2,989 research outputs found

    Aircraft requirements for low/medium density markets

    Get PDF
    A study was conducted to determine the demand for and the economic factors involved in air transportation in a low and medium density market. The subjects investigated are as follows: (1) industry and market structure, (2) aircraft analysis, (3) economic analysis, (4) field surveys, and (5) computer network analysis. Graphs are included to show the economic requirements and the aircraft performance characteristics

    Realization of an Inductance Scale Traceable to the Quantum Hall Effect Using an Automated Synchronous Sampling System

    Full text link
    In this paper, the realization of an inductance scale from 1~μ\muH to 10~H for frequencies ranging between 50~Hz to 20~kHz is presented. The scale is realized directly from a series of resistance standards using a fully automated synchronous sampling system. A careful systematic characterization of the system shows that the lowest uncertainties, around 12~μ\muH/H, are obtained for inductances in the range from 10~mH to 100~mH at frequencies in the kHz range. This new measurement system which was successfully evaluated during an international comparison, provides a primary realization of the henry, directly traceable to the quantum Hall effect. An additional key feature of this system is its versatility. In addition to resistance-inductance (R-L) comparison, any kind of impedances can be compared: R-R, R-C, L-L or C-C, giving this sampling system a great potential of use in many laboratories around the world

    Carbon-enhanced stars with short orbital and spin periods

    Get PDF
    Many characteristics of dwarf carbon stars are broadly consistent with a binary origin, including mass transfer from an evolved companion. While the population overall appears to have old-disc or halo kinematics, roughly 2 per cent of these stars exhibit Hα emission, which in low-mass main-sequence stars is generally associated with rotation and relative youth. Its presence in an older population therefore suggests either irradiation or spin-up. This study presents time-series analyses of photometric and radial-velocity data for seven dwarf carbon stars with Hα emission. All are shown to have photometric periods in the range 0.2–5.2 d, and orbital periods of similar length, consistent with tidal synchronisation. It is hypothesised that dwarf carbon stars with emission lines are the result of close-binary evolution, indicating that low-mass, metal-weak or metal-poor stars can accrete substantial material prior to entering a common-envelope phase

    The Neron-Severi group of a proper seminormal complex variety

    Full text link
    We prove a Lefschetz (1,1)-Theorem for proper seminormal varieties over the complex numbers. The proof is a non-trivial geometric argument applied to the isogeny class of the Lefschetz 1-motive associated to the mixed Hodge structure on H^2.Comment: 16 pages; Mathematische Zeitschrift (2008

    Quantum line bundles on noncommutative sphere

    Full text link
    Noncommutative (NC) sphere is introduced as a quotient of the enveloping algebra of the Lie algebra su(2). Using the Cayley-Hamilton identities we introduce projective modules which are analogues of line bundles on the usual sphere (we call them quantum line bundles) and define a multiplicative structure in their family. Also, we compute a pairing between certain quantum line bundles and finite dimensional representations of the NC sphere in the spirit of the NC index theorem. A new approach to constructing the differential calculus on a NC sphere is suggested. The approach makes use of the projective modules in question and gives rise to a NC de Rham complex being a deformation of the classical one.Comment: LaTeX file, 15 pp, no figures. Some clarifying remarks are added at the beginning of section 2 and into section

    Nonlinear multi-state tunneling dynamics in a spinor Bose-Einstein condensate

    Full text link
    We present an experimental realization of dynamic self-trapping and non-exponential tunneling in a multi-state system consisting of ultracold sodium spinor gases confined in moving optical lattices. Taking advantage of the fact that the tunneling process in the sodium spinor system is resolvable over a broader dynamic energy scale than previously observed in rubidium scalar gases, we demonstrate that the tunneling dynamics in the multi-state system strongly depends on an interaction induced nonlinearity and is influenced by the spin degree of freedom under certain conditions. We develop a rigorous multi-state tunneling model to describe the observed dynamics. Combined with our recent observation of spatially-manipulated spin dynamics, these results open up prospects for alternative multi-state ramps and state transfer protocols

    Management of bleeding and procedures in patients on antiplatelet therapy

    Get PDF
    Antiplatelet medications have long been the mainstay for secondary prevention in cardiovascular disorders. More recently, with the advent of coronary stents, there has been an increased use of more potent antiplatelet agents to prevent stent occlusion. Since these drugs are antithrombotic, it is not unusual for them to be associated with serious bleeding, particularly intracranial and gastrointestinal haemorrhage. There are no robust guidelines on how to manage these clinical situations, although there have been some important studies published recently in this area. Similarly, there is very limited evidence on how to manage urgent surgery in patients receiving these medications. In this review, we provide updated guidance on the management of bleeding and surgery on antiplatelet drugs while stressing the need for further studies to provide evidence-based guidelines

    Epitaxial growth of Cu on Cu(001): experiments and simulations

    Full text link
    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semi-empirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well.Comment: Latex document. 7 pages. 3 embedded figures in separate PS files. One bbl fil
    corecore