1,123 research outputs found

    Conformational effects on the Circular Dichroism of Human Carbonic Anhydrase II: a multilevel computational study

    Get PDF
    Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions

    Design of eco-friendly fabric softeners: structure, rheology and interaction with cellulose nanocrystals

    Get PDF
    Concentrated fabric softeners are water-based formulations containing around 10 - 15 wt. % of double tailed esterquat surfactants primarily synthesized from palm oil. In recent patents, it was shown that a significant part of the surfactant contained in today formulations can be reduced by circa 50 % and replaced by natural guar polymers without detrimental effects on the deposition and softening performances. We presently study the structure and rheology of these softener formulations and identify the mechanisms at the origin of these effects. The polymer additives used are guar gum polysaccharides, one cationic and one modified through addition of hydroxypropyl groups. Formulations with and without guar polymers are investigated using optical and cryo-transmission electron microscopy, small-angle light and Xray scattering and finally rheology. Similar techniques are applied to study the phase behavior of softener and cellulose nanocrystals considered here as a model for cotton. The esterquat surfactants are shown to assemble into micron-sized vesicles in the dilute and concentrated regimes. In the former, guar addition in small amounts does not impair the vesicular structure and stability. In the concentrated regime, cationic guars induce a local crowding associated to depletion interactions and leads to the formation of a local lamellar order. In rheology, adjusting the polymer concentration at one tenth that of the surfactant is sufficient to offset the decrease of the elastic property associated with the surfactant reduction. In conclusion, we have shown that through an appropriate choice of natural additives it is possible to lower the concentration of surfactants in fabric conditioners by about half, a result that could represent a significant breakthrough in current home care formulations.Comment: 10 pages 8 figure

    Magnetic moments of the SU(3) decuplet baryons in the chiral quark-soliton model

    Get PDF
    Magnetic moments of baryons are studied within the chiral quark soliton model with special emphasis on the decuplet of baryons. The model is used to identify all symmetry breaking terms proportional to msm_{\rm s}. Sum rules for the magnetic moments are derived. A ``model-independent'' analysis of the symmetry breaking terms is performed and finally model calculations are presented, which show the importance of the rotational 1/Nc1/N_{\rm c} corrections for cranking of the soliton.Comment: 22 pages, RevTex. The final version accepted for publication in Phys. Rev.

    Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is GMs(0)=−0.36±0.20G_M^s(0) = - 0.36 \pm 0.20 . The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of −0.097±0.037μN - 0.097 \pm 0.037 \mu_N to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of −0.68±0.04 -0.68 \pm 0.04 which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius E_E is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.Comment: 10 pages, 5 figures, LaTex, UK/97-23, ADP-97-55/T28

    Polynomiality of unpolarized off-forward distribution functions and the D-term in the chiral quark-soliton model

    Get PDF
    Mellin moments of off-forward distribution functions are even polynomials of the skewedness parameter. This constraint, called polynomiality property, follows from Lorentz- and time-reversal invariance. We prove that the unpolarized off-forward distribution functions in the chiral quark-soliton model satisfy the polynomiality property. The proof is an important contribution to the demonstration that the description of off-forward distribution functions in the model is consistent. As a byproduct of the proof we derive explicit model expressions for moments of the D-term and compute the first coefficient in the Gegenbauer expansion for this term.Comment: 18 pages, no figures. Corrections and improvements in section 6. To appear in Phys.Rev.

    Electromagnetic Form Factors of the SU(3) Octet Baryons in the semibosonized SU(3) Nambu-Jona-Lasinio Model

    Get PDF
    The electromagnetic form factors of the SU(3) octet baryons are investigated in the semibosonized SU(3) Nambu--Jona-Lasinio model (chiral quark-soliton model). The rotational 1/Nc1/N_c and strange quark mass corrections in linear order are taken into account. The electromagnetic charge radii of the nucleon and magnetic moments are also evaluated. It turns out that the model is in a remarkable good agreement with the experimental data.Comment: RevTex is used. 37 pages. The final version to appear in Phys. Rev. D. 13 figures are include

    Baryon Tri-local Interpolating Fields

    Full text link
    We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ

    Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: The energy spectrum of cosmic rays

    Full text link
    The energy spectrum of cosmic rays in the range 10^15 eV to 6*10^19 eV has been studied using the air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as the energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in accordance with previous measurements, a knee and ankle features at energies 3*10^15 and ~10^19 eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays which describe better the energy spectrum measured.Comment: 27 pages, 22 figures, accepted for publication in New Journal of Physics (Focus Issue

    Chiral symmetry breaking in hot matter

    Full text link
    This series of three lectures covers (a) a basic introduction to symmetry breaking in general and chiral symmetry breaking in QCD, (b) an overview of the present status of lattice data and the knowlegde that we have at finite temperature from chiral perturbation theory. (c) Results obtained from the Nambu--Jona-Lasinio model describing static mesonic properties are discussed as well as the bulk thermodynamic quantities. Divergences that are observed in the elastic quark-antiquark scattering cross-section, reminiscent of the phenomenon of critical opalescence in light scattering, is also discussed. (d) Finally, we deal with the realm of systems out of equilibrium, and examine the effects of a medium dependent condensate in a system of interacting quarks.Comment: 62 LaTex pages, incorporating 23 figures. Lectures given at the eleventh Chris-Engelbrecht Summer School in Theoretical Physics, 4-13 February, 1998, to be published by Springer Verla
    • …
    corecore