115 research outputs found

    Tunable "Doniach Phase Diagram" for strongly-correlated nanoclusters

    Full text link
    Exact diagonalization calculations reveal that the energy spacing Δ\Delta in the conduction band tunes the interplay between the {\it local} Kondo and {\it non local} RKKY interactions, giving rise to a "Doniach phase diagram" for a nanocluster with regions of prevailing Kondo or RKKY correlations. The parity of the total number of electrons alters the competition between the Kondo and RKKY correlations. This interplay may be relevant to experimental realizations of small rings or quantum dots with tunable magnetic properties. Below a critical value Vc_c of the hybridization the susceptibility exhibits a low-T exponential activation behavior determined by the interplay of the spin gap and Δ\Delta.Comment: 4 pages, 5 figure

    Tuning the magnetism of ordered and disordered strongly-correlated electron nanoclusters

    Full text link
    Recently, there has been a resurgence of intense experimental and theoretical interest on the Kondo physics of nanoscopic and mesoscopic systems due to the possibility of making experiments in extremely small samples. We have carried out exact diagonalization calculations to study the effect of energy spacing Δ\Delta in the conduction band states, hybridization, number of electrons, and disorder on the ground-state and thermal properties of strongly-correlated electron nanoclusters. For the ordered systems, the calculations reveal for the first time that Δ\Delta tunes the interplay between the {\it local} Kondo and {\it non local} RKKY interactions, giving rise to a "Doniach phase diagram" for the nanocluster with regions of prevailing Kondo or RKKY correlations. The interplay of Δ\Delta and disorder gives rise to a Δ\Delta versus concentration T=0 phase diagram very rich in structure. The parity of the total number of electrons alters the competition between the Kondo and RKKY correlations. The local Kondo temperatures, TKT_K, and RKKY interactions depend strongly on the local environment and are overall {\it enhanced} by disorder, in contrast to the hypothesis of ``Kondo disorder'' single-impurity models. This interplay may be relevant to experimental realizations of small rings or quantum dots with tunable magnetic properties.Comment: 10 pages, 13 figures, to appear in Physics of Spin in Solids: Materials, Methods, and Applications, (2004

    Basis of strong change of hybridization‐induced magnetic ordering between CeSb and CeTe

    Get PDF
    A sharp change in the nature of the magnetic ordering has been observed on going from CeSb to CeTe, both of which have NaC1 structures with a small decrease in lattice parameter. This is an interesting example of the way in which hybridization of partially delocalized f electrons with band electrons gives rise to highly unusual magnetic properties which show great chemical sensitivity. In the present paper we apply our previous a b i n i t i o treatment of hybridization‐induced effects to investigate this striking change in magnetic behavior. We have performed self‐consistent warped muffin‐tin LMTO band calculations treating the Ce 4f states as resonance states that are constrained to be localized. Compared to CeSb, the anion‐derived p bands in CeTe sink well below the Fermi energy, thus strongly changing the band‐f hybridization. We have calculated the hybridization dressing of the crystal‐field levels and the anisotropic two‐ion exchange interaction and compared them with those calculated for CeSb and with experiment. A strong decrease in the two‐ion interaction explains the drastic change in observed magnetic behavior between CeSb and CeTe

    Voltage Dependence of Spin Transfer Torque in Magnetic Tunnel Junctions

    Full text link
    Theoretical investigations of spin transfer torque in magnetic tunnel junctions using the tight-binding model in the framework of non-equilibrium Green functions formalism are presented. We show that the behavior of the spin transfer torque as a function of applied voltage can vary over a wide range depending on the band parameters of the ferromagnetic electrodes and the insulator that comprise the magnetic tunnel junction. The behavior of both the parallel and perpendicular components of the spin torque is addressed. This behavior is explained in terms of the spin and charge current dependence and on the interplay between evanescent states in the insulator and the Fermi surfaces of ferromagnetic electrodes comprising the junction. The origin of the perpendicular (field-like) component of spin transfer torque at zero bias, i.e. exchange coupling through the barrier between ferromagnetic electrodes is discussed.Comment: 5 pages,4 figure

    Novel Family of Chiral-Based Topological Insulators: Elemental Tellurium under Strain

    Get PDF
    Employing ab initio electronic structure calculations, we predict that trigonal tellurium consisting of weakly interacting helical chains undergoes a trivial insulator to strong topological insulator (metal) transition under shear (hydrostatic or uniaxial) strain. The transition is demonstrated by examining the strain evolution of the band structure, the topological Z_2 invariant and the concomitant band inversion. The underlying mechanism is the depopulation of the lone-pair orbitals associated with the valence band via proper strain engineering. Thus, Te becomes the prototype of a novel family of chiral-based three-dimensional topological insulators with important implications in spintronics, magneto-optics, and thermoelectrics

    Strongly Correlated Cerium Systems: Non-Kondo Mechanism for Moment Collapse

    Full text link
    We present an ab initio based method which gives clear insight into the interplay between the hybridization, the coulomb exchange, and the crystal-field interactions, as the degree of 4f localization is varied across a series of strongly correlated cerium systems. The results for the ordered magnetic moments, magnetic structure, and ordering temperatures are in excellent agreement with experiment, including the occurence of a moment collapse of non-Kondo origin. In contrast, standard ab initio density functional calculations fail to predict, even qualitatively, the trend of the unusual magentic properties.Comment: A shorter version of this has been submitted to PR

    Generalized stacking fault energy surfaces and dislocation properties of aluminum

    Full text link
    We have employed the semidiscrete variational generalized Peierls-Nabarro model to study the dislocation core properties of aluminum. The generalized stacking fault energy surfaces entering the model are calculated by using first-principles Density Functional Theory (DFT) with pseudopotentials and the embedded atom method (EAM). Various core properties, including the core width, splitting behavior, energetics and Peierls stress for different dislocations have been investigated. The correlation between the core energetics and dislocation character has been explored. Our results reveal a simple relationship between the Peierls stress and the ratio between the core width and atomic spacing. The dependence of the core properties on the two methods for calculating the total energy (DFT vs. EAM) has been examined. The EAM can give gross trends for various dislocation properties but fails to predict the finer core structures, which in turn can affect the Peierls stress significantly (about one order of magnitude).Comment: 25 pages, 12 figure
    corecore