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Abstract

We present first-principles total-energy density-functional theory electronic structure calculations

for the neutral and charge states of an oxygen vacancy in KH2PO4 (KDP). Even though the overall

DOS profiles for the defective KDP are quite similar to those of the perfect KDP, the oxygen

vacancy in the neutral and +1 charge states induces defect states in the band gap. For the neutral

oxygen vacancy, the gap states are occupied by two electrons. The difference between the integral

of the total density of states (DOS) and the sum of the DOS projected on the atoms of 0.98 |e|,
indicates that one of the two electrons resulting from the removal of the oxygen atom is trapped

in the vacancy, while the other tends to delocalize in the neighboring atoms. For the +1 charge

oxygen vacancy, the addition of the hole reduces the occupation of the filled gap-states in the

neutral case from two to one electron and produces new empty states in the gap. The new empty

gap states are very close to the highest occupied states, leading to a dramatic decrease of the band

gap. The difference between the integral of the total DOS and the sum of the DOS projected on

the atoms is 0.56 |e|, which implies that more than 56% of the redundant electron is trapped in

the oxygen vacancy, and 44% spreads over the neighboring atoms. In sharp contrast, no defect

states appear in the energy gap for the +2 charge O vacancy. Thus, the addition of the two holes

completely compensates the two redundant electrons, and removes in turn the occupied gap states

in the neutral case.
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I. INTRODUCTION

Potassium dihydrogen phosphate, KH2PO4 (KDP), the prototype of hydrogen-bonded

(HB) ferroelectrics1, is probably the best known and most extensively studied HB system

due to its nonlinear and electro-optical properties.2 KDP is also an ideal model system in

which to study the role of intrinsic defects in complex oxide insulators.3 The KDP crystal is

characterized by strong covalent bonds within the PO4 tetrahedra which are interconnected

by a network of hydrogen O-H-O bonds and an ionic bonding between the potassium cation

and the PO4 group. KDP has found wide use as a frequency conversion crystal as well as for

electro-optic modulation in various laser systems and applications. Due to the fast rate at

which large single crystals can be grown, KDP and its deuterated analog known as DKDP

(KD2PO4) are unique materials suitable for large aperture laser systems. The utilization

of KDP crystals for frequency up-conversion (for example, for second and third harmonic

generation in Nd:YAG lasers) makes it particularly susceptible to adverse effects arising from

absorbing defects due to its exposure to higher energy protons. Such absorbing defects can

lead to damage initiation at laser intensities well below the dielectric breakdown threshold

of the material.3 This problem constitutes a key limiting factor in high-power laser systems

and it is believed to arise from defects created during crystal growth.4,5

An additional concern is the generation of transient optical absorption bands in the

300-650 nm spectral region by short-lived defects when KDP crystals are exposed to in-

tense ultraviolet or X-ray irradiation.6–18Davis et al.6 suggested that proton transport (the

radiation-induced displacement of a proton from its normal site) is a major component of

the mechanism responsible for the transient optical absorption. The proposed mechanism

for the formation of the absorbing defect centers proceeds as follows: Multi-photon absorp-

tion of high-intensity laser radiation generates electron-hole pairs, a portion of which may

eventually evolve into electronic defect states that often lie within the band gap. A H+ ion

occupying a normal lattice site traps an electron to become a neutral H atom, which in turn

is ejected from its original site. The oxygen atom closest to the resulting H vacancy traps the

hole and forms the [HPO4]
− radical. Subsequent electron paramagnetic resonance (EPR)

experiments15 provided direct spectroscopic evidence of the [HPO4]
− hole center and of the

hydrogen interstitial H0 electron center, in support of the proton-transport mechanism.

Recently, Graces et al. and Chirila et al. used EPR to characterize a new hole trap and
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several electron traps in KDP and DKDP.18,19 The new hole center, labeled by [H2SiO4]
−,

consists of a hole trapped on an oxygen ion adjacent to a silicon impurity substituting a

phosphrous ion. The (PO3)
2− electron centers are formed when an electron is trapped at

an oxygen vacancy with a hydrogen or potassium vacancy located on one of five inequiva-

lent cation sites relative to the oxygen vacancy. Because of their greater thermal stability

(they are stable at room temperature compared to the hydrogen hole and electron traps in

KDP which are only stable below 200K), these new centers introduce long-lived absorption

bands that may adversely affect the performance of KDP crystals. Such defects have been

suggested3,4 also to play an important role in laser-induced damage in KDP. Namely, de-

pending on the laser wavelength, two or three photons absorbed by neighboring defects can

lead to a sufficient population of conduction band electrons to start the localized cascade

multiplication process responsible for the damage initiation3.

In a series of recent papers,20,21 we reported first-principles total-energy density-functional

theory electronic structure calculations for the neutral and charge states of H intrinsic

(Frenkel pair) and extrinsic (H vacancy or interstitial) point defects in KDP. For the Frenkel

pair, the additional hole leads to a decrease of the O-O bond length between the two O

atoms next to the H vacancy, while the effect of the additional electron is small. For the H

vacancy, the added hole is trapped and shared by the two O atoms adjacent to the vacancy,

reducing dramatically the O-O bond length, thus forming a molecular-type polaron. The

positively charged H vacancy introduces states in the gap, in sharp contrast with its neutral

state. The H vacancy in its negatively charged state leads to an increase of the two O atoms

close to H vacancy, and does not induce states in the gap. The negatively charged H inter-

stitial causes the ejection of H host atom and the subsequent formation of a H2 interstitial

molecule and a H vacancy, in agreement with experimental suggestions. In the positively

charged state the H interstitial binds to its nearest-neighbor O atom forming a hydroxyl

bond. The H interstitial in both positive and negative charge states induces no defect states

in the band gap, in sharp contrast with its neutral state, suggesting that these defects may

not be absorbing.

In the present work, we have carried out ab initio electronic structure calculations for

an oxygen vacancy in KDP, and have investigated the effect of defect charge states. We

find that extra levels appear in the band gap for the neutral and +1 charge states. For the

neutral O vacancy, one of the two electrons resulting from the removal of the oxygen atom is
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trapped in the oxygen vacancy, while the other tends to delocalize in the neighboring atoms.

For the +1 charged O vacancy, the addition of a hole reduces the occupation of the filled

gap-state in the neutral case from two to one electron and produces a new empty gap-state.

The new empty state is very close the highest occupied state, which leads to a dramatic

decrease of the band gap. 56% of one of the redundant electrons is trapped in the oxygen

vacancy, and 44% spreads over the neighboring atoms. In sharp contrast, the addition of

two holes completely compensates the two redundant electrons associated with the oxygen

vacancy, and removes in turn the occupied gap-states in the neutral case.

The organization of this paper is as follows. In the next section we discuss the details of

the present calculations. In Section III we present and discuss the detailed results for the O

vacancy in the neutral and various charged states. Finally, we give a brief summary in Sec.

IV.

II. COMPUTATIONAL METHODS

The ab initio calculations we performed are based on spin-density-functional theory

with the CASTEP implementation22 and ultrasoft pseudopotentials.23 The Perdew-Burke-

Ernzerhof gradient-corrected functional24 was used for the exchange-correlation potential.

The kinetic energy cutoff for the plane-wave basis was set to be 680 eV, yielding a con-

vergence for the total energy better than 1 meV/atom. Convergence tests for 2 × 2 × 2,

4 × 4 × 4 and 5 × 5 × 5 divisions along the reciprocal-lattice directions in the primitive

unit cell of the pure KDP system according to the Monkhorst-Pack scheme25 have shown

that the total energy converges better than 0.1 meV/atom26 if a 4 × 4 × 4 k-point grid is

used. An appropriately scaled grid is used for the supercells of KDP containing the defect

which yields well-converged results for the total energy. We have used a tetragonal supercell

consisting of eight KH2PO4 formula units (64 atoms) with lattice vectors, A = a(i + j),

B = a(i− j), and C = ck, where, a= 7.49527 Å and c = 6.95749 Å are the lattice constants

of the conventional unit cell of KDP.26 The supercells are fully relaxed including all atoms

and lattice constants with the use of conjugate gradient techniques. We remove an oxygen

atom from the perfect crystal to simulate the O vacancy. The optimized geometry of the

neutral system was used as the initial structure for the corresponding charged system. For

the studies of the charged defects, an electron or two electrons are added or removed from
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the neutral system and a uniform background with opposite polarity is adopted automati-

cally to keep the neutrality of the whole system; this in turn prevents the divergence in the

total energy.27

III. RESULTS AND DISCUSSIONS

Figure 1 shows a schematic view of the local atomic structure of an O vacancy in a PO4

tetrahedral unit in KDP. For convenience, we have labeled the four Oxygen atoms with

O(1), O(2), O(3) and O(4), and the four Hydrogen atoms which are closely associated with

the O vacancy with H(1), H(2), H(3) and H(4). In Table I, we summarize the results of

the optimized structural parameters, such as the bond lengths and overlap populations of

the bonds shown in Fig. 1, for the neutral, +1, +2 and -1 charge state of the O vacancy,

respectively. In Table II, we list the results of the effective atomic charges from the Mulliken

population analysis28 for these atoms which are associated with and/or strongly influenced

by the O vacancy.

In the neutral state, there is a small elongation of the P-O(2) bond length from 1.520 Å

in pure KDP to 1.537 Å, indicating a weakening of the P-O(2) bond (the overlap population

decreases from 0.65 |e| in pure KDP to 0.55 |e|). On the other hand, both the P-O(1) and

P-O(3) bonds increase to about 1.60 Å and hence they weaken significantly (the overlap

population decreases to 0.39 |e|). These changes in the P-O(2), P-O(1) and P-O(3) bonds

are accompanied by the stretching and weakening of the O(2)-H(2) bond, and the shrinking

and strengthening of both the O(1)-H(1) and O(3)-H(3) bonds, respectively. One can see

from Table II that in the neutral state, the effective charge of the phosphorus atom adjacent

to the O vacancy has decreased from 2.27 |e| in pure KDP to 1.34 |e|, indicating that this P

atom has lost almost one electron compared to a normal P atom in pure KDP. This result

is consistent with the weakening of the P-O(2), P-O(1) and P-O(3) bonds.

In the -1 charge state, the addition of an electron primarily increases the P-O(2) bond

length and decreases the O(2)-H(2) bond length compared to the neutral O vacancy case,

but it has a small effect on all other bonds. Note that the three P-O bond lengths become

comparable as do the four O-H bond lengths. Since the effective charges of the P, O(1),

O(2) and O(3) atoms in the -1 charge state are similar to those in the neutral case, it

suggests that the added electron does not localize on any one of these atoms, but rather
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may be trapped on the O vacancy. In the +1 charge state, the addition of a hole results

in (i) a small shortening of the P-O(2) bond length and (ii) a much larger shortening of

both the P-O(1) and P-O(3) bond lenghts compared to the neutral case. This leads to the

strengthening of the P-O(1) and P-O(3) bonds. Consequently, there is a small elongation

of the O(2)-H(2) bond and a larger elongation of the O(1)-H(1) and O(3)-H(3) bonds and

hence a weakening of the O-H bonds. In the +2 charge state, even though there are small

changes in the P-O(1), P-O(2) and P-O(3) bond lengths compared to those in the +1 charge

state, there is a greater effect on the overlap population which indicates a strengthening of

the P-O(1), P-O(2) and P-O(3) bonds . As expected, the addition of the holes lead to the

increase of the effective charge of the P atom. One can see from Table II that 0.36 |e| of the

first added hole and 0.49 |e| of the second hole localize on the P atom.

The total density of states (DOS) for the defect-free KDP (a), the neutral O vacancy (b),

the +1 (c), the +2 (d), and the -1 (e) charged O vacancy are shown in Fig. 2. Note that the

valence-band maximum of the defect-free KDP is set at 0 eV in this figure. As can be seen

from Figs. 2(b)-2(e), the overall DOS profiles for the defective KDP are quite similar to

those of the perfect KDP. However, depending on its charge state the oxygen vacancy may

induce defect states in the band gap. For the neutral O vacancy, the occupied defect states,

as indicated by the arrow, are located around 1.5 eV. The integration of the DOS in the

energy region corresponding to the impurity level is 2.0, which is consistent with the fact

that removal of a neutral oxygen atom leaves two electrons. The present result for the total

DOS is very similar to that encountered in the case of neutral O vacancy in α-Al2O3.
29,30

The difference between the integral of the total DOS and of the sum of the DOS projected

on the atoms is 0.98 |e|. This implies that one of the two electrons is trapped in the oxygen

vacancy and the other tends to delocalize in the neighboring atoms. In Fig. 3 we show the

orbital- and atom-resolved density of states for the neutral O vacancy. We find that the

impurity level is mainly composed of s- and p-orbitals of the P atom and p-orbitals of the

O(1), O(2) and O(3) atoms. This result along with that of the Mulliken population analysis

presented in Table II (where the effective charge of the P atom adjacent to the O vacancy

has decreased from 2.27 |e| in pure KDP to 1.34 |e|), indicate that one of the two electrons

resulting from the removal of the oxygen atom is mainly localized in the P atom neighboring

the O vacancy. The theoretical band gap for the neutral O vacancy decreases from 5.9 eV

(pure KDP) to about 4.0 eV.
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For the +1 charged O vacancy, the impurity level (as indicated by the solid arrow) appears

around 1.5 eV. The integration of the impurity DOS yields only 1.0. However, a new empty

defect state (as indicated by the dotted arrow) which can accomodate one electron, appears

in the gap. Namely, the addition of the hole reduces the occupation of the filled gap-state

in the neutral case from two to one and produces a new empty state in the gap. The new

empty state is very close to the highest occupied states leading to a dramatic decrease of the

band gap. Thus, for the +1 charged vacancy there is only one redundant electron because

the hole compensates the other electron. The difference between the integral of the total

DOS and the sum of the DOS projected on the atoms is 0.56 |e|. This means that more

than 56% of this redundant electron is trapped in the oxygen vacancy, and 44% spreads

over the neighboring atoms. In Fig. 4 we show the orbital- and atom-resolved density of

states for the +1 charged O vacancy. The defect states in the band gap are mainly P s-

and p-derived states, and O(1), O(2) and O(3) p-derived states. In sharp contrast, no defect

states appear in the energy gap for the +2 charged O vacancy, i.e., both the occupied and

empty states associated with the +1 charged O vacancy disappear. Thus, the addition of

two holes completely compensates the two redundant electrons due to the oxygen vacancy,

and it removes the occupied gap-states of the neutral case. Consequently, the theoretical

band gap returns to its value of 6 eV for pure KDP. For the -1 charged O vacancy, the defect

states appear in the energy gap as in the case of the neutral O vacancy. However, the defect

states, which are occupied with one electron, appear at the bottom of the conduction band,

thus, closing the band gap and rendering the system metallic.

Graces et al.18 observed five EPR spectra representing variations of the oxygen vacancy

centers, where the differences were attributed to the relative position of a nearby cation

vacancy, i.e., either a proton or a potassium missing from one of the five inequivalent cation

sites near the oxygen vacancy. These electron centers, (PO3)
2−, were explained on the

assumption that a nearby cation vacancy is a component of each defect. An oxygen vacancy

formed during growth may be partially charge compensated by a hydrogen or potassium

vacancy at one of these neighboring sites. Then, when an electron is trapped at the divacancy

during exposure to ionizing radiation, the resulting complex will be neutral. The divacancy,

an oxygen vacancy plus a hydrogen or potassium vacancy, produces a redundant electron.

Thus, this case may be to some extent similar to the +1 charged O vacancy, where there is

also a single redundant electron.
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IV. SUMMARY

First-principles total-energy calculations were performed to study the electronic struc-

tures for the neutral and charge states of an oxygen vacancy in KDP. The overall DOS

profiles for the defective KDP are quite similar to those of the perfect KDP. For the neutral

case, occupied defect states appear in the band gap. Integration of these defect DOS yields

an occupation of 2.0, consistent with the fact that the removal of the neutral oxygen atom

leaves two electrons. The difference between the integral of the total DOS and the sum

of the DOS projected on the atoms of 0.98 |e|, indicates that one of the two electrons is

trapped in the oxygen vacancy, while the other tends to delocalize in the neighboring atoms.

The defect state is mainly composed of s- and p-orbitals of the P atom and p-orbitals of

the O(1), O(2) and O(3) atoms. The Mulliken population analysis shows that one of the

two electrons is mainly localized on the P atom neighboring the O vacancy. The theoretical

band gap for the neutral O vacancy decreases from 5.9 eV (pure KDP) to about 4.0 eV. For

the +1 charge oxygen vacancy, the addition of the hole reduces the occupation of the defect

states in the neutral case from two to one, and produces new empty states in the gap. These

empty states are very close to the highest occupied states, leading to a dramatic decrease of

the band gap. The hole compensates one of the two electrons of the neutral oxygen vacancy,

thus leaving one reduntant electron. The difference between the integral of the total DOS

and the sum of the DOS projected on the atoms is 0.56 |e|, which means that more than

56% of the redundant electron is trapped in the oxygen vacancy, and 44% spreads over the

neighboring atoms. In sharp contrast, no defect states appear in the energy gap for the

+2 charged O vacancy, i.e., the addition of the two holes completely compensates the two

redundant electrons of the oxygen vacancy, and removes in turn the occupied gap-states in

the neutral case. Consequently, the theoretical band gap returns to its value of 6 eV in pure

KDP.
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Table I Calculated structural parameters for the neutral and charged Oxygen vacancy.

Distances are in Å and overlap populations in |e|. For the tetragonal phase of the defect-free

KDP, the P-O bond length and overlap population are 1.520 Å and 0.65 |e|, respectively; and

the O-H bond length and overlap population are 1.203 Å and 0.40 |e|, respectively[Ref.26].

Neutral state Charged state

0 -1 +1 +2

Length of P-O(1) 1.598 1.579 1.508 1.497

P-O(2) 1.537 1.582 1.499 1.507

P-O(3) 1.604 1.591 1.507 1.479

O(1)-H(1) 1.039 1.057 1.427 1.633

O(2)-H(2) 1.330 1.069 1.442 1.269

O(3)-H(3) 1.049 1.042 1.361 1.536

O(4)-H(4) 1.018 1.015 0.991 1.018

Overlap of P-O(1) 0.39 0.42 0.55 0.71

P-O(2) 0.55 0.44 0.59 0.66

P-O(3) 0.39 0.41 0.56 0.77

O(1)-H(1) 0.56 0.53 0.23 0.13

O(2)-H(2) 0.31 0.53 0.23 0.35

O(3)-H(3) 0.57 0.55 0.27 0.18

O(4)-H(4) 0.54 0.55 0.60 0.61

Table II Effective charge ( |e| ) of those atoms markedly affected by the Oxygen vacancy.

For the tetragonal phase of the defect-free KDP, the charge of the Oxygen and Phosphorus

is -1.05 |e| and 2.27|e|, respectively.

Neutral state Charged state

0 -1 +1 +2

P 1.34 1.32 1.70 2.19

O(1) -0.98 -0.99 -1.03 -1.03

O(2) -1.04 -0.99 -1.03 -1.01

O(3) -0.96 -0.96 -1.02 -1.07
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FIG. 1: Schematic view of the local atomic structure of the O vacancy in a tetrahedral PO4 unit in

KDP (The P-O and O-H bond lengths are listed in Table I). The P, O, and H atoms are labeled by

purple, green, and white circles, respectively. The O(4) atom belongs to a neighboring tetrahedral

PO4 unit. The position of the O vacancy is denoted with V(O).

FIG. 2: Total density of states for the defect-free KDP (a), the neutral (b), +1 (c), +2 (d), and -1

(e) charged O vacancy, respectively. The valence-band maximum of the defect-free KDP is set at 0

eV. The highest occupied (unoccupied) levels for the defective KDP are denoted by solid (dotted)

arrows.

FIG. 4: Orbital- and atom-resolved partial density of states (PDOS) for the +1 charged O vacancy

in KDP. The positions of the P, O(1), O(2), O(3) and O(4) atoms are shown in Fig. 1.

FIG. 3: Orbital- and atom-resolved partial density of states (PDOS) for the neutral O vacancy in

KDP. The P, O(1), O(2), O(3) and O(4) atoms are shown in Fig. 1
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