as a raw material for heat and electric energy. Annually, 0.17% of the total livestock manure produced at Russian agricultural enterprisesis used for biogas production.The main component of a biogas plant is a manure fermentation reactor, the required volume of which is determined by the daily output of manure from the livestock farm, the temperature and the hydraulic retention time of treatment. This research explored thermal energy consumption of biogas plants, using the example of a biogas plant of a modular design that depended on the average annual outdoor temperature. Based on the calculations, the thermophilic mode was found to be more energy-efficient than the mesophilic one; thus, with the thermophilic mode, the specific energy consumption needed for the plant was lower at the average annual outdoor temperatures of all the constituent entities of the Russian Federation. At the same time, the specific biogas yield in the thermophilic regime was 20-50%higher than in the mesophilic regime. Keywords: anaerobic processing, agricultural waste, thermophilicmode, mesophilicmode, energy costs, energy rational

    Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schr\"{o}dinger equations

    Full text link
    Weak interactions of solitary waves in the generalized nonlinear Schr\"{o}dinger equations are studied. It is first shown that these interactions exhibit similar fractal dependence on initial conditions for different nonlinearities. Then by using the Karpman-Solov'ev method, a universal system of dynamical equations is derived for the velocities, amplitudes, positions and phases of interacting solitary waves. These dynamical equations contain a single parameter, which accounts for the different forms of nonlinearity. When this parameter is zero, these dynamical equations are integrable, and the exact analytical solutions are derived. When this parameter is non-zero, the dynamical equations exhibit fractal structures which match those in the original wave equations both qualitatively and quantitatively. Thus the universal nature of fractal structures in the weak interaction of solitary waves is analytically established. The origin of these fractal structures is also explored. It is shown that these structures bifurcate from the initial conditions where the solutions of the integrable dynamical equations develop finite-time singularities. Based on this observation, an analytical criterion for the existence and locations of fractal structures is obtained. Lastly, these analytical results are applied to the generalized nonlinear Schr\"{o}dinger equations with various nonlinearities such as the saturable nonlinearity, and predictions on their weak interactions of solitary waves are made.Comment: 22pages, 15 figure

    Influence of magnetic anisotropy on hysteresis behavior in the two-spin model of a ferro/antiferromagnet bilayer with exchange bias

    Get PDF
    The influence of magnetic anisotropy of a ferromagnetic film on the phenomenon of exchange bias is studied here. Hysteresis behavior in the two-spin model of a ferro/antiferromagnetic (FM/AFM) bilayer with exchange bias has been investigated in detail. In this model a half-space of an AFM with fixed magnetic configuration comes in contact with a two-layer FM film. Twelve different types of magnetization curves M(H) (both with and without hysteresis) have been found. Some of the M(H) curves demonstrate unusual features, such as plateaus and inclined segments. The hysteresis loop becomes asymmetric if surface anisotropy is taken into account
    corecore