116 research outputs found
Recommended from our members
The Response of Gastric pH and Motility to Fasting and Feeding in Free Swimming Blacktip Reef Sharks, Carcharhinus melanopterus
In many fish and reptiles, gastric digestion is responsible for the complete breakdown of prey items into semi-liquid chyme. The responses of the stomach to feeding and to periods of fasting are, however, unknown for many lower vertebrates. We inserted data loggers into the stomachs of free-swimming captive adult blacktip reef sharks (Carcharhinus melanopterus) to quantify gastric pH, motility and temperature during fasting and following ingestion of food. Gastric acid secretion was continuous, even during long periods of fasting, with a mean pH of 1.66 ± 0.40 (± 1 SD) when the stomach was empty. Stomach contractions were greater following meals of mackerel than for those of squid. Gastric motility following feeding on mackerel, was positively influenced by ambient temperature, and followed a quadratic relationship with meal size, with maximum motility occurring after meals of 0.8–1.0% body weight. Diel changes in gastric motility were apparent, and were most likely caused by diel changes in ambient temperature. Gastric digestion in blacktip reef sharks is affected by both biotic and abiotic variables. We hypothesize that behavioral strategies adopted by sharks in the field may be an attempt to optimize digestion by selecting for appropriate environmental conditions
Inflationary Baryogenesis
In this letter we explore the possibility of creating the baryon asymmetry of
the universe during inflation and reheating due to the decay of a field
associated with the inflaton. CP violation is attained by assuming that this
field is complex with a phase that varies as the inflaton evolves. We consider
chaotic and natural inflation scenarios. In the former case, the complex
decaying field is the inflaton itself and, in the latter case, the phase of the
complex field is the inflaton. We calculate the asymmetry produced using the
Bogolyubov formalism that relates annihilation and creation operators at late
time to the annihilation and creation operators at early time.Comment: 17 pages, Revte
Recommended from our members
Spatial Connectivity and Drivers of Shark Habitat Use Within a Large Marine Protected Area in the Caribbean, The Bahamas Shark Sanctuary
Marine protected areas (MPAs) have emerged as potentially important conservation tools for the conservation of biodiversity and mitigation of climate impacts. Among MPAs, a large percentage has been created with the implicit goal of protecting shark populations, including 17 shark sanctuaries which fully protect sharks throughout their jurisdiction. The Commonwealth of the Bahamas represents a long-term MPA for sharks, following the banning of commercial longlining in 1993 and subsequent designation as a shark sanctuary in 2011. Little is known, however, about the longterm behavior and space use of sharks within this protected area, particularly among reef-associated sharks for which the sanctuary presumably offers the most benefit. We used acoustic telemetry to advance our understanding of the ecology of such sharks, namely Caribbean reef sharks (Carcharhinus perezi) and tiger sharks (Galeocerdo cuvier), over two discrete islands (New Providence and Great Exuma) varying in human activity level, over 2 years. We evaluated which factors influenced the likelihood of detection of individuals, analyzed patterns of movement and occurrence, and identified variability in habitat selection among species and regions, using a dataset of 23 Caribbean reef sharks and 15 tiger sharks which were passively monitored in two arrays with a combined total of 13 acoustic receivers. Caribbean reef sharks had lower detection probabilities than tiger sharks, and exhibited relatively low habitat connectivity and high residency, while tiger sharks demonstrated wider roaming behavior across much greater space. Tiger sharks were associated with shallow seagrass habitats where available, but frequently transited between and connected different habitat types. Our data support the notion that large MPAs afford greater degrees of protection for highly resident species such as Caribbean reef sharks, shark, acoustic telemetry, marine protected area, MPA, seagrass, coral reef, Bahamas, Caribbea
Seasonal and Long-Term Changes in Relative Abundance of Bull Sharks from a Tourist Shark Feeding Site in Fiji
Shark tourism has become increasingly popular, but remains controversial because
of major concerns originating from the need of tour operators to use bait or
chum to reliably attract sharks. We used direct underwater sampling to document
changes in bull shark Carcharhinus leucas relative abundance at
the Shark Reef Marine Reserve, a shark feeding site in Fiji, and the
reproductive cycle of the species in Fijian waters. Between 2003 and 2009, the
total number of C. leucas counted on each day ranged from 0 to
40. Whereas the number of C. leucas counted at the feeding site
increased over the years, shark numbers decreased over the course of a calendar
year with fewest animals counted in November. Externally visible reproductive
status information indicates that the species' seasonal departure from the
feeding site may be related to reproductive activity
FRW Cosmologies with Adiabatic Matter Creation
Some properties of cosmological models with matter creation are investigated
in the framework of the Friedman-Robertson-Walker (FRW) line element. For
adiabatic matter creation, as developed by Prigogine and coworkers, we derive a
simple expression relating the particle number density and energy density
which holds regardless of the matter creation rate. The conditions to
generate inflation are discussed and by considering the natural
phenomenological matter creation rate , where is a
pure number of the order of unity and is the Hubble parameter, a minimally
modified hot big-bang model is proposed. The dynamic properties of such models
can be deduced from the standard ones simply by replacing the adiabatic index
of the equation of state by an effective parameter . The thermodynamic behavior is determined and it is also
shown that ages large enough to agree with observations are obtained even given
the high values of suggested by recent measurements.Comment: 27 pages, 2 figures (appended as postscript files), uses LATE
A comparison of the seasonal movements of tiger sharks and green turtles provides insight into their predator-prey relationship
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ~3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season
A global perspective on the trophic geography of sharks
Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.This research was conducted as part of C.S.B.’s Ph.D dissertation, which was funded by the University of Southampton and NERC (NE/L50161X/1), and through a NERC Grant-in-Kind from the Life Sciences Mass Spectrometry Facility (LSMSF; EK267-03/16). We thank A. Bates, D. Sims, F. Neat, R. McGill and J. Newton for their analytical contributions and comments on the manuscripts.Peer reviewe
Drivers of reef shark abundance and biomass in the Solomon Islands
Remote island nations face a number of challenges in addressing concerns about shark population status, including access to rigorously collected data and resources to manage fisheries. At present, very little data are available on shark populations in the Solomon Islands and scientific surveys to document shark and ray diversity and distribution have not been completed. We aimed to provide a baseline of the relative abundance and diversity of reef sharks and rays and assess the major drivers of reef shark abundance/biomass in the Western Province of the Solomon Islands using stereo baited remote underwater video. On average reef sharks were more abundant than in surrounding countries such as Fiji and Indonesia, yet below that of remote islands without historical fishing pressure, suggesting populations are relatively healthy but not pristine. We also assessed the influence of location, habitat type/complexity, depth and prey biomass on reef shark abundance and biomass. Location was the most important factor driving reef shark abundance and biomass with two times the abundance and a 43% greater biomass of reef sharks in the more remote locations, suggesting fishing may be impacting sharks in some areas. Our results give a much needed baseline and suggest that reef shark populations are still relatively unexploited, providing an opportunity for improved management of sharks and rays in the Solomon Islands
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji
Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004–2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes >0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00–12:00) when feeding takes place, sharks mainly had site fidelity indexes <0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site
- …