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Baryon acoustic oscillations imprinted in the galaxy power spectrum can be used as a standard ruler to

determine the angular diameter distance and Hubble parameter from high-redshift galaxies. Combining

redshift distortion effect which apparently distorts the galaxy clustering pattern, we can also constrain the

growth rate of large-scale structure formation. Usually, future forecasts for constraining these parameters

from galaxy redshift surveys are made with the full 2D power spectrum characterized as a function of

wave number k and directional cosine � between line-of-sight direction and wave vector, i.e., Pðk; �Þ.
Here, we apply the multipole expansion to the full 2D power spectrum, and discuss how much

cosmological information can be extracted from the lower-multipole spectra, taking a proper account

of the nonlinear effects on gravitational clustering and redshift distortion. Fisher matrix analysis reveals

that compared to the analysis with the full 2D spectrum, using only the partial information from the

monopole and quadrupole spectra generally degrades the constraints by a factor of �1:3 for each

parameter. The additional information from the hexadecapole spectrum helps to improve the constraints,

leading to a result that is almost comparable to the one expected from the full 2D spectrum.

DOI: 10.1103/PhysRevD.83.103527 PACS numbers: 98.80.�k

I. INTRODUCTION

Baryon acoustic oscillations (BAOs) imprinted on the
clustering of galaxies are now recognized as a powerful
cosmological probe to trace the expansion history of the
Universe [1–3]. In particular, the BAO measurement via a
spectroscopic survey can provide a way to simultaneously
determine the angular diameter distance DA and Hubble
parameter H at given redshift of galaxies through the
cosmological distortion, known as the Alcock-Paczynski
effect (e.g., [4–8]). Further, measuring the clustering an-
isotropies caused by the redshift distortion due to the
peculiar velocity of galaxies, we can also probe the growth
history of structure formation (e.g., [9–12]), characterized
by the growth-rate parameter f � d lnD=d lna, with quan-
tities D and a being linear growth factor and the scale
factor of the Universe, respectively.

With the increased number of galaxies and large survey
volumes, on-going and future spectroscopic galaxy surveys
such as the Baryon Oscillation Spectroscopic Survey
(BOSS) [13], Hobby-Eberly Dark Energy Experiment
(HETDEX) [14], Subaru Measurement of Imaging and
Redshift equipped with Prime Focus Spectrograph
(SuMIRe-PFS), and EUCLID/JDEM [15,16] aim at pre-
cisely measuring the acoustic scale of BAOs as a standard
ruler. These surveys will cover a wide redshift range, 0:3 &
z & 3:5, and provide a precise measurement of the
redshift-space power spectrum with an accuracy of a per-
cent level over the scales of BAOs.

In promoting these gigantic surveys, a crucial task is a
quantitative forecast for the size of the statistical errors on

the parametersDA,H and f in order to clarify the scientific
benefits as well as to explore the optimal survey design.
The Fisher matrix formalism is a powerful tool to inves-
tigate these issues, and it enables us to quantify the preci-
sion and the correlation between multiple parameters
([5,7,17,18], especially for measuring DA, H and f). So
far, most of parameter forecast studies have focused on the
potential power of the BAO measurements, and attempt to
clarify the achievable level of precision for the parameter
estimation. For this purpose, they sometimes assumed a
rather optimistic situation that a full shape of the redshift-
space power spectrum, including the clustering anisotro-
pies due to the redshift distortion, is available in both
observation and theory.
In this paper, we are particularly concerned with pa-

rameter estimation using partial information about the
anisotropic BAOs from a practical point of view. In redshift
space, the power spectrum obtained from spectroscopic
measurements is generally described in two dimensions,
and is characterized as a function of k and�, where k is the
wave number and � is the directional cosine between the
line-of-sight direction and k [19]. While most of the fore-
cast study is concerned with a full 2D power spectrum, the
multipole expansion of the redshift-space power spectrum
has been frequently used in the data analysis to quantify the
clustering anisotropies. Denoting the power spectrum by
Pðk;�Þ, we have

Pðk;�Þ ¼ Xeven
‘¼0

P‘ðkÞP ‘ð�Þ; (1)
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with the function P ‘ being the Legendre polynomials.
Although the analysis with the full 2D spectrum will
definitely play an important role in improving the statisti-
cal signal, most of the recent cosmological data analysis
has focused on the angle-averaged power spectrum
(‘ ¼ 0), i.e., the monopole spectrum, and a rigorous analy-
sis with the full 2D spectrum is still a heavy task due to the
time-consuming covariance estimation (e.g., [20–22]).

In linear theory, the redshift-space power spectrum is
simply written as Pðk;�Þ ¼ ð1þ ��2Þ2PgalðkÞ, where

� ¼ f=b with b being the linear bias parameter, and
Pgal is the galaxy power spectrum in real space [23–25].

Then, the nonvanishing components arise only from the
monopole (‘ ¼ 0), quadrupole (‘ ¼ 2) and hexadecapole
spectra (‘ ¼ 4). That is, cosmological information con-
tained in the ‘ ¼ 0, 2 and 4 moments is equivalent to the
whole information in the full 2D power spectrum.
Observationally, however, this is only the case when we
know the cosmological distance to the galaxies a priori. The
Alcock-Paczynski effect can induce nontrivial clustering
anisotropies, which cannot be fully characterized by the
lower-multipole spectra, in general. Further, in reality, a
linear theory description cannot be adequate over the scale
of the BAOs, and the nonlinear effects from redshift dis-
tortions as well as from the gravitational clustering must be
considered for a proper comparison with observation. These
facts imply that nonvanishing multipole spectra with ‘ > 4
generically appear, and a part of the cosmological informa-
tion might reside in those higher multipole moments. An
important question is how much of the cosmological infor-
mation can be robustly extracted from the lower-multipole
spectra instead of the full 2D spectrum. In light of this,
Ref. [8] recently examined a nonparametric method to
constrain DA and H from the monopole and quadrupole
spectra, and numerically estimate the size of errors (see also
Ref. [26] for the estimation of the growth-rate parameter).

Here, as a complementary and comprehensive approach,
we will investigate this issue based on the Fisher matrix
formalism, and derive useful formulae for parameter fore-
casts using the multipole power spectra. We then explore
the potential power of the lower-multipole spectra for
obtaining cosmological constraints, particularly focusing
on the parameters DA, H and f. To do so, we consider the
figure-of-merit (FoM) and figure-of-bias (FoB) for these
parameters, and investigate their dependence on the as-
sumptions for the number density of galaxies, the ampli-
tude of clustering bias, and the maximum wave number
used for the parameter estimation.

In Sec. II, we present the Fisher matrix formalism for
cosmological parameter estimation from the multipole
power spectra. Section III deals with modeling of the
redshift-space power spectrum and the assumptions used
in the Fisher matrix analysis. Then, in Sec. IV, the results
for the FoM and FoB are shown, and the sensitivity of the
results to the assumptions and choice of the parameters is

discussed in greater detail. Finally, Sec. V briefly summa-
rize our present work.
Throughout the paper, we assume a flat Lambda cold

dark matter (CDM) model, and the fiducial model parame-
ters are chosen based on the five-year WMAP results [27]:
�m ¼ 0:279, �� ¼ 0:721, �b ¼ 0:0461, h ¼ 0:701,
ns ¼ 0:96, As ¼ 2:19� 10�9.

II. FISHER MATRIX FORMALISM

In this section, we present the basic formulae for Fisher
matrix analysis in estimating the statistical error and sys-
tematic biases for cosmological parameters from the multi-
pole power spectra.
Let us first derive the expression for the Fisher matrix

relevant for power spectrum analysis. The definition of the
Fisher matrix is given by

Fij ¼ �
�
@2 lnL
@�i@�j

�
; (2)

where �i denotes the parameter, and the quantity L is the
likelihood function. For the parameter estimation study
with the multipole spectrum, P‘ðkÞ, the likelihood function
is usually taken to be the form

L / exp

�
� 1

2

X
m;n

X
‘;‘0

�P‘ðkmÞ½C‘‘0 ðkm; knÞ��1�P‘0 ðknÞ
�
;

(3)

where we define

�P‘ðkÞ � P̂‘ðkÞ � P‘ðkÞ;
C‘‘0 ðkm; knÞ � h�P‘ðkmÞ�P‘0 ðknÞi:

The quantities P̂‘ðkÞ and P‘ðkÞ respectively denote the
observed estimate and theoretical template for the multi-
pole power spectrum.
Substituting Eq. (3) into the definition (2), the leading-

order evaluation of the Fisher matrix leads to (e.g.,
[28,29]):

Fij ’
X
n

X
‘;‘0

@P‘ðknÞ
@�i

½Cov‘‘0 ðknÞ��1 @P‘ðknÞ
@�j

; (4)

where we have assumed that the covariance is approxi-
mately characterized by Gaussian statistics and is

written as C‘‘0 ðkm; knÞ ¼ Cov‘‘
0 ðknÞ�mn, where �mn is

the Kronecker symbol.
Adopting the power spectrum estimation of Ref. [30],

the analytic expression for the quantity Cov‘‘
0 ðknÞ can be

found in Ref. [31] [see Eq. (25) of their paper]:

Cov ‘‘0 ðknÞ ¼ 2

Vn

ð2‘þ1Þð2‘0 þ1Þ
2

�
Z 1

�1
d�

P ‘ð�ÞP ‘0 ð�ÞR
d3r �nðrÞ2½1þ �nðrÞPðSÞðkn;�Þ��2

(5)
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with P ‘ð�Þ being the Legendre polynomial [32]. The
quantity Vn is the volume element of a thin shell in
Fourier space, i.e., Vn ¼ 4�2k2ndkn=ð2�Þ3, which corre-
sponds to �Vk=ð2�Þ3 in the notation of Ref. [31].

Now, to simplify the formula, we consider homogeneous
galaxy samples, which implies �nðrÞ ¼ �n ¼ const. In this
case, the denominator in the integrand of Eq. (5) is sim-
plified asZ

d3r �nðrÞ2½1þ �nðrÞPðk;�Þ��2 ¼ Vs

�
Pðk;�Þ þ 1

�n

��2
;

(6)

where Vs denotes the survey volume. Then, taking the
continuum limit, the expression for the Fisher matrix can
be recast as

Fij ¼ Vs

4�2

Z kmax

kmin

dkk2
X
‘;‘0

@P‘ðkÞ
@�i

½gCov‘‘0 ðkÞ��1 @P‘ðkÞ
@�j

; (7)

with the reduced covariance matrix gCov‘‘0 ðkÞ given by

gCov‘‘0 ðkÞ ¼ ð2‘þ 1Þð2‘0 þ 1Þ
2

Z 1

�1
d�P ‘ð�ÞP ‘0 ð�Þ

�
�
Pðk;�Þ þ 1

�n

�
2
: (8)

Here, the range of integration ½kmin; kmax� should be chosen
through the survey properties and/or limitation of the
theoretical template, and, in particular, the minimum

wave number is limited to 2�=V1=3
s .

Equation (7) with (8) is the formula for the Fisher matrix
used in the parameter estimation with multipole power
spectra. This can be compared with the standard formula
for the full 2D power spectrum (e.g., [5,7,29]):

Fð2DÞ
ij ¼ Vs

4�2

Z kmax

kmin

dkk2
Z 1

�1
d�

@Pðk; �Þ
@�i

�
Pðk;�Þ þ 1

�n

��2

� @Pðk;�Þ
@�j

(9)

That is, the full 2D information obtained through the
integral over the directional cosine � in Eq. (9) is replaced
with a summation over all multipoles in the new formula
(7). Thus, truncating the summation at a lower multipole
generally leads to the reduction of the amplitude in the
Fisher matrix, and as a result, the statistical errors of the
parameter �i marginalized over other parameters, given by

��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifF�1gii

p
, is expected to become larger.

The Fisher matrix formalism also provides a simple way
to estimate the biases in the best-fit parameters caused by
an incorrect template for the multipole power spectra
Pwrong
‘ ðkÞ. To derive the formula for systematic bias, we

replace the template power spectrum P‘ðkÞ in the like-
lihood function (3) with the incorrect one Pwrong

‘ ðkÞ. We

denote this likelihood function by L0. Assuming that the
size of the biases are basically small, the (biased) best-fit

values can be estimated from the extremum of the
Likelihood function L0 by expanding the expression of
the extremum around the fiducial parameters:

0 ¼ @ lnL0

@�j
’ @ lnL0

@�j

��������fid
þX

i

@ lnL0

@�i@�j

��������fid
��i; (10)

where the quantities with subscript fid stand for the one
evaluated at the fiducial parameters, and the ��i means the
deviation of the best-fit value from the fiducial parameter.
Then, taking the ensemble average of the above expres-
sions and using the definition of the Fisher matrix, we
obtain

��i ¼ �X
j

ðF0Þ�1
ij sj; (11)

where the Fisher matrix F0
ij is the same one as given by

Eq. (7), but is evaluated using incorrect power spectra
Pwrong
‘ ðkÞ. The vector sj is

sj ¼ Vs

4�2

Z kmax

kmin

dkk2
X
‘;‘0

Psys
‘ ðkÞ½gCov‘‘0 ðkÞ��1

@Pwrong
‘0 ðkÞ
@�j

:

(12)

Here, the multipole power spectrum Psys
‘ ðkÞ denotes the

systematic difference between the correct and incorrect
models of the multipole power spectra, P

sys
‘ ðkÞ ¼

Pwrong
‘ ðkÞ � Ptrue

‘ ðkÞ. In deriving the above expression, we

have used the fact that the extremum of the likelihood
function is obtained only when the correct template for
the multipole power spectrum is applied.
Notice that a similar but essentially different formula for

systematic biases is obtained when using the full 2D power
spectrum. It is formally expressed as Eq. (11), but the
Fisher matrix F0

ij is now replaced with Eq. (9) evaluated

using the incorrect 2D spectrum Pwrongðk;�Þ. Further, the
vector sj should be replaced with the one for the full 2D

spectrum (e.g., [33,34]):

sð2DÞj ¼ Vs

4�2

Z kmax

kmin

dkk2
Z 1

�1
d�Psysðk;�Þ

�
�
P
wrong
‘0 ðk;�Þ þ 1

�ng

��2 @Pwrongðk;�Þ
@�j

: (13)

Finally, all the formulae derived in this section ignore
non-Gaussian contributions to the likelihood and covarian-
ces, which would become practically important in some
cases. In particular, the mode-coupling due to the gravita-
tional clustering not only increases the amplitude

Cov‘‘
0 ðkÞ, but also produces a nontrivial correlation be-

tween different Fourier modes, leading to a nonvanishing
off-diagonal component in the covariance matrices, i.e.,

C‘‘0 ðkm; knÞ � 0 for km � kn (e.g., [35]). Obviously, these
two effects degrade the parameter constraints, and the
forecast study based on the Gaussian Fisher matrix would
be certainly optimistic. Interestingly, however, the impact
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of the non-Gaussian errors is shown to be mitigated in the
case of multiparameter estimation due to severe parameter
degeneracies in the power spectrum [36–38]. Thus, in
some cases, the Gaussian Fisher matrix can provide a
good approximation for parameter forecast, and the for-
malism presented here is useful in quantitatively estimat-
ing the size of statistical errors. For more details on the role
of the non-Gaussian contribution especially focusing on
BAOs, see Refs. [21,36,39].

III. MODEL AND ASSUMPTIONS

Given the formulae for Fisher matrix analysis, we now
move to the discussion on the parameter forecast study
using the multipole power spectra, and compare the results
with those obtained from the full 2D spectrum. Before
doing this, in this section, we briefly describe the model
and assumptions for the redshift-space power spectrum
relevant for spectroscopic measurement of BAOs.

In redshift-space, clustering statistics generally suffer
from two competing effects, i.e., enhancement and sup-
pression of clustering amplitude, referred to as the Kaiser
and Finger-of-God effects, respectively. While the Kaiser
effect comes from the coherent motion of matter (or gal-
axies), the Finger-of-God effect is mainly attributed to the
virialized random motion of the mass residing at a halo. In
the weakly nonlinear regime, a tight correlation between
velocity and density fields still remains, and a mixture of
Kaiser and Finger-of-God effects is expected to be signifi-
cant. Thus, a careful treatment is needed for accurately
modeling the anisotropic power spectrum.

Recently, we have presented an improved prescription
for the matter power spectrum in redshift space taking
account of both nonlinear clustering and redshift distor-
tions [34]. Based on the perturbation theory calculation,
the model can give an excellent agreement with the results
of N-body simulations, and a percent-level precision is
almost achieved over the scales of interest for BAOs. The
full 2D power spectrum of this model is very similar to the
one proposed by Ref. [40], but includes corrections:

Pðk;�Þ ¼ e�ðk�f�vÞ2fP��ðkÞ þ 2f�2P��ðkÞ
þ f2�4P��ðkÞ þ Aðk;�; fÞ þ Bðk;�; fÞg (14)

with the quantity f being the growth-rate parameter. Here,
the power spectra P��, P�� and P�� denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence � is
defined by � � �rv=ðaHfÞ. The quantity �v denotes the
one-dimensional velocity dispersion [41], and the expo-
nential prefactor characterizes the damping behavior by the
Finger-of-God effect. For the purpose of modeling the
shape and structure of BAOs in the power spectrum, �v

may be treated as a free parameter, and determined by
fitting the predictions to the observations.

A salient property of the model (14) is the presence of
the terms A and B, which represent the higher-order
couplings between velocity and density fields, usually
neglected in phenomenological models of redshift distor-
tions. The explicit expressions for these terms are derived
based on the standard treatment of perturbation theory, and
the results are presented in Ref. [34]. A detailed investiga-
tion in our previous paper [34] reveals that the corrections
A and B can give an important contribution to the acoustic
structure of BAOs over the scales k� 0:2h Mpc�1, which
gives rise to a slight increase in the amplitude of the
monopole and quadrupole spectra. With the improved
treatment of perturbation theory to compute P��, P�� and
P�� (e.g., [42,43]), the model (14) can give a better pre-
diction than other current models of redshift distortions.
Figure 1 plots the illustrated example showing that the
model (14) reproduces the N-body results of the monopole

FIG. 1 (color online). Monopole (top) and quadrupole (bot-
tom) moments of the matter power spectrum in redshift space at
z ¼ 1. The results are divided by the smooth reference spectrum,

PðSÞ
‘;no-wiggle, and are compared with the N-body results (symbols)

taken from the WMAP5 simulations of Ref. [42]. The reference

spectrum PðSÞ
‘;no-wiggle is calculated from the no-wiggle approxi-

mation of the linear transfer function [54] with the linear theory
of the Kaiser effect taken into account. Solid and dash-dotted
lines represent the results of improved PT calculations based on
the model of redshift distortion (14), but the terms A and B are
ignored in the dash-dotted lines. In both cases, the one-
dimensional velocity dispersion �v was determined by fitting
the predictions to the N-body simulations, using the data below
the wave number indicated by the vertical arrow. The best-fit
values of �v are �v ¼ 395 km s�1 and 285 km s�1, with and
without the A and B terms, respectively.

ATSUSHI TARUYA, SHUN SAITO, AND TAKAHIRO NISHIMICHI PHYSICAL REVIEW D 83, 103527 (2011)

103527-4



and quadrupole spectra quite well, and the precision of the
agreement between prediction and simulation reaches a
percent-level. Hence, in this paper, we adopt the model
(14) as a fiducial model for the matter power spectrum in
redshift space.

Note that the model (14) generically produces nonvan-
ishing higher multipole spectra for ‘ > 4, due to the damp-

ing factor, e�ðk�f�vÞ2 . Furthermore, the corrections A and B
are expanded as a power series of �, which include
the powers up to �6 for the A term, �8 for the B term.
This indicates that the corrections additionally contribute
to the higher multipoles, at least, up to ‘ ¼ 8. In this sense,
the model (14) provides an interesting testing ground to
estimate the extent to which the useful cosmological infor-
mation can be obtained from the lower-multipole spectra.

Then, assuming a linear galaxy bias in real space, �gal ¼
b�mass, the redshift-space power spectrum for galaxies
becomes

Pgalðk;�Þ ¼ e�ðk�f�vÞ2b2fP��ðkÞþ 2��2P��ðkÞ
þ�2�4P��ðkÞþ bAðk;�;�Þþb2Bðk;�;�Þg

(15)

with � ¼ f=b. The linear deterministic bias may be too
simplistic of an assumption, and the effects of nonlinearity
and stochasticity in the galaxy bias might be non-
negligible [44–46]. Our primary concern here is the quali-
tative aspects of parameter estimation using the multipole
spectra, based on a physically plausible model of redshift
distortions. Since the galaxy bias itself does not produce
additional clustering anisotropies, we simply adopt the
linear bias relation for illustrative purposes.

Finally, notice that in addition to the clustering anisot-
ropies caused by the peculiar velocity of galaxies, the
observed galaxy power spectrum defined in comoving
space further exhibits anisotropies induced by the
Alcock-Paczynski effect. This is modeled as

Pobsðk;�Þ ¼ HðzÞ
HfidðzÞ

�
DA;fidðzÞ
DAðzÞ

�
2
Pgalðq; �Þ; (16)

where the quantity Pgalðq; �Þ at the right-hand side repre-

sents the template for the redshift-space power spectrum in
the absence of cosmological distortion, i.e., Eq. (15). The
comoving wave number k and the directional cosine �
measured with the underlying cosmological model are
related to the true ones q and � by the Alcock-Paczynski
effect through (e.g., [8,47,48])

q ¼ k

�	
DA;fid

DA



2 þ

�	
H

Hfid



�

	
DA;fid

DA



2
�
�2

�
1=2

; (17)

� ¼
	
H

Hfid



�

�	
DA;fid

DA



2 þ

�	
H

Hfid



�

	
DA;fid

DA



2
�
�2

��1=2
;

(18)

The quantities DA;fid and Hfid are the fiducial values of the

angular diameter distance and Hubble parameter at a given
redshift slice.

IV. RESULTS

In what follows, for illustrative purposes, we consider a
hypothetical galaxy survey of volume Vs ¼ 4h�3 Gpc3 at
z ¼ 1, and examine how well we can constrain the distance
information and growth-rate parameter, DA, H, and f,
from the low-multipole power spectra. We set the number
density of galaxies, linear bias parameter and velocity
dispersion to �n ¼ 5� 10�4h3 Mpc� 3, b ¼ 2 and �v ¼
395 km s�1. These values are used in the Fisher analysis as
a canonical setup, but we also examine the effect of varying
this parameter set to study the sensitivity of the forecast
results. Note that the depth and the volume of the survey
considered here roughly match those of a stage III-class
survey defined by the Dark Energy Task Force (DETF)
[49].
To compute the Fisher matrix adopting the model of the

redshift-space power spectrum, Eq. (15), we just follow the
procedure in Ref. [34] to calculate the redshift-space power
spectra. That is, we use the improved perturbation theory
(PT) developed by Refs. [42,50] to account for a dominant
contribution of the nonlinear gravity to the power spectra
P��, P�� and P��, and to adopt standard PT for small but
non-negligible corrections of A and B terms. Detailed
comparison with N-body simulations [34,42] showed that
this treatment can work well, and in our fiducial set of
cosmological parameters, the model can give a percent-
level precision at least up to the wave number k �
0:2h Mpc�1 at z ¼ 1.
The number of free parameters in the subsequent Fisher

analysis is five in total, i.e.,DA,H, and f, in addition to the
parameters b and �v. Other cosmological parameters such
as �m or �b are kept fixed. We assume that the cosmo-
logical model dependence of the power spectrum shape is
perfectly known a priori from the precision cosmic micro-
wave background (CMB) measurement by Planck [51].
The influence of the uncertainty in the power spectrum
shape is discussed in Sec. IVC 2 in detail.

A. Two-dimensional errors

As a pedagogical example, let us first examine how the
lower-multipole spectra can constrain the parameters
DA,H, and f. Figure 2 shows the two-dimensional contour
of the 1–� (68% C.L.) errors on ðDA;HÞ (bottom left),
ðDA; fÞ (top left), and ðf;HÞ-planes (bottom right). Here,
the Fisher matrix is computed adopting the model of
redshift-space power spectrum (15) up to kmax ¼
0:2h Mpc�1.
The magenta solid and cyan dashed lines, respectively,

represent the constraints coming from the monopole
(P0) and quadrupole (P2) power spectrum alone. As an-
ticipated, a single multipole by itself cannot provide useful
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information to simultaneously constrain DA, H, and f. In
particular, for the constraints on DA and H, there appear
strong degeneracies, and the error ellipses are highly elon-
gated and inclined. These behaviors are basically deduced
from the Alcock-Paczynski effect, and are consistent with
the facts that the monopole spectrum is rather sensitive to
the combination ðD2

A=HÞ, while the quadrupole spectrum is

sensitive to (DAH) (e.g., [8]). On the other hand, combin-
ing the monopole and quadrupole greatly improves the
constraints (indicated by the blue, outer shaded region)
not only on DA and H, but also on growth-rate parameter
f. This is because the degeneracies between the parameters
DA and H constrained by the monopole differ from that by
the quadrupole, and thus the combination of these two
spectra leads to a substantial reduction of the size of error
ellipses. Further, the growth-rate parameter is proportional
to the strength of redshift distortions, and can be deter-
mined by the quadrupole-to-monopole ratio. Although the
measurement of the galaxy power spectrum alone merely
gives a constraint on � ¼ f=b, provided an accurate CMB
measurement of the power spectrum normalization, we can

separately determine the growth-rate parameter. Note that
the combination of the monopole and hexadecapole spectra
also provides a way to determine the growth-rate parameter
(red shaded region), although the error on f is a bit larger
due to the small amplitude of the hexadecapole spectrum.
For comparison, Fig. 2 also shows the forecast con-

straints obtained from the full 2D power spectrum (green,
inner shaded region). Further, we plot the results of com-
bining the monopole and quadrupole spectra, but neglect-
ing the covariance between ‘ ¼ 0 and ‘ ¼ 2, i.e.,gCov02 ¼ gCov20 ¼ 0 (blue, dotted lines). Clearly, using
the full 2D shape of the redshift-space power spectrum
leads to a tighter constraint, and the area of the two-
dimensional error is reduced by a factor of 1.6–18, com-
pared with the constraints from the monopole and quadru-
pole spectra. These results indicate that the contribution of
the higher multipoles is very important, and the additional
information from the quadrupole and hexadecapole spec-
tra, each of which puts a different direction of parameter
degeneracies, seems to play a dominant role in improving
the constraints. On the other hand, for joint constraints
from the monopole and quadrupole, the role of the covari-

ance gCov02 or gCov20 seems less important, and one may
naively treat the monopole and quadrupole power spectra
as statistically independent quantities. However, these re-
sults are partially due to the properties of the galaxy
samples characterized by several parameters, and may be
altered with different assumptions or survey setup. This
point will be investigated in some detail in the next
subsection.

B. Figure-of-Merit

We here study the dependence of galaxy samples or
survey setup on the forecast results for parameter con-
straints. To do this, it is useful to define the figure-of-merit :

FoM � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det eF�1

q ; (19)

where the matrix eF�1
is the 3� 3 submatrix, whose ele-

ments are taken from the inverse Fisher matrix F� 1
associated with the parameters DA, H, and f. The FoM
quantifies the improvement of the parameter constraints, and
is inversely proportional to the product of one-dimensional
marginalized errors, i.e., FoM / 1=f�ðDAÞ�ðHÞ�ðfÞg.
Figure 3 shows the dependence of the FoM on the

properties of the galaxy samples characterized by the
number density ng (top right), bias parameter b (bottom

left), and one-dimensional velocity dispersion �v (bottom
right). Also, in the top left panel, we show the FoM as a
function of the maximum wave number kmax used in the
parameter estimation study. Note that in plotting the re-
sults, the other parameters are kept fixed to the canonical
values. The upper part of each panel plots the three differ-
ent lines, and shows how the FoM changes depending on

FIG. 2 (color online). Two-dimensional contours of 1-� (68%
C.L.) errors on ðDA;HÞ (bottom left), ðDA; fÞ (top left), and
ðf;HÞ (bottom right), assuming a stage-III-class survey with
Vs ¼ 4h�3Gpc3 at z ¼ 1. In each panel, magenta solid and
cyan dashed lines, respectively, indicate the forecast constraints
coming from the monopole (P0) and quadrupole ðP2Þ spectrum
alone, while the middle and outer shaded regions (indicated by
blue and red online) represent the combined constraints from P0

and P2, and P0 and P4, respectively. The innermost shaded
region (indicated by green online) represents the results coming
from the full 2D spectrum. As a reference, blue dotted contours
show the results combining both P0 and P2, but (incorrectly)
neglecting the covariance between monopole and quadrupole

spectra, i.e., gCov02 ¼ gCov20 ¼ 0.
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the choice or combination of power spectra used in the
analysis: combining monopole (P0) and quadrupole (P2)
spectra (magenta, dash-dotted); combining three multipole
spectra, P0, P2 and P4 (blue, long dashed); using the full
2D spectrum Pðk;�Þ (black, solid). On the other hand, the
lower part of each panel plots the ratio of FoM normalized
by the one for the full 2D spectrum.

In principle, using the full 2D spectrum gives the tightest
constraints onDA, H, and f, but an interesting point here is
that a nearly equivalent FoM to the one for the full 2D
spectrum is obtained even from partial information with the
lower-multipole spectra P0, P2 and P4. This is irrespective
of the choice of the parameters for galaxy samples.

Although the result may rely on the model of redshift
distortions adopted in this paper, recalling the fact that
the nonvanishing multipole spectra higher than ‘ * 6 arise
only from the nonlinear effects through the gravitational
evolution and redshift distortion, the cosmological model
dependence encoded in these higher multipoles is expected
to be very weak, partly due to the low signal-to-noise ratio.
In this sense, the result in Fig. 3 seems reasonable.
Now, we focus on the FoM from the combination of P0

and P2. Figure 3 indicates that except for the case varying
the bias b, the resultant FoM shows a monotonic depen-
dence on the parameters. As a result, the ratio of FoM
shown in the lower part of the panels is nearly constant

FIG. 3 (color online). Figure-of-merit for the parameters DA, H, and f defined by Eq. (19), as functions of kmax (top left), �ngal (top
right), b (bottom left), and �v (bottom right), assuming a hypothetical galaxy survey at z ¼ 1 with volume Vs ¼ 4h�3 Gpc3. In each
panel, solid lines are the results obtained from the full 2D power spectrum, while the dashed and dash-dotted lines represent the FoM
from the combination of the multipole spectra (dash-dotted: P0 & P2, dashed: P0, P0, & P4). The bottom panels show the ratio of FoM
normalized by the one obtained from the full 2D spectrum. Note that except for the parameter along the horizontal axis, the fiducial
values of the model parameters are set to kmax ¼ 0:2h Mpc�1, ng ¼ 5� 10�4h3 Mpc�3, b ¼ 2, and �v ¼ 3:95h�1 Mpc, indicated by

the vertical dotted lines.
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around 0.4–0.6. As for the variation of the bias parameter,
the nonmonotonic dependence of the FoM is basically
explained by the competition between two effects. That
is, for increasing b, while the power spectrum amplitude
increases and signal-to-noise ratio is enhanced, the cluster-
ing anisotropies due to the redshift distortion controlled by
the quantity � are gradually reduced. Hence, for some
values of b, FoM becomes maximum. A noticeable point
is that the ratio of FoM for the monopole and quadrupole
gradually increases as the clustering bias becomes large. At
b� 4, the ratio of FoM reaches at 0.8, indicating most of
the cosmological information contained in the hexadeca-
pole and higher multipoles is lost, and the signal coming
from the monopole and quadrupole spectra becomes
dominant.

The reason for this behavior is presumably due to the

covariance between the multipole spectra, gCov‘‘0 . In the
linear regime, the covariance neglecting the shot-noise
contribution is determined by the galaxy power spectrum
in real space and the parameter � ¼ f=b, and the off-

diagonal component gCov02 ¼ gCov20 is roughly propor-
tional to �. Thus, increasing the clustering bias b while
keeping the growth-rate parameter fixed, the covariancegCov02 becomes smaller, and the monopole and quadrupole
power spectra become statistically independent. To see this
more explicitly, we define

rcov ¼
gCov0;2

½gCov0;0gCov2;2�1=2 : (20)

In Fig. 4, taking account of the shot-noise contribution,
the quantity rcov is plotted against the parameter �. Here,

we used the linear theory to calculate gCov‘‘0 . Figure 4
implies that in our fiducial setup with f ¼ 0:858, rcov
becomes& 0:2 for the bias b ¼ 4. Since the smaller values
of � also suppress the Kaiser effect in the covariancesgCov00 and gCov22, the constraints from the monopole and
quadrupole spectra are relatively improved.
This result suggests that even the partial information

with monopole and quadrupole spectra still provides a
fruitful constraint onDA,H and f, depending on the survey
setup. In this respect, a benefit to use these power spectra
should be further explored. As a next step, we will discuss
the robustness of the parameter constraints against system-
atic biases.

C. Impact of systematic biases

Among various possible systematics that affect the pa-
rameter constraints, the incorrect assumption for the theo-
retical template of power spectra may seriously lead to a
bias in the best-fit parameters. There are several routes to
produce an incorrect theoretical template; incorrect mod-
eling of redshift distortions and/or nonlinear gravitational
evolution, wrong prior information for cosmological pa-
rameters, or improper parametrization for galaxy bias. In
this subsection, we specifically examine the first and sec-
ond cases. We first discuss the incorrect model of redshift
distortion, and quantify the size of the systematic bias in
the best-fit parameter. The effect of using the wrong prior
information will be discussed in the next subsection.

1. Systematic biases from a wrong model
of redshift distortion

Let us first discuss the impact of assuming an incorrect
model of redshift distortions on the parameter estimation.
To be precise, we consider the small discrepancy in the
theoretical template for the redshift-space power spectrum
(15), and estimate the systematic biases from Eq. (11).
Figure 5 shows the systematic biases caused by the incor-
rect model template neglecting the A and B terms. We plot
the results by varying the model parameters, kmax (top left),
ng (top right), b (bottom left), and �v (bottom right),

around the fiducial values. In each panel, the first three
plots from the top show the deviation of the best-fit value
from the fiducial one, �f, �DA, and �H, normalized by
their fiducial values. On the other hand, the lowest panel
shows the figure-of-bias , which represents the statistical
significance of systematic biases relative to the statistical
errors, defined by [52,53]:

FoB �
	X

i;j

��i eF0
ij��j



1=2

: (21)

Note that the matrix eF0
ij is the same inverse of the sub-

matrix eF�1
ij as defined in Eq. (19), but with the Fisher

matrix obtained from the incorrect template. With the

FIG. 4 (color online). Correlation coefficient for the covari-

ance, rcov ¼ gCov0;2=½gCov0;0gCov2;2�1=2, as a function of � �
f=b. The plotted results are obtained based on the linear theory,
in which the coefficient rcov depends on the power spectrum
amplitude relative to the shot-noise contribution, ngP, as well as

�. The solid, long-dashed, short-dashed, and dash-dotted lines,
respectively, indicate the results with ngP ¼ 1, 2, 5, and 10.
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FIG. 5 (color online). Systematic biases for best-fit values of parameters f, DA and H and figure-of-bias as a function of kmax (top
left), ng (top right), b (bottom left), and �v (bottom right). These are the estimates adopting the ‘‘incorrect’’ model of redshift-space

power spectrum, in which we ignore the small correction terms, A and B. In the bottom plot of each panel, thick and thin lines,
respectively, show the FoB in three and two-dimensions, i.e., ðDA;H; fÞ and ðDA;HÞ. The dotted lines indicate the 1-� significance of
the deviation relative to the statistical error. Note that the shift of the best-fit parameters remains unchanged irrespective of the survey
volume Vs, while the FoB given here represents the specific results with the survey volume Vs ¼ 4h�3 Gpc3. The fiducial values of the
model parameters used in the calculation are the same as in Fig. 3 (indicated by vertical dotted lines), except for the parameter along
the horizontal axis.
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above definition, the FoB squared simply reflects the ��2

for the true values of the parameters relative to the biased
estimate of the best-fit values [53]. Thus, in the cases with
three parameters, if the FoB exceeds 1.88 (indicated by the
red, thick dotted lines), the true values of the parameters
would go outside the 1-� (68%C.L.) error ellipsoid of the
biased confidence region. Notice that the shift of best-fit
parameters remains unchanged irrespective of the survey

volume Vs, while the FoB is proportional to V1=2
s .

Figure 5 shows that the biases in the distance informa-
tion, �DA and �H, are basically small and reach 1–2% at
most, but the bias in the growth-rate parameter, �f, is
rather large. Hence, the behaviors of the FoBs indicated
by the thick lines are mostly dominated by the error and
bias in the growth-rate parameter. As a result, for some
ranges of parameters, the expected FoB using the full-
shape information (black solid, labeled as ‘‘full 2D’’) tends
to exceed the critical value, 1.88. This is true even if we
marginalize over f and just focus on the distance informa-
tion DA and H, depicted as thin lines in the lowest panels
(labeled as ‘FoB2D’). Note that in the case of two parame-
ters, the true values of DA and H are ruled out at the 1-�
level if the FoB exceeds 1.52 (red, thin dotted lines).

On the other hand, if we use the information obtained
only from the monopole and quadrupole spectra (magenta,
dash-dotted lines), the systematic biases are significantly
reduced, and the resultant FoBs are well within the critical
values except for unrealistic cases with a large �v or
antibias b & 1. If we are just interested in DA and H
marginalized over f, the FoB becomes substantially
smaller, and would be far below the critical value 1.52,
even for a large galaxy survey with Vs * 4h�3 Gpc3.
Therefore even the partial information from the monopole
and quadrupole spectra is helpful and rather robust against
the systematic biases than the full 2D information.
Although the figure-of-merit for the constraints on DA, H
and f would be degraded, the reduction of FoM is at most a
factor of �0:6, which can be improved to �0:8 for highly
biased objects (see Fig. 3).

Finally, there are several interesting points to be noted.
One is the oscillatory behavior of the systematic biases and
FoB shown in the top left panel. This originates from the
acoustic structure of the power spectrum, and the result
suggests that the bias in the growth-rate parameter �f is
sensitively affected by the BAO measurement. Another
noticeable feature is the suppression of the FoB in the
case of three parameters using the monopole and quadru-
pole spectra, which appears at a larger value of the galaxy
bias b (thick, dash-dotted line in bottom left panel). This is
presumably due to the fact that, as the clustering bias
increases, the systematic bias for the growth-rate parameter
tends to be slightly reduced, while the constraint on the
growth-rate parameter becomes gradually weaker. A simi-
lar trend also appears in the case using the full 2D spec-
trum, but the suppression is rather small and the FoB never

falls below the critical value, 1.88. This is because the
biased estimate of the growth-rate parameter, �f, signifi-
cantly deviates from the fiducial value, as opposed to the
case using monopole and quadrupole spectra.

2. Systematic biases from incorrect prior information

So far, we have assumed that the underlying cosmologi-
cal parameters necessary to compute the redshift-space
power spectrum are known a priori from CMB observa-
tions such as PLANCK. However, even precision CMB
measurements produce some uncertainties in the cosmo-
logical parameters due to parameter degeneracies. This can
give an incorrect theoretical template for the redshift-space
power spectrum, leading to biased estimates of DA, H,
and f.
Figure 6 quantifies the size of systematic biases and FoB

arising from the incorrect assumptions for cosmological
parameters. Here, we especially focus on the parameters

FIG. 6 (color online). Systematic biases for the best-fit values
of the parameters f, DA and H, and FoB for these three
parameters (from top to bottom), adopting the incorrect prior
information for cosmological parameters in computing the tem-
plate power spectrum; X ¼ As, �m, and h (�mh

2: fixed). The
results are plotted against the fractional difference between the
correct and incorrect values of each cosmological parameters,
�X=Xfid. Solid and dashed lines represent the results from a full
2D power spectrum and partial information with monopole and
quadrupole spectra, respectively. Note that in the bottom panel,
the horizontal dotted lines indicate the 1-� significance of the
deviation relative to the statistical error.
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As, �m, and h fixing �mh
2 constant, and plot the sensi-

tivity of the systematic biases to the variation of those
parameters. Note that in computing the power spectrum,
we strictly assume the flat cosmological model and the
model of redshift distortion (15) as the fiducial power
spectrum template.

Compared to the results in Sec. IVC1, the systematic
bias in the growth-rate parameter is relatively small, while
the significance of the biases in the acoustic-scale infor-
mation is increased. That is, the best-fit values of the
parameters DA and H are rather sensitive to the precision
of the prior information in the power spectrum template. A
noticeable point is that this is true irrespective of the choice
of the template power spectra used in the parameter esti-
mation (i.e., full 2D spectrum or combination of P0 and
P2). As a result, a percent-level precision is generally
required for the prior information of cosmological parame-
ters, except for the scalar spectral amplitude, As. Through
the nonlinear clustering and/or redshift distortion, a small
change in As alters the power spectrum shape, and it can
potentially affect the acoustic-scale and the clustering
anisotropies. However, at z ¼ 1, the nonlinear effects on
the scales of our interest, k & 0:2h Mpc�1, is rather mild,
and the resultant impact on the acoustic-scale measure-
ment is extremely small. Hence, for a typical survey vol-
ume of stage-III-class survey with Vs � 4h�3 Gpc3, no
appreciable systematic bias might be produced from the
incorrect prior assumption on As.

V. SUMMARY

In this paper, we have studied the cosmological con-
straints from the anisotropic BAOs based on the multipole
expansion of the redshift-space power spectrum. We have
derived several formulae for the Fisher analysis using the
multipole power spectra; Eqs. (7) and (8) for the Fisher
matrix, and Eqs. (11) and (12) for the estimation of system-
atic biases. We then consider a hypothetical galaxy survey
of Vs ¼ 4h�3 Gpc3 and z ¼ 1, and discuss the potential
power of using the lower-multipole spectra to obtain cos-
mological constraints, particularly focusing on the parame-
ters DA, H and f.

Compared to the analysis with the full 2D power spec-
trum, the partial information from the monopole and quad-
rupole power spectra generally degrades the constraints on
DA, H, and f. Typically, the constraint is degraded by a
factor of �1:3 for each parameter. The interesting finding
is that adding the information from hexadecapole spectra
(P4) to that from the monopole and quadrupole spectra
greatly improves the constraints, and the resultant con-
straints would become almost comparable to those ex-
pected from the full 2D power spectrum (see Fig. 3).
Note also that the situation would be relatively improved
depending on the properties of galaxy samples, and for
highly biased galaxy samples with b� 4, the total power
of the constraints defined by the figure-of-merit [Eq. (19)]

can reach �80% of the one expected from the full 2D
power spectrum.
We have also investigated the impacts of systematic

biases on the best-fit values of DA, H and f. The incorrect
model of redshift distortion tends to produce a large sys-
tematic bias in the growth-rate parameter, and the size of
biases would be rather significant for the analysis with the
full 2D spectrum. An interesting suggestion is that
the situation would be greatly relaxed if we only use the
combination of monopole and quadrupole spectra, and the
estimated value of figure-of-bias defined by Eq. (21) is
mostly below the critical value for stage-III-class surveys
(Fig. 5). In this respect, the analysis with partial informa-
tion from the monopole and quadrupole may still be help-
ful in cross-checking the results derived from the full
2D power spectrum. On the other hand, wrong prior as-
sumption of cosmological parameters in computing the
template power spectrum severely affects the acoustic-
scale determination, and a percent-level precision is re-
quired for the prior information in order to avoid large
systematic biases on DA and H (Fig. 6). This is true
irrespective of the choice of template power spectra used
in the analysis.
Finally, we note that the assumptions and situations

considered in the paper are somewhat optimistic or too
simplistic, and a more careful study is needed for a quan-
titative parameter forecast. One critical aspect is the mod-
eling of the galaxy power spectrum. In reality, the
assumption of linear and deterministic galaxy biasing is
idealistic, and the scale-dependence or nonlinearity/sto-
chasticity of the galaxy biasing should be consistently
incorporated into the theoretical template of the redshift-
space power spectrum. Although this is a tiny effect for the
scale of our interest, the distance information,DA andH, is
rather sensitive to a slight modification of the acoustic
structure in the power spectrum, and results in this paper
might be somehow changed. A more elaborate modeling
for the power spectrum is thus quite essential.
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