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Abstract. Akka is a widely-used high-performance and distributed com-
puting toolkit for fine-grained concurrency, written in Scala for the Java
Virtual Machine. Although Akka elegantly simplifies the process of build-
ing complex parallel software, many crucial decisions that affect system
performance are deferred to the user. Employing the method of Deep Pa-
rameter Tuning to extract embedded ‘magic numbers’ from source code,
we use the CMA-ES evolutionary computation algorithm to optimise
the concurrent implementation of three widely-used divide-and-conquer
algorithms within the Akka toolkit: Quicksort, Strassen’s matrix multi-
plication, and the Fast Fourier Transform.
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1 Introduction

Support for concurrency is an important requirement when developing software
for modern multicore systems, but the cognitive and development-time overheads
of creating and manually-configuring concurrent and parallel systems are high
[7]. In mediation of this difficulty, frameworks offering powerful concurrency
support are now routinely used. Akka is the de facto standard for concurrency
in Java and Scala; the strengths of Akka’s concurrency model include:

– Immutability: the absence of mutable data eliminates many race conditions.
– Lightweight: many hundreds of processes can share a thread.
– Fault Tolerance: via the ‘let it crash’ philosophy popularised by Erlang [4].

In this paper, we define a generic template for divide and conquer algo-
rithms in Akka and use it to express concurrent versions of three well-known
and ubiquitous algorithms: the Fast Fourier Transform (FFT) [8], quicksort [14],
and Strassen’s matrix multiplication [21] . We then apply the method of Deep
Parameter Tuning (DPT) [26] to optimise these algorithms for execution time.



2 Algorithms

Here we provide brief descriptions of the algorithms under optimisation, all of
which are widely used and applicable to a large range of different problem areas.

2.1 Fast Fourier Transform

The FFT is an algorithm for computing the Discrete Fourier Transform (DFT)
or its inverse of a sequence of complex numbers. The FFT is ubiquitous in signal
and image processing and analysis, in order to refocus images, remove pattern
noise, recover unclear images, pattern recurrence etc [19]. The näıve approach
uses a series of multiplications and additions of sinusoidal waves, resulting in
O(n2) complexity. In contrast, the FFT achieves O(n log n) complexity by de-
composing the DFT into even and odd components, calculating their transforms
and then fusing them back together. This asymptotic complexity is also benefi-
cial in polynomial arithmetic where it is often preferred over the Karatsuba [15]
or näıve) algorithms of O(nlog 3) and O(n2) complexities respectively. There are
different variants of the FFT, but all utilise the same properties of the DFT —
periodicity and complex conjugate symmetry. The version implemented here is
due to Cooley and Tukey [9].

2.2 Quicksort

Quicksort is a divide and conquer sorting algorithm [14], and is popular due to
its average case time complexity of O(n log(n)). A heuristically-selected element
is chosen as a pivot point, and the sequence is partitioned such that all of the
elements in one subsequence are ‘less than’ the value of the element in the
pivot position, and all the elements in the other subsequence are ‘greater than’
it. The sorting process is then recursively applied to the subsequences. The
sequential performance of the algorithm is in practice heavily-dependent on the
choice of pivot point, but due to its recursive nature, it is naturally suited to
parallelisation. Previous work optimising quicksort for energy consumption used
Genetic Programming to obtain an improved pivot function [23].

2.3 Strassen’s Matrix Multiplication

Strassen’s algorithm [21] is a divide and conquer approach that reduces the
complexity of matrix multiplication from O(n3) to O(n2.8074). Asymptotically
faster algorithms exist, but are rarely used since their high constant factor makes
them impractical. The gain in Strassen’s algorithm is achieved by reducing the
number of recursive calls. Although this comes at a greater storage cost, the
trade-off is often preferable.



3 Implementation

We now describe the implementation details of our chosen algorithms within the
Akka toolkit, give a little background on the Akka Dispatcher, and describe the
optimisation framework that performs Deep Parameter Tuning (DPT).

3.1 Akka Message Dispatcher

Our algorithm implementations rely upon concurrency support from Akka. One
of the essential building blocks of Akka concurrency is the Future, a widely-used
notion in functional programming that acts as a kind of ‘container’3 for holding
the eventual result of some concurrent operation. For example, an object of type
Future[Double] will eventually yield a Double value. Our implementations use
Futures to queue units of work as the problem is recursively subdivided.

Whilst the implementations themselves determine the division of the prob-
lem into subproblems represented as Futures, the details of how their concur-
rent execution is managed are deferred to Akka. The specific choice of con-
currency policy to be used by Akka is encapsulated by an ExecutionContext.
The ExecutionContext dispatcher manages the dispatch of threads used to exe-
cute Futures. We use the default dispatcher, known as the “fork-join-executor”,
which gives “excellent performance in most cases.”4 The fork-join executor has
two integer parameters that are discovered by our Deep Parameter Tuning mech-
anism and exposed to the optimisation process:

1. Parallelism Factor — the number of threads to use relative to the number
of physical cores on the machine.

2. Throughput — the fairness of resource sharing between threads.

3.2 Benchmark Implementation

Listing 1 shows our implementation of a DivideAndConquer template (c.f. [25]),
which defines concurrent, an algorithm template that invokes the abstract
methods shouldDivide, sequential, divide, and merge. These methods are
subsequently defined in subclasses corresponding to each of our examples: FFT,
Quicksort, and Strassen. The implementation of concurrent uses the Akka
toolkit to represent an ‘inversion of control’ of the well-known recursion pattern
of divide and conquer, with the divided arguments evaluated concurrently via a
Future.

The results obtained via the completed Futures are then merged accord-
ing to the subclass method implementation. Listing 2 gives the corresponding
subclass implementation for Quicksort: a hard-coded Threshold parameter de-
termines the point below which the sequential algorithm should be used — the
implementations of Strassen and FFT also make equivalent use of a Threshold

3 Strictly, a monad.
4 http://doc.akka.io/docs/akka/current/scala/dispatchers.html



trait DivideAndConquer[Args,Result] {

// Implemented by subclasses:

def shouldDivide(args: Args): Boolean

def sequential(args: Args): Result

def divide(args: Args): Seq[Args]

def merge(results: Seq[Future[Result]])

(implicit ec: ExecutionContext): Future[Result]

//////////////////////

final def concurrent(args: Args): Future[Result] = {

if( !shouldDivide(args) )

Future.successful(sequential(args))

else {

val futures = divide(args).map { Future( concurrent(_) ) }

Future.sequence(futures).flatMap { merge(_) }

}

}

}

Listing 1: Generic concurrent divide and conquer for Akka



parameter. The implementations of divide and merge can be seen to have a di-
rect correspondence with the implementation of sequential. Listing 3 gives the
unit test for Quicksort, which asserts that both the sequential and concurrent
implementations correctly sort randomly-generated test data.

Our implementation of Strassen’s algorithm utilises an additional tunable
Leaf parameter, which determines whether the matrices should be recursively
split further (down to a size of 1x1), or näıvely multiplied. As with the Threshold
parameter, this decision is independent from Akka.

3.3 DPT Implementation

Deep Parameter Tuning [26] is a heuristic optimisation method that parses
source code in order to identify performance-critical parameters that are not
exposed via any external interface. The goal is to find ‘magic numbers’ or other
variables that do not modify the semantics of the program, but are critical factors
in determining non-functional properties. Here we implement such an approach
in order to optimise the execution time of our algorithm implementations, by
tuning parameters specific to the algorithms themselves along with those used
by the Akka dispatcher to manage concurrent execution.

We implement a Deep Parameter Tuner (DPT) in Scala. Its top-level oper-
ation is as follows:

1. Parse the Scala source code of the application to be optimised: FFT.scala,
Quicksort.scala, and Strassen.scala. Construct an abstract syntax tree.

2. Extract all embedded ‘magic numbers’, in this case, restricted to integer
literals, by operating on the abstract syntax tree [22].

3. Perform a heuristic search over a parameter vector obtained from the ex-
tracted literals.

It should be emphasised that the DPT tool is agnostic about the nature of
the program it is optimising.

The search mechanism used for parameter optimisation is CMA-ES [11], a
well-known evolutionary search mechanism that guides the search process via
an adaptive approximation to the second derivative of the fitness function. The
fitness function supplied to CMA-ES performs wall-clock timing of a modified
version of the original source code, in which the magic numbers in the source
are replaced by the corresponding values of a candidate solution, with vector
elements rounded to the nearest integer. The modified source code is then com-
piled by the Scala compiler and executed via the appropriate test harness (e.g.
as per Listing 3 for Quicksort), which helps ensure correctness of the modified
code. The evaluation of the fitness function is repeated 10 times, and the median
value taken, in order to reduce the impact of nondeterminism on the optimisation
process.

To summarise, for a candidate solution vector v̄ consisting of the proposed
literals, the associated fitness function f(v̄) to be minimised is given by:

f(v̄) =

{

∞, if the test case fails

otherwise, the median time in seconds to run the test case



class Quicksort

extends DivideAndConquer[List[Int],List[Int]] {

val Threshold = 100

val Throughput = 10

val ParallelismFactor = 3

val threadDispatcher =

configureAkka(Throughput,ParallelismFactor)

//////////////////////

override def shouldDivide(data: List[Int]): Boolean =

data.length > Threshold

// well-known recursive implementation:

override def sequential(data: List[Int]): List[Int] = {

if( data.isEmpty ) {

data

} else {

val pivot = data.head

val (left, right) = data.tail partition (_ < pivot)

sequential(left) ++ (pivot :: sequential(right))

}

}

override def divide(data: List[Int]): Seq[List[Int]] = {

val pivot = data.head

val (left,right) = data.tail partition(_ < pivot)

Seq( left, List(pivot), right )

}

override def merge(data: Seq[Future[List[Int]]]):

Future[List[Int]] = {

Future.sequence( data ).map { l =>

l.head ++ l.tail.head ++ l.tail.tail.head

}

}

}

Listing 2: Quicksort via concurrent Divide and Conquer framework



class TestQuicksort {

@Test

def test: Unit = {

implicit val executionContext: ExecutionContext =

ActorSystem().dispatcher

val ArraySize = 1600000

val testData = List.fill(ArraySize)(randomInt)

val result1 = Quicksort.sequential(testData)

val result2 = Quicksort.concurrent(testData)

assertTrue(isSorted(result1))

assertTrue(isPermutation(testData,result1))

assertEquals(result1, result2)

}

}

Listing 3: Unit Test for Quicksort

4 Empirical Evaluation

We evaluated DPT on our three algorithm implementations, to assess the efficacy
of DPT in reducing execution time. We compared the optimised results to a set
of default parameters, and also compared DPT with a random search strategy
to confirm that the evolutionary search is exploiting information in the search
space. For each algorithm, we ran DPT and Random Search 10 times each. All
experiments were run on the same machine, which was a Windows 10 machine
using a i7-2670QM processor with four physical cores at 2.20GHz and 8GB RAM.
Due to ten repetitions per fitness evaluation, and the repeated runs for statistical
testing, the main experiments took several days to complete.

4.1 Tuned Parameters

We evaluated DPT on our three algorithms, with the goal of reducing execution
time by modifying performance-critical parameters in the source code, namely:

1. The size Threshold at which the algorithms terminates recursion and uses a
sequential method instead.

2. The Leaf setting, a parameter specific to the Strassen example, which simi-
larly controls recursive behaviour.

3. Akka’s Parallelism Factor, the number of threads to use relative to the num-
ber of physical cores on the machine.



4. Akka’s Throughput setting, which controls the fairness of resource sharing
between threads.

These parameters were automatically extracted from the source code by our
DPT tool. In general, there is no guarantee that such parameters will not af-
fect the semantics of a program, a problem that can be mitigated by empirical
evaluation using unit tests, and by manual inspection of the results. We imple-
mented suitable unit tests and, once satisfied that the parameters did not impact
the semantics of the code, we omitted the execution of those tests during the
optimisation process to improve efficiency. Post-optimisation, we validated the
results against unseen data, and our confidence is further increased through out
knowledge of Akka and the system itself.

We selected a set of default parameter settings, to act as a starting point for
the CMA-ES search, and also as a baseline for comparison with the optimised
settings. These default parameter settings were chosen based partly on Akka
documentation, but also through human judgement: the effectiveness of any
settings are dependent on both the program implementation and host machine.
The defaults are given in Table 1.

Algorithm Input Size Threshold Leaf Parallelism Factor Throughput

FFT 524288 100 N/A 3 100

Quicksort 1000000 100 N/A 3 100

Strassen 800 200 10 3 99

Table 1: Default Parameter Settings for each Algorithm

4.2 Test Data

Each algorithm accepts a numerical vector as input. The size of this vector was
selected for each algorithm to ensure its execution time ran for less than 10
seconds using our test machine when using the default parameter settings. The
FFT algorithm implementation requires an input size that is a power of two.
The input sizes for each algorithm are given in Table 1.

4.3 Sample Size

The inherent nondeterminism of concurrent execution creates a noisy fitness
function, which can be exacerbated by the exploration of parameter settings that,
for example, reduce the fairness of scheduling threads. After some exploratory
data analysis, we chose 10 repetitions to form the basis of our fitness evaluation;



we use the median of 10 measurements when evaluating the execution time
of a given candidate solution. This is an imperfect measure, as it still means
that a solution may be regarded by the search as superior only due to variance
in execution time measurement. We evaluate the outputs of the optimisation
separately when comparing against the baseline parameter settings.

4.4 CMA-ES Configuration

The CMA-ES implementation used was from Apache Commons Math [12], using
its default parameter settings5, with an initial sigma one order of magnitude
greater than the default parameters. We execute the search for 100 steps, each
consisting of the 10 executions of the program with a candidate solution of
parameter settings. We take the final output of the search, in the form of the
best parameters found for each benchmark.

4.5 Results

CMA-ES vs Default Parameters We executed ten runs of the CMA-ES
search for each algorithm. Given the noise inherent in measuring concurrency
performance, we wish avoid reporting the behaviour of a possible outlier. As a
conservative measure of success, we therefore select the optimised parameters
produced by the sixth best result, i.e. an approximation of the median, and
compared the resulting performance to the default parameter settings for that
algorithm. The parameter settings from that result are provided in Table 2. We
took 30 measurements of execution time and report the median in Table 3. We
then compared the two sets of measurements for a significant difference using
a Mann-Whitney U-Test, and calculated the Vargha-Delaney Â12 measure to
quantify effect size. The timing information gathered using the default parame-
ters was tested for normality using the Shapiro-Wilk test, and the test statistic
was found to be less than the critical value for the Strassen and Quicksort bench-
marks, meaning that we cannot assume a normal distribution of timing values.
The Shapiro-Wilk test was chosen as the number of samples is sufficiently small
to avoid biases. The Mann-Whitney U test was chosen as we cannot be sure
as to the distribution of timing values and as such a parametric test would be
inappropriate. Similarly, the Vargha-Delaney measure of effect size was chosen
as it too is distribution-agnostic while also being able to handle inputs in the
form of real numbers, as opposed to integers.

CMA-ES clearly made a very significant improvement to execution time, even
when we only consider a representative, rather than best, result. The improve-
ments in execution time are all significant at the p < 0.0167 level (a 0.05 p value
Bonferroni-corrected to reflect our three separate benchmarks), and also have
the strongest possible effect size. Examining the median execution times, we see
an order of magnitude improvement for Strassen, and the execution time for
FFT is more than halved.
5 https://commons.apache.org/proper/commons-math/javadocs/api-
3.6.1/index.html



Algorithm Threshold Leaf Parallelism Factor Throughput

Default FFT 100 N/A 3 100

Quicksort 100 N/A 3 100

Strassen 200 10 3 99

CMA-ES FFT 1325 N/A 86 735

Quicksort 2078 N/A 43 277

Strassen 217 187 48 730

Table 2: Default Parameters compared to Optimised Parameter Settings from sixth
best result found by CMA-ES

Algorithm Default (s) Optimised (s) P Value Â12

FFT 9.16 3.67 2.87e−11 0.0

Quicksort 3.43 1.93 2.87e−11 0.0

Strassen 3.75 0.47 2.87e−11 0.0

Table 3: Median execution time (ET) over 30 runs for default parameter settings and
a representative solution found by CMA-ES. Figures to 2 d.p.



CMA-ES vs Random Search In order to demonstrate that CMA-ES pro-
duced these results through the exploitation of information within the search
space, we implemented a simple random search algorithm as a baseline, and
compared the distribution of optimised execution times against that found by
CMA-ES over the ten runs. A summary of the results for each benchmark are
given in Table 4, and boxplots are given in Figure 1.

Whilst random search was able to make some improvements to execution
time, they appear small in comparison to the performance of CMA-ES. We per-
formed a Mann-Whitney U test and calculated the Vargha-Delaney Â12 statistic
for the comparison on each benchmark. While the timings resulting from the ran-
dom search optimisation technique are normally distributed, given that we only
have ten samples, we felt that a nonparametric test was safer, and continuing to
use the Mann-Whitney U test maintained consistency with our previous experi-
ments. The results are given in Table 5. All tests are significant at the p < 0.05
level, and the effect is as strong as possible for FFT and Strassen, whilst still
strong for Quicksort. This supports our alternative hypothesis, that is CMA-ES
outperforms random search; there exists information in the parameter space that
CMA-ES can exploit to tune concurrent performance.

Algorithm Min (s) Max (s) Median (s)

CMA-ES FFT 3.54 3.97 3.84

Quicksort 1.79 2.19 1.91

Strassen 0.44 0.53 0.48

Random Search FFT 8.85 8.96 8.92

Quicksort 3.08 3.57 3.29

Strassen 3.70 3.75 3.74

Table 4: Optimised execution time statistics from CMA-ES and Random Search. Fig-
ures to 2 d.p.

4.6 Threats to Validity

As observed above, wall-clock measurements of concurrent systems are inher-
ently noisy. We have attempted to mitigate against this by using the largest
input sizes that still allow learning to take place within a reasonable amount
of time, and by taking the median of 10 execution time measurements as our
fitness function. The underlying idea is that with larger input sizes, asymp-
totic behaviour will dominate over ‘constant-of-proportionality’ effects such as
startup-transients caused by Just-In-Time compilation. In addition, we only time
the method call to the benchmark itself, excluding JVM startup overhead.



●
●

FFT CMA−ES FFT RS Quicksort CMA−ES Quicksort RS Strassen CMA−ES Strassen RS

2
4

6
8

Benchmark and Algorithm

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Fig. 1: Execution Times found by CMA-ES and Random Search (RS)

Benchmark p-value Â12

FFT 2.80e−6 0.0

Quicksort 0.0095 0.223

Strassen 1.57e−4 0.0

Table 5: Results for Mann-Whitney U Test and Vargha-Delaney Effect Size comparison
between CMA-ES and Random Search. Figures to 2 d.p.



5 Related Work

Beginning with early work on compiler optimisation [3], there is an extensive
body of work applying semantics-preserving transformations to improve the non-
functional properties (NFPs) of software. Recent work in this area includes Koc-
sis et al. [16], which yield a 10,000-fold speedup of database queries on terabyte
datasets within the Apache Spark analytics framework by eliminating redun-
dant database joins and other transformations. Kocsis et al. also automatically
repaired 451 systematic errors in the implementation of the Apache Hadoop HPC
framework [17], whilst simultaneously significantly improving performance.

In addition to the work improving Quicksort for energy efficiency mentioned
in Section 2, Burles et al. [6], also obtained a 24% improvement in energy con-
sumption by optimising a single widely-used class, ImmutableMultimap, in
Google’s Guava collection library. They used a Genetic Algorithm and con-
strained the search space via the behavioural contracts of Object-Orientation.
Recent work that explicitly addresses parallelism includes refactoring Haskell
programs via rewrite rules [5].

Within the last decade there has been increasing interest in the use of stochas-
tic search techniques to optimise NFPs [24], often described as “Genetic Im-
provement”, relying on Genetic Programming as an optimisation method. Early
work on execution time optimisation using search focused on obtaining patches
to source code [13, 1]. More recently, Baudry and Yeboah-Antwi produced EC-
SELR, a framework for in-situ runtime optimisation and slimming of software
systems, which can optimize and trade-off functional and non-functional proper-
ties [27]. Goa et al. used a Genetic Algorithm to optimise webservice composition,
with a focus on quality of service [10]. Calderón Trilla et al. also combined search
with static analysis [7] to find worthwhile parallelism, i.e. semantics-preserving
transformations that produce parallelism of meaningful granularity.

In contrast to the optimization of pre-existing software, Agapitos and Lu-
cas used Genetic Algorithms to evolve sorting functions whose time complexity
was measured experimentally [2]. Vasicek and Mrazek used Cartesian Genetic
Programming to trade the solution quality of median-finding algorithms against
NFPs such as power efficiency and execution time within embedded systems [18].

6 Conclusion

We applied the method of deep parameter tuning to extract and optimise literal
values from the source code of concurrent versions of three well-known algo-
rithms: FFT, quicksort, and Strassen’s matrix multiplication, which make use of
the Akka concurrency toolkit. We find that a DPT system based on the CMA-ES
evolutionary algorithm achieves significant acceleration of all benchmarks, halv-
ing the execution time of FFT and producing an order of magnitude speed-up
of Strassen’s algorithm.

One of the major challenges in this work was the noisy execution time due to
the inherent nondeterminism of the concurrent algorithms. Whilst CMA-ES did



produce good results, exploratory measurements suggest that finding a gradient
in the search space is quite difficult. Algorithms more suited to noisy fitness
functions may find further improvements.

The execution time of the benchmarks varied according to the architecture
of the host machine: thus for best results it is likely that a certain amount of re-
tuning would be required for a given machine. Recently, Sohn et al. [20] demon-
strated the feasibility of amortised optimisation, that is searching the parameter
space at runtime. Applying amortised optimisation to recursive concurrent soft-
ware may serve as the next challenge for developing this technique.
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