10,491 research outputs found

    Exact calculation of three-body contact interaction to second order

    Full text link
    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle Eˉ(kf)\bar E(k_f) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to Eˉ(kf)kf10\bar E(k_f)\sim k_f^{10} with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction.Comment: 9 pages, 6 figures, to be published in European Journal

    Southern Sky Redshift Survey: Clustering of Local Galaxies

    Get PDF
    We use the two-point correlation function to calculate the clustering properties of the recently completed SSRS2 survey. The redshift space correlation function for the magnitude-limited SSRS2 is given by xi(s)=(s/5.85 h-1 Mpc)^{-1.60} for separations between 2 < s < 11 h-1 Mpc, while our best estimate for the real space correlation function is xi(r) = (r/5.36 h-1 Mpc)^{-1.86}. Both are comparable to previous measurements using surveys of optical galaxies over much larger and independent volumes. By comparing the correlation function calculated in redshift and real space we find that the redshift distortion on intermediate scales is small. This result implies that the observed redshift-space distribution of galaxies is close to that in real space, and that beta = Omega^{0.6}/b < 1, where Omega is the cosmological density parameter and b is the linear biasing factor for optical galaxies. We also use the SSRS2 to study the dependence of xi on the internal properties of galaxies. We confirm earlier results that luminous galaxies (L>L*) are more clustered than sub-L* galaxies and that the luminosity segregation is scale-independent. We find that early types are more clustered than late types, but that in the absence of rich clusters, the relative bias between early and late types in real space, is not as strong as previously estimated. Furthermore, both morphologies present a luminosity-dependent bias, with the early types showing a slightly stronger dependence on luminosity. We also find that red galaxies are significantly more clustered than blue ones, with a mean relative bias stronger than that seen for morphology. Finally, we find that the relative bias between optical and iras galaxies in real space is b_o/b_I \sim 1.4.Comment: 43 pages, uses AASTeX 4.0 macros. Includes 8 tables and 16 Postscript figures, updated reference

    Cyclic bit loading for adaptive OFDM in narrowband power line communications

    Get PDF

    Reactor-Network Synthesis via Flux Profile Analysis

    No full text

    Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications

    Get PDF
    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator

    ppppωpp\to pp\omega reaction near threshold

    Full text link
    We analyze the total cross section data for ppppωpp \to pp\omega near threshold measured recently at SATURNE. Using an effective range approximation for the on-shell pppp S-wave final state interaction we extract from these data the modulus Ω=0.53|\Omega| = 0.53 fm4^4 of the threshold transition amplitude Ω\Omega. We present a calculation of various (tree-level) meson exchange diagrams contributing to Ω\Omega. It is essential that ω\omega-emission from the anomalous ωρπ\omega\rho\pi-vertex interferes destructively with ω\omega-emission from the proton lines. The contribution of scalar σ\sigma-meson exchange to Ω\Omega turns out to be negligibly small. Without introducing off-shell meson-nucleon form factors the experimental value Ω=0.53|\Omega|=0.53 fm4^4 can be reproduced with an ωN\omega N-coupling constant of gωN=10.7g_{\omega N}=10.7. The results of the present approach agree qualitatively with the J\"ulich model. We also perform a combined analysis of the reactions ppppπ0,pnπ+,ppη,ppωpp\to pp\pi^0, pn\pi^+, pp\eta, pp\omega and pnpnηpn\to pn\eta near threshold.Comment: Latex-file 6 pages, 2 Figure

    Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion

    Get PDF
    Baryon acoustic oscillations (BAOs) imprinted in the galaxy power spectrum can be used as a standard ruler to determine angular diameter distance and Hubble parameter at high redshift galaxies. Combining redshift distortion effect which apparently distorts the galaxy clustering pattern, we can also constrain the growth rate of large-scale structure formation. Usually, future forecast for constraining these parameters from galaxy redshift surveys has been made with a full 2D power spectrum characterized as function of wavenumber kk and directional cosine μ\mu between line-of-sight direction and wave vector, i.e., P(k,μ)P(k,\mu). Here, we apply the multipole expansion to the full 2D power spectrum, and discuss how much cosmological information can be extracted from the lower-multipole spectra, taking a proper account of the non-linear effects on gravitational clustering and redshift distortion. The Fisher matrix analysis reveals that compared to the analysis with full 2D spectrum, a partial information from the monopole and quadrupole spectra generally degrades the constraints by a factor of 1.3\sim1.3 for each parameter. The additional information from the hexadecapole spectrum helps to improve the constraints, which lead to an almost comparable result expected from the full 2D spectrum.Comment: 12 pages, 6 figure

    Isovector part of nuclear energy density functional from chiral two- and three-nucleon forces

    Full text link
    A recent calculation of the nuclear energy density functional from chiral two- and three-nucleon forces is extended to the isovector terms pertaining to different proton and neutron densities. An improved density-matrix expansion is adapted to the situation of small isospin-asymmetries and used to calculate in the Hartree-Fock approximation the density-dependent strength functions associated with the isovector terms. The two-body interaction comprises of long-range multi-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition, the leading order chiral three-nucleon interaction is employed with its parameters fixed in computations of nuclear few-body systems. With this input one finds for the asymmetry energy of nuclear matter the value A(ρ0)26.5A(\rho_0) \simeq 26.5\,MeV, compatible with existing semi-empirical determinations. The strength functions of the isovector surface and spin-orbit coupling terms come out much smaller than those of the analogous isoscalar coupling terms and in the relevant density range one finds agreement with phenomenological Skyrme forces. The specific isospin- and density-dependences arising from the chiral two- and three-nucleon interactions can be explored and tested in neutron-rich systems.Comment: 14 pages, 7 figures, to be published in European Physical Journal

    Recovery of the Shape of the Mass Power Spectrum from the Lyman-alpha Forest

    Full text link
    We propose a method for recovering the shape of the mass power spectrum on large scales from the transmission fluctuations of the Lyman-alpha forest, which takes into account directly redshift-space distortions. The procedure, in discretized form, involves the inversion of a triangular matrix which projects the mass power spectrum in 3-D real-space to the transmission power spectrum in 1-D redshift-space. We illustrate the method by performing a linear calculation relating the two. A method that does not take into account redshift-space anisotropy tends to underestimate the steepness of the mass power spectrum, in the case of linear distortions. The issue of the effective bias-factor for the linear distortion kernel is discussed.Comment: 18 pages, 4 figures; minor revision
    corecore