
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Environmental Conservation Faculty Publication 
Series Environmental Conservation 

2021 

Spatial Connectivity and Drivers of Shark Habitat Use Within a Spatial Connectivity and Drivers of Shark Habitat Use Within a 

Large Marine Protected Area in the Caribbean, The Bahamas Large Marine Protected Area in the Caribbean, The Bahamas 

Shark Sanctuary Shark Sanctuary 

Austin J. Gallagher 
Beneath the Waves 

Oliver N. Shipley 
Beneath the Waves 

Maurits P. M. van Zinnicq Bergmann 
Florida International University 

Jacob W. Brownscombe 
Carleton University 

Craig P. Dahlgren 
Perry Institute for Marine Sciences 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.umass.edu/nrc_faculty_pubs 

 Part of the Environmental Monitoring Commons, and the Natural Resources and Conservation 

Commons 

Recommended Citation Recommended Citation 
Gallagher, Austin J.; Shipley, Oliver N.; van Zinnicq Bergmann, Maurits P. M.; Brownscombe, Jacob W.; 
Dahlgren, Craig P.; Frisk, Michael G.; Griffin, Lucas P.; Hammerschlag, Neil; Kattan, Sami; and 
Papastamatiou, Yannis P., "Spatial Connectivity and Drivers of Shark Habitat Use Within a Large Marine 
Protected Area in the Caribbean, The Bahamas Shark Sanctuary" (2021). Frontiers In Marine Science. 459. 
https://doi.org/10.3389/fmars.2020.608848 

This Article is brought to you for free and open access by the Environmental Conservation at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Environmental Conservation Faculty 
Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please 
contact scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/nrc_faculty_pubs
https://scholarworks.umass.edu/nrc_faculty_pubs
https://scholarworks.umass.edu/eco
https://scholarworks.umass.edu/nrc_faculty_pubs?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/931?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/168?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/168?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3389/fmars.2020.608848
mailto:scholarworks@library.umass.edu


Authors Authors 
Austin J. Gallagher, Oliver N. Shipley, Maurits P. M. van Zinnicq Bergmann, Jacob W. Brownscombe, Craig 
P. Dahlgren, Michael G. Frisk, Lucas P. Griffin, Neil Hammerschlag, Sami Kattan, and Yannis P. 
Papastamatiou 

This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/nrc_faculty_pubs/459 

https://scholarworks.umass.edu/nrc_faculty_pubs/459


ORIGINAL RESEARCH
published: 27 January 2021

doi: 10.3389/fmars.2020.608848

Frontiers in Marine Science | www.frontiersin.org 1 January 2021 | Volume 7 | Article 608848

Edited by:

Alastair Martin Mitri Baylis,

South Atlantic Environmental

Research Institute, Falkland Islands

Reviewed by:

Luis Cardona,

University of Barcelona, Spain

Paul Brickle,

South Atlantic Environmental

Research Institute, Falkland Islands

*Correspondence:

Austin J. Gallagher

austin@beneaththewaves.org

Specialty section:

This article was submitted to

Marine Megafauna,

a section of the journal

Frontiers in Marine Science

Received: 21 September 2020

Accepted: 18 December 2020

Published: 27 January 2021

Citation:

Gallagher AJ, Shipley ON, van Zinnicq

Bergmann MPM, Brownscombe JW,

Dahlgren CP, Frisk MG, Griffin LP,

Hammerschlag N, Kattan S,

Papastamatiou YP, Shea BD,

Kessel ST and Duarte CM (2021)

Spatial Connectivity and Drivers of

Shark Habitat Use Within a Large

Marine Protected Area in the

Caribbean, The Bahamas Shark

Sanctuary. Front. Mar. Sci. 7:608848.

doi: 10.3389/fmars.2020.608848

Spatial Connectivity and Drivers of
Shark Habitat Use Within a Large
Marine Protected Area in the
Caribbean, The Bahamas Shark
Sanctuary
Austin J. Gallagher 1*, Oliver N. Shipley 1,2, Maurits P. M. van Zinnicq Bergmann 3,

Jacob W. Brownscombe 4, Craig P. Dahlgren 5, Michael G. Frisk 2, Lucas P. Griffin 6,

Neil Hammerschlag 7, Sami Kattan 1, Yannis P. Papastamatiou 3, Brendan D. Shea 1,

Steven T. Kessel 8 and Carlos M. Duarte 9

1 Beneath the Waves, Herndon, VA, United States, 2 School of Marine and Atmospheric Sciences, Stony Brook University,

Stony Brook, NY, United States, 3Department of Biological Sciences, Institute of Environment, Florida International University,

North Miami, FL, United States, 4Department of Biology, Carleton University, Ottawa, ON, Canada, 5 Perry Institute for Marine

Science, Waitsfield, VT, United States, 6Department of Environmental Conservation, University of Massachusetts Amherst,

Amherst, MA, United States, 7 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL,

United States, 8Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL,

United States, 9 Red Sea Research Center and Computational Biosciences Research Center, King Abdullah University of

Science and Technology, Thuwal, Saudi Arabia

Marine protected areas (MPAs) have emerged as potentially important conservation

tools for the conservation of biodiversity and mitigation of climate impacts. Among

MPAs, a large percentage has been created with the implicit goal of protecting shark

populations, including 17 shark sanctuaries which fully protect sharks throughout

their jurisdiction. The Commonwealth of the Bahamas represents a long-term MPA

for sharks, following the banning of commercial longlining in 1993 and subsequent

designation as a shark sanctuary in 2011. Little is known, however, about the long-

term behavior and space use of sharks within this protected area, particularly among

reef-associated sharks for which the sanctuary presumably offers the most benefit.

We used acoustic telemetry to advance our understanding of the ecology of such

sharks, namely Caribbean reef sharks (Carcharhinus perezi) and tiger sharks (Galeocerdo

cuvier), over two discrete islands (New Providence and Great Exuma) varying in human

activity level, over 2 years. We evaluated which factors influenced the likelihood of

detection of individuals, analyzed patterns of movement and occurrence, and identified

variability in habitat selection among species and regions, using a dataset of 23

Caribbean reef sharks and 15 tiger sharks which were passively monitored in two

arrays with a combined total of 13 acoustic receivers. Caribbean reef sharks had

lower detection probabilities than tiger sharks, and exhibited relatively low habitat

connectivity and high residency, while tiger sharks demonstrated wider roaming

behavior across much greater space. Tiger sharks were associated with shallow

seagrass habitats where available, but frequently transited between and connected

different habitat types. Our data support the notion that large MPAs afford greater

degrees of protection for highly resident species such as Caribbean reef sharks,
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yet still may provide substantial benefits for more migratory species such as tiger sharks.

We discuss these findings within the context of species-habitat linkages, ecosystem

services, and the establishment of future MPAs.

Keywords: shark, acoustic telemetry, marine protected area, MPA, seagrass, coral reef, Bahamas

INTRODUCTION

Marine protected areas (MPAs) are key instruments for
conserving and rebuilding marine biodiversity and mitigating
human impacts, including those resulting from climate change
and habitat loss (Bates et al., 2019; Maestro et al., 2019; Duarte
et al., 2020). The benefits of MPAs are widespread, ranging from
social to ecological and economic (McClure et al., 2020), and
they can also play a key role in the conservation of threatened,
mobile marine fauna, especially slow growing, highly migratory
species such as sharks (Graham et al., 2016; Duce et al., 2019;
Jacoby et al., 2020). Indeed, declines in many shark populations
worldwide have spurred growing interest in establishing MPAs
to aid in their recovery (Knip et al., 2012), and current estimates
suggest up to one-third of all ocean protected habitat has been
designated exclusively for sharks (Marine Conservation Institute,
2016; MacKeracher et al., 2019).

Protective management addresses key threats to the species
and habitat of interest, and the effectiveness of any MPA
will depend largely the extent to which they overlap with the
biology - specifically the behavior and ecological niche of species
targeted for protection (Dwyer et al., 2020; Hanson et al., 2020).
Designing suitable MPAs for the protection of target species
requires knowledge of the habitat these species are associated
with to ensure they are included within the MPAs (Espinoza
et al., 2014; Lea et al., 2016). This information can reveal which
habitats may be most suitable for incorporation into futureMPAs
(Birkmanis et al., 2020) and may assist with understanding how
existingMPAs could be managed adaptively. However, long-term
behavioral data required to characterize the residency, coastal
space use, and the drivers of movement are surprisingly lacking
for most shark species, particularly reef-associated species that
are likely to benefit from MPAs (Heupel et al., 2019; Dwyer et al.,
2020).

Shark MPAs, broadly defined as any spatial protection where
extractive activities have been partially restricted or completely
prohibited (MacKeracher et al., 2019), have continued to
evolve and develop in recent decades. Most recently, shark
sanctuaries, a type of shark MPA, have emerged as a popular
management tool to reduce shark mortality among island
nations, with a total of 17 countries worldwide currently
designating their national waters as such (Ward-Paige, 2017).
Sanctuary designations typically prohibit the commercial fishing
of all sharks, the retention of sharks caught as bycatch, and the
possession, trade, and sale of sharks and shark products within
a country’s full exclusive economic zone (EEZ, Ward-Paige
and Worm, 2017; MacKeracher et al., 2019). Shark sanctuaries
have received criticism, primarily because our understanding
of their effectiveness remains limited – and, in many cases,
these MPAs have been created without a robust understanding

of the focal species’ behavior (Ward-Paige and Worm, 2017).
While the creation of sharkMPAs (inclusive of shark sanctuaries)
has outpaced our understanding of how sharks may use them,
telemetry techniques offer many advantages for generating
applied information (Hussey et al., 2015; White et al., 2017), and
are well-suited for tracking andmonitoringmobile elasmobranch
species passively over large expanses of ocean (Andrzejaczek
et al., 2020; Jacoby et al., 2020).

The Greater Caribbean contains some of the highest records
of marine biodiversity in the Atlantic (Roberts et al., 2002) and
was recently identified as a priority region for establishing MPAs
to meet ambitious spatial conservation targets to protect 30%
of oceans by 2030 (Zhao et al., 2020). Yet, historical and recent
overfishing, combined with the consumption of sharks in the
region (e.g., Ali et al., 2020), have rendered its shark populations
patchy and variable among countries (Ward-Paige et al., 2010;
Bakker et al., 2017; MacNeil et al., 2020). As a result, there is a
need for exploring and creating large scale MPAs in the region to
aid in the conservation of sharks and their movements (Gallagher
et al., 2020). The Commonwealth of The Bahamas is known for its
relatively robust shark populations (Brooks et al., 2011; Gallagher
and Hammerschlag, 2011; MacNeil et al., 2020), which benefited
from the prohibition of commercial longlining and gillnetting in
1993 and the declaration of The Bahamas exclusive economic
zone (EEZ, > 600,000 km2) as a shark sanctuary in 2011 (Haas
et al., 2017; Talwar et al., 2020). As a result, the waters of The
Bahamas represent a nearly 30-year case study for evaluating
how large MPAs are used by a natural and stable population
of sharks, and, ultimately, whether existing spatial conservation
measures are adequate. However, research into the behavior and
movements of sharks in The Bahamas is surprisingly lacking,
with the existing published studies either focusing on local
monitoring efforts (Shipley et al., 2018) or describing seasonal
residency and migration of single species in relation to a discrete
tagging location (Hammerschlag et al., 2012; Howey-Jordan et al.,
2013; Guttridge et al., 2017; Shipley et al., 2017). For commonly
encountered, reef-associated sharks, regional efforts to describe
long-term behavior may provide critical information to advance
our understanding of how these threatened species utilize the
shark sanctuary in The Bahamas, and the pertinent drivers of
their behavior.

The overarching goal of this study was to advance our
understanding of the behavioral ecology of reef-associated sharks
in The Bahamas shark MPA through a multi-region application
of passive acoustic monitoring. Specifically, we (1) analyzed
which factors influenced our ability to detect and monitor
sharks over two discrete islands varying in human activity level,
separated by large spatial scales (∼250 km); (2) evaluated the
temporal patterns of shark movement and occurrence; and (3)
identified variability in habitat selection between species and
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among regions, to infer which habitat types were of importance
for ongoing and future spatial conservation strategies. We
focused our analyses on twomedium-to-large bodied species that
are abundant throughout the coastal waters of The Bahamas,
the tiger shark (Galeocerdo cuvier, Péron and Lesueur, 1822)
and Caribbean reef shark (Carcharhinus perezi, Poey, 1876).
Combined, both species generate significant income to The
Bahamian economy through dive tourism (a cumulative industry
value of >$110 million/year, Haas et al., 2017). Thus, effective
conservation of these species promotes both long-term ecological
and economic benefits to The Bahamas and could be a model for
other countries in the region.

METHODS

Research was conducted within the coastal waters of two islands
in The Bahamas, New Providence Island (25.0443◦ N, 77.3504◦

W) and Great Exuma (23.6193◦ N, 75.9695◦ W) from February
2018 to February 2020. The Bahamas archipelago is a carbonate
platform comprised of over 700 islands and cays, characterized by
a diversity of marine habitats such as coral reefs, shallow seagrass
beds, mangroves, deep open ocean, and inshore flats (Buchan,
2000). New Providence is a 208 km2 island located in the center of
the archipelago, hosting the capital, Nassau, and nearly one-third
of the national population (∼250,000 people). The north and
west portions of New Providence are characterized by sloping
walls and coral reef habitats dropping off into deep water in the
Tongue of the Ocean, whereas the south and east are dominated
shallow seagrass and sand with scattered patch reefs, comprising
the northernmost portion of the Great Bahamas Bank (Buchan,
2000). Great Exuma, which is part of the Exuma Cays chain of
islands, is a 158 km2 island located roughly 230 km south of New
Providence. Great Exuma/The Exuma Cays are characterized by
a reef tract separating the deep waters of the Exuma Sound to
the east, from and shallow sand and seagrass meadows of the
Great Bahamas Bank to the west. To evaluate patterns of shark
habitat use and network connectivity within islands, we used
passive acoustic telemetry, whereby sharks were implanted with
acoustic transmitters and monitored by an array of underwater
hydrophone stations.

Shark Capture and Tagging
From February 2018 to June 2019, Caribbean reef sharks (n =

23) and tiger sharks (n = 15) were captured using standardized
circle-hook research drum lines (see Gallagher et al., 2014 for
detailed description of capture methodology). All animal tagging
and capture was ethically approved by the Carleton University
Animal Care Committee. Upon capture, animals were secured
alongside the research vessel while remaining submerged, and
sex and morphometric measurements were taken. Sharks were
then inverted to induce a state of tonic immobility and surgically
implanted with coded acoustic transmitters (V16, 69 kHz,
transmission interval of ∼60–120 s, Vemco Ltd., Innovasea,
Halifax, Canada). Tags were implanted into the peritoneal cavity
by making a 2.5 cm incision in the abdominal wall, which
was subsequently closed using dissolvable sutures. Shark diving
provisioning occurs regularly in one specific location in the

southwest corner of the New Providence Array (Maljković and
Côté, 2011), and as a result no sharks were tagged within 3 km of
this area to avoid tagging provisioned sharks. An identification
tag was also placed externally at the base of the dorsal fin, and
each shark was quickly sampled for various tissues for separate
investigations (blood, muscle, fin clip), before they were released.
The time from securing the shark at the boat until its release
ranged between 4 and 10 min.

Receiver Deployment
A total of 13 acoustic receivers (Vemco VR2W, Vemco Ltd.,
Innovasea, Halifax, Canada) were deployed across the two
islands, resulting in two arrays: New Providence (eight receivers)
and Great Exuma (five receivers) (Figure 1). Receivers were
installed on three separate occasions:May 2018 (New Providence,
five initial receivers), November 2018 (New Providence, three
receivers added; Great Exuma three initial receivers), and
February 2019 (Great Exuma, two receivers added). Receivers
were either secured to light-weight concrete moorings or
attached to large metal auger screws. Concrete moorings were
constructed using large aluminum basting pans filled with 10 kg
of dried concrete, housing a 0.75m piece of rebar, where the
VR2W receiver was attached using industrial strength cable ties.
Metal augers were screwed into sandy substrates such that ∼1m
was sticking above the seafloor, where a bracketed VR2W receiver
was then attached using bolts and nuts. Depths of receiver
locations ranged from 5 to 18meters, and were placed in seagrass,
sand, and reef habitats. Acoustic receivers were downloaded,
and batteries were replaced in November 2018 and again in
January / February 2020 (receivers were added here as well). Two
temperature loggers (HOBO Water Temp Pro v2), set to record
continuously once every hour, were attached to the metal auger
frame at one receiver in each array (New Providence= Southwest
Reef; Great Exuma = Rat Cay) in November 2018, which
recorded water temperature data for up to 1 year. Detection range
testing was conducted with fixed sentinel tags deployed between
1 May 18 and 30 November 18 (see Supplementary Materials for
full details). Effective detection range for this study was defined
as the distance at which 50 % of transmissions were detected
and logged based on the Weibull 3-parameter peak curve (Kessel
et al., 2014) and was found to be 360m (Supplementary Figure 1).

Data Analysis
Detections of tiger sharks and Caribbean reef sharks were first
corrected for receiver time drift in the program VUE (Vemco)
and exported for further analysis with R (R Core Team, 2018)
using the interface RStudio (RStudio Team, 2016). Prior to
analysis, shark detections were filtered to remove potential
false detections (Simpfendorfer et al., 2015), including those
that occurred prior to tag deployment, repeated detections that
occurred within less than the minimum tag transmission delay,
and single detections that occurred within a 2-h time period (i.e.,
minimum lag filter). Detection data were then visually inspected
to assess any potential animal mortalities / anomalies, resulting in
tags not attached to the target animals being detected on acoustic
receivers. This can result in consistent detections of a transmitter
on a single receiver over extended periods of time, without being
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FIGURE 1 | Map of Lucayan archipelago, focusing on The Commonwealth of Bahamas with Exclusive Economic Zone Boundary (EEZ, designated with green border)

and spatial extent of study site. Acoustic receiver locations (green) and tagging locations of tiger sharks (yellow) and Caribbean reef sharks (red) in proximity to New

Providence and Exuma, The Bahamas. The size of circle indicates the number of sharks tagged in each location, ranging 1–10.

subsequently detected on any other receivers (Matley et al., 2020).
Two tags that were implanted in Caribbean reef sharks had these
characteristics, which we attributed to natural predation events
from tiger sharks that occurred weeks after release, and as such
we removed these from subsequent analyses due to potential
unreliability (Appendix I; Figures 1, 2). Since shark detections
were very low from May – November 2018, we began our formal
analysis on receiver data from November 2018.

Because a considerable proportion of sharks tagged within
proximity to the two study sites were undetected during the
study period, the factors influencing detection probability were
explored, with the data aggregated at the individual shark level.
Only sharks that were tagged within 5 km of the study areas
were included in this analysis, excluding one outlier, tagged
63 km from the nearest receiver at a location in between the two

study sites. To address detection probability, a Cox proportional
hazardsmodel using the “survival” package (Therneau, 2015) was
fit with detection date (the first date each individual shark was
detected) as the response, and species, distance from the tagging
site to the closest receiver, shark total length, and shark sex as
predictors. Detection date was censored to the day when acoustic
receivers were last downloaded. The final model structure was
determined using backward model selection selecting the model
with the lowest Akaike information criterion (AIC; Appendix
I, Table 1). To further explore factors influencing detection
probability, a random forests (RF) model (Breiman, 2001) was
fit to detection presence (detected, undetected) with the same set
of predictors. RF models use classification and regression trees
to recursively apply binary partitions in the data with varied
combinations of predictors to optimize prediction of the response

Frontiers in Marine Science | www.frontiersin.org 4 January 2021 | Volume 7 | Article 608848

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Gallagher et al. Shark Habitat Use in a Caribbean MPA

FIGURE 2 | (A) Proportion of sharks tagged with acoustic transmitters within 50 km of study sites that were detected on acoustic receivers in New Providence Island

and Exuma, The Bahamas in days since tagging (crosses indicate censored observations), (B) Predictor importance (mean decrease in accuracy) of shark detection

probability. TLm, shark total length; mindistkm, distance from tagging location to the nearest acoustic receiver. (C) Marginal effects of shark species and total length

on detection probability estimated with a random forests model, (D) Marginal effects of shark species and distance from tagging to the nearest receiver on detection

probability estimated with a random forests model.

TABLE 1 | Random forests model fit metrics for shark detection probability (Detected ∼ species + total length + sex + minimum distance to receiver), as well as tiger

shark and Caribbean reef shark presence/absence at acoustic telemetry receivers in New Providence Island and Exuma (Presence ∼ season + lunar phase + habitat

type + depth + temperature).

Model Accuracy Kappa Sensitivity Specificity Pos. Pred. Value Neg. Pred. Value F1 Balanced. accuracy

Detection probability 0.63 0.24 0.64 0.60 0.66 0.62 0.64 0.62

NPI - Tiger shark 0.69 0.33 0.73 0.68 0.43 0.88 0.54 0.70

NPI - Caribbean reef shark 0.93 0.53 0.63 0.96 0.52 0.97 0.56 0.79

Exuma - Tiger shark 0.67 0.23 0.63 0.68 0.32 0.89 0.43 0.66

Exuma - Caribbean reef shark 0.71 0.39 0.73 0.69 0.55 0.84 0.62 0.71

(Breiman et al., 1984; De’ath and Fabricius, 2000). With RF, these
trees are fit numerous times with randomly selected subsets of
data and predictors to reduce overfitting and improve prediction
accuracy (Breiman, 2001; Cutler et al., 2007). The RF model was
run with 70:30% training: test data split with 10 iterations to
generate estimated mean decrease in model accuracy (MDA) to
assess predictor importance (Olden et al., 2008). The RF model
was fit with the “randomForest” package (Liaw andWiener, 2002)
and the marginal effects (y) of each predictor (e.g., the predicted
value holding other predictors constant) were calculated using
the “pdp” package (Greenwell, 2017).

To examine shark connectivity and space use patterns,
network analysis was used - a technique based in graph
theory that treats discrete locations (acoustic receivers) as nodes
connected by edges in a network to reveal ecologically relevant
patterns (Jacoby et al., 2012; Jacoby and Freeman, 2016). Edges
are also associated with weights that are defined by the number of
intra- and inter-node detections (i.e., self-loops and movements
between nodes). Prior to fitting networks to each species and
study location, detection data were filtered to only include
individuals with at least five detections and those with tracking
durations > 1 day, resulting in 29 individuals (17 Caribbean reef
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sharks, 12 tiger sharks). Networks were fit using the “igraph”
R package (Csardi and Nepusz, 2006). Network metrics were
derived from directed movements (i.e., to- and from-edges) and
included node degree (the sum number of ingoing and outgoing
edges), path number (the sum number of edges), network density
(the ratio of the number of edges and the number of possible
edges, including nodes where individuals were never detected
at but excluding self-loops), network diameter (the longest path
length), average path length (shortest paths between all pairs
of connected vertices), average betweenness (the number of
shortest paths going through each node), which were aggregated
at the species level. Additionally, node degree, node strength
(the sum edge weights of the adjacent edges for each node),
betweenness centrality (the number of shortest paths going
through each node), and eigenvector centrality (calculated as the
dominant eigenvector of the network and is equal to the weighted
proportion of the total number of in- and out- paths at a given
node; Newman, 2004; Stehfest et al., 2015) were summarized by
habitat type (seagrass, sand, coral reef) which was defined based
on visual observation of the seafloor at each receiver. To test
whether shark movement networks were different from random
- and hence - whether receiver array design was heavily biasing
derived network metrics, a subset of shark network metrics
(sum node degree, network paths, network density, and average
betweenness) for each individual shark were compared to 1,000
randomized networks following the approach outlined in Novak
et al. (2020). For all sharks andmetrics tested, at least one ormore
network metrics were significantly different from random (p <

0.001), suggesting observed animal networks were non-random.
To explore the factors influencing the habitat use of

both shark species, RF models were applied to daily shark
presence/absence for each species at the acoustic receiver level
with habitat type (seagrass, sand, coral reef), water depth, season,
water temperature, and lunar phase as predictors, following
Brownscombe et al. (2019). Separate models were fit to each
shark species and receiver array (New Providence, Exuma).
Data included in this analysis spanned from 2018-11-16 to
2020-02-21 when detection and corresponding environmental
data were available. To reduce the potential for large sample
sizes to influence variable importance and marginal effects
assessment, the model was fit with 10-fold cross validation,
using a single fold for each training iteration (n = 10), and
the remaining 9 folds as test sets. Separate RF models were
fit to each species and location separately. For all RF models,
class prediction was balanced through iterative optimization to
achieve optimal balance between positive and negative class
accuracy, model sensitivity, specificity, and overall accuracy
balance (Brownscombe et al., 2019). All data are reported asmean
± 95% confidence interval unless otherwise specified.

RESULTS

The New Providence Island (NPI) and Exuma (EX) receiver
arrays jointly recorded 96,750 filtered detections from 15 tiger
sharks (NPI = 8, EX = 7; 270 ± 60 cm overall total length,
160–320 cm range, hereafter TS for analytical reporting) and 20

Caribbean reef sharks (NPI = 9, EX = 11; 170 ± 10 cm overall
total length, 110 ± 220 cm range, hereafter CRS for analytical
reporting) from 2018-05-02 to 2020-01-24, with a range of
tracking periods amongst individuals (247± 220 days, 1–629 day
range; 80 ± 83 detection days, 1–261 day range; Figure 1, see
Supplementary Table 2). Detected sharks were almost entirely
those tagged within proximity of the two study locations in The
Bahamas, except for one individual Caribbean reef shark tagged
in the central Exuma cays, ∼63 km from the nearest receiver
(Figure 1). This was the only shark in the dataset that made large
(>20 km) movements during the monitoring period; no sharks
tagged within the New Providence array were detected in the
Exuma array, and vice versa.

Detection Probability
Of the 61 sharks tagged within 5 km of the two study areas, 34
were detected on acoustic receivers. The final model of shark
detection probability did not include shark total length, sex,
or tagging distance, but there was a significant effect of shark
species on detection probability (Cox proportional hazards; z =
4.0, p < 0.001; Figure 2A). Random forests also found species
to be the most important predictor (18.0 [13.4–22.6]; mean
[95%CI] MDA) of detection probability, and a positive, but
unimportant influence of shark total length (2.0 [−2.7–6.7])
(Figure 2B; Table 1). Caribbean reef sharks had lower detection
probabilities than tiger sharks, while relatively small Caribbean
reef sharks, and relatively large tiger sharks were detected less
often (Figure 2C). Distance from tagging to the nearest receiver
showed no notable patterns (Figure 2D).

General Movement Patterns
Caribbean reef sharks and tiger sharks exhibited highly variable
movements between species, locations, and amongst individuals
(Figure 3). Caribbean reef sharks visited few receiver locations
relative to tiger sharks, which were more wide ranging in both
New Providence Island and Exuma. This result was confirmed
with network analysis, which showed tiger sharks had greater
network connectedness across all metrics examined in both
study locations (Figures 4A,B). This was reflected in a range
of network metrics in New Providence Island (node degree:
CRS: 4.0 [2.1–5.9], TS: 38 [19.3–56.7]; path number: CRS:
2.0 [1.0–3.0], TS: 19 [9.6–28.4]; network density: CRS: 0.01
[−0.0002–0.02], TS: 0.2 [0.1–0.4]; network diameter: CRS: 0.6
[−0.01–1.2], TS: 13 [6.0–20.0]; average path length: CRS: 0.4
[0.03–0.8], TS: 1.5 [1.2–1.7]; average betweenness: CRS: 0.0 [0.0–
0.0], TS: 3.8 [0.5–7.1]). Network metrics followed a similar
trend in Exuma (node degree: CRS: 4.8 [1.9–7.7], TS: 15 [0.4–
29.6]; path number: CRS: 2.4 [1.0–3.9], TS: 7.5 [0.2–14.8];
network density: CRS: 0.05 [−0.002–0.09], TS: 0.3 [0.06–0.6];
network diameter: CRS: 4.6 [−1.2–10.4], TS: 4.7 [0.4–9.0];
average path length: CRS: 0.4 [0.007–0.8], TS: 0.7 [0.3–1.2];
average betweenness: CRS: 0.1 [−0.03–0.2], TS: 0.5 [−0.3–1.4]).
Network differences were more pronounced in New Providence
Island, because Caribbean reef sharks generally exhibited higher
connectivity in Exuma, where there is more homogeneous
habitat and the acoustic receiver array was also less expansive
(Figures 3, 4; see Supplementary Tables 3, 4 for full network
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FIGURE 3 | Map of detections of individual Caribbean reef sharks (red) and tiger sharks (yellow) at acoustic receivers (green) in (A) New Providence Island and (B)

Exuma. Degree (circle size) indicates the number of locations visited (for individual sharks) or the number of sharks visited (for receivers). Edge thickness indicates the

relative number of detections at each receiver. Shark locations reflect their mean position in the receiver array ± 0–0.5 degrees to reduce node overlap.

metric outputs). Amongst habitat types, in New Providence
Island tiger sharks exhibited the highest connectivity (node
degree, strength, and eigenvector centrality scores) in seagrass
habitats, while Caribbean reef sharks showed greater connectivity
in coral reefs, but also relatively high site fidelity and repeated
visits to the same sites (node strength; Figure 4C). In contrast,
our study sites in Exuma had little seagrass habitat available
and hence no acoustic receiver coverage in this habitat type; yet
tiger sharks still exhibited higher spatial connectivity in sand
and coral reef habitats in terms of node degree and strength but
not eigenvector centrality (Figure 4D). In Exuma, Caribbean reef
sharks exhibited high node strength and eigenvector centrality,
reflecting high site fidelity and repeated visits to the same sites
(Figures 3, 4D). Overall, tiger sharks moved frequently between
all habitat types, with movements most frequently to seagrass
habitats in New Providence Island, where they were available.
Caribbean reef sharks exhibited higher site fidelity and repeated
visits to the same sites but were wider ranging in Exuma where
the acoustic receiver array was smaller and was restricted to the
outer bank of the coastline.

Drivers of Habitat Use
Consistent with the variablemovement patterns described above,
Caribbean reef sharks and tiger sharks also exhibited different
spatial and temporal patterns of habitat use (Figure 5). In New
Providence Island, random forests models found water depth
was the most important predictor of space use for Caribbean
reef sharks (CRS: 28.2 [26.0–30.4]; mean [95%CI] MDA) and
tiger sharks (TS: 35.3 [31.6–39.1]), followed by habitat type (CRS:
24.8 [19.5–30.0]; TS: 23.0 [20.9–25.1]), with moderate effects
of season (CRS: 12.0 [7.8–16.1]; TS:6.1 [1.9–10.4]) and water
temperature (CRS: 9.4 [4.9–13.8]; TS:13.0[6.9–19.0]), and no
influence of lunar phase (CRS:1.6 [−0.8–4.02]; TS: −2.3 [−2.3–
1.76]) (Table 1; Figure 5). In Exuma, the drivers of space use were
similar in importance structure, with an important influence
of water depth (CRS: 56.7 [50.9–62.5]; TS: 28.1 [23.8–32.4])
and habitat type (CRS: 16.8 [13.0–20.5]; TS: 20.1 [17.2–22.9]).
There were more moderate effects of season (CRS: 12.7 [4.8–
20.6]; TS: 7.0 [4.0–10.1]) and temperature (CRS: 3.2[−2.5–8.9];
TS: 9.1 [5.3–12.9]), and no significant influence of lunar phase
(CRS: −0.9 [−6.1–4.3]; TS: 2.9 [−3.6–9.3]). The effect of water
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FIGURE 4 | Network analysis metrics for the movements of Caribbean reef sharks (red) and tiger sharks (yellow) in (A) New Providence Island, (B) Exuma, and

aggregated by habitat type in (C) New Providence Island and (D) Exuma. Node strength was log transformed, and error bars represent SEM.

temperature was stronger on tiger sharks than Caribbean reef
sharks, while the latter showed stronger seasonal variations in
habitat use, detected more frequently in the spring and summer
seasons (Figure 5). In New Providence Island, where seagrass
habitats are abundantly available on the Great Bahamas Bank to
the south, tiger sharks associated most frequently with receivers
placed in shallow seagrass habitats, while Caribbean reef sharks
associated most frequently with receivers with deeper-water
reefs (Figure 5). However, in Exuma, where seagrass habitat is
available on the western bank, but was not covered with our
acoustic receivers in this study, Caribbean reef sharks occupied
shallow water most frequently, and tiger sharks were more

generalist amongst depths and habitats (Figure 5). The effects of
water temperature, although low relative to habitat and depth,
were different between study sites, with both species generally
occupying relatively cooler water in New Providence Island, and
warmer water in Exuma (Figure 5).

DISCUSSION

The conservation of coastal and semi-coastal shark species is
a primary goal and intended outcome for establishing MPAs
and facilitating their long-term persistence among island nations
(Heupel et al., 2019; Gallagher et al., 2020). Few studies
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FIGURE 5 | Random forests outputs for the presence/absence of Caribbean reef sharks (red) and tiger sharks (yellow) in New Providence (left) and Exuma (right),

including variable importance scores (mean decrease accuracy; ± 95% CI; top) and marginal effects of predictors (predicted values holding other predictors constant).

Confidence intervals were generated using 10-fold cross validation.

have investigated the behavior of reef-associated sharks in the
Caribbean, and this study is the largest spatial and temporal
evaluation into the movements of multiple shark species in

The Bahamas shark MPA. We provide contrasting patterns of
movement between Caribbean reef sharks and tiger sharks, the
former exhibiting relatively low habitat connectivity and high
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residency. Tiger sharks, however, demonstrated wider roaming
behavior across much greater space and are likely important
vectors of ecosystem connectivity and nutrient transfer across
subtropical seascapes in the study area. These findings have
important implications for understanding the benefits of shark
MPAs for The Bahamas, the Greater Caribbean, and for other
island nations interested in shark conservation.

We found that species was the strongest predictor of detection
probability after tagging, with some potential influence of body
size. Smaller Caribbean reef sharks (i.e., < ∼150 cm) and larger
tiger sharks approaching size-at-maturity (i.e., > ∼300 cm,
Sulikowski et al., 2016) were less likely to be detected throughout
our arrays. The distance at which animals were tagged from
acoustic receivers also appeared to impact detection probability
for Caribbean reef sharks, with a greater chance of detection
for animals tagged closer to the array, mirroring size-based
effects on residency for similar reef shark species in the Indo-
Pacific (Chin et al., 2013). Despite the paucity of information
on regional and local residency of reef sharks in the Greater
Caribbean, they are known to have strong site fidelity across small
spatial scales (e.g., Bond et al., 2012), which our findings support
(at least for those reef sharks that were detected over time).
While long-termmovements of reef sharks outside of the current
array designs cannot be discounted, it is likely that the overall
lower detection probability of Caribbean reef sharks, relative to
tiger sharks, was indeed associated with the lack of sufficient
receiver coverage in areas where those individuals were tagged.
This trend was not apparent in tiger sharks, suggesting that
relatively smaller arrays can perform well for this species within
certain geographic contexts (e.g., Nassau is centrally located in
the Bahamas archipelago).

Some large sharks have been recently shown to induce strong
changes in the behavior and distribution of prey species (Phenix
et al., 2019; Lester et al., 2020), including smaller sharks (Shea
et al., 2020), across large ocean landscapes. Predation risk of
mortality from large tiger sharks may also be a potential driver
of lower detection probability for Caribbean reef sharks, where
tiger sharks use the entire area of the islands studied here
(Figure 2), thus pushing smaller reef sharks into landscapes
with greater potential for escape (Gallagher et al., 2017). Tiger
sharks can exert top-down forcing on prey species (Heithaus
et al., 2009), and preliminary data from “predation sensor”
tags deployed by our team on a subset of smaller reef sharks
(∼150 cm total length) in the New Providence array revealed
two inferred mortalities occurring roughly 2 weeks after release,
both being detected on a receiver situated near reef habitat
(A. Gallagher, Unpublished Data). We have also commonly
observed evidence for large diameter bite marks (suggestive of
tiger sharks) on reef sharks, and we have also observed several
natural predation events on Caribbean reef sharks and other
smaller Carcharhinids by tiger sharks throughout the sampling
period, as well as evidence of depredation of two line-caught reef-
sharks. Similarly, video monitoring has provided evidence for
predation of experimentally captured Caribbean reef sharks by
tiger sharks in proximate locations, such as Eleuthera (O’Shea
et al., 2015). Thus, on the basis of these lines of evidence,
we posit that smaller Caribbean reef sharks may comprise at

least some proportion of tiger shark diets, particularly if they
foray into “risky” habitats preferentially selected by tiger sharks
(e.g., seagrass banks, Figure 5), thereby contributing to lower
detection probabilities of tagged Caribbean reef sharks (e.g.,
Papastamatiou et al., 2006). Further investigation is required to
empirically test this hypothesis, but it highlights the potential
for acoustic telemetry to reveal new insights into potential
predator-prey interactions and the functional role of large sharks
(Hammerschlag, 2019), while offering a logical avenue for future
work utilizing non-lethal tools such as isotopic analyses (Hussey
et al., 2012; Shipley and Matich, 2020) and DNA metabarcoding
(Berry et al., 2017). While sex appeared to be an important factor
for detectability, we caution the interpretation of this result due to
the lack of control resulting in bias in the sex of our tagged sharks.

Tiger sharks displayed more extensive connectivity and
space use across receivers, although home range could not be
defined here, with expansive and highly connected networks
on both islands (Figure 3). This finding is not surprising as
broadscale movements have been commonly documented in
tiger sharks from The Bahamas and Greater Caribbean (e.g.,
Hammerschlag et al., 2012, 2015; Lea et al., 2015), and other
locations worldwide (e.g., Fitzpatrick et al., 2012; Papastamatiou
et al., 2013; Holmes et al., 2014; Afonso et al., 2017). Novel
to this study, however, was the ability to infer habitat selection
for tiger sharks, based on the results from Random Forests
models (Figure 5). Within the New Providence array, where
habitat is highly varied, tiger sharks frequented all habitat types
but showed a strong preference for seagrass habitats (Figure 3),
nearly double that of sand and reef habitats (Figure 5). This
preference for shallower seagrass habitats was also corroborated
by the strong effect of shallow depth in driving space use patterns
(Figure 5).

Seagrass habitats are widely recognized as keystone
ecosystems for their high productivity their role in promoting
biodiversity and offering nursery sites as well as feeding grounds
for a number of species of conservation interest, such as
sirenians and green turtles (Hemminga and Duarte, 2000), and
their intense capacity to sequester and store carbon in their
sediments (Fourqurean et al., 2012; Duarte et al., 2013). The
Great Bahama Bank, which was partially covered here by our
study design, lies mostly in 5m or less of water (Harris et al.,
2015), is dominated by moderate and dense seagrass meadows
(Thalassia testudinum; Garcia et al., 2020) which contribute up
to 80% of the net primary productivity in the region (Dierssen
et al., 2010). This area is also important for lobster and conch
fisheries which are vital to the Bahamian economy and culture
(Sherman et al., 2018). Whereas the importance of seagrass
as habitat to tiger sharks is well-established from studies in
the Indian Ocean (e.g., Heithaus et al., 2014), where tiger
sharks have been shown to prefer shallow seagrass habitats
for prey-searching and foraging activities (e.g., Heithaus et al.,
2006; Andrzejaczek et al., 2019), the importance of the role
of tiger sharks in maintaining the role of tropical seagrass
meadows in supporting large blue carbon stocks has only
been theoretically proposed (Atwood et al., 2015). Indeed,
tiger sharks may function as sentinels for the conservation of
keystone habitats serving as central nodes in foraging networks,
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as seen on insular shelves and reefs off Hawaii (Meyer et al.,
2009, 2018). Nevertheless, current knowledge regarding the
relationship between this apex predator and keystone habitats
has been predominantly generated from studies in the Indian
Ocean as well as the Pacific, thus leaving a gap in other ocean
regions. Our data shed new light into tiger sharks and seagrass
as a central node for their life history in the Atlantic Ocean,
specifically the Great Bahama Bank where some of this study
was conducted. From an ecological perspective, the high
mobility of tiger sharks throughout multiple ecosystems and
habitat types, as documented here, further solidifies the role
of large apex predators as important vectors of ecosystem
connectivity (Papastamatiou et al., 2015; Williams et al., 2018),
transporting nutrients and exhibiting top-down control across
ocean seascapes (Hammerschlag et al., 2019), with seagrass
meadows as a central node in the network of connected habitats.
This type of network-driven habitat use may be of value for
future management seeking to conserve critical shark habitat
using MPAs.

The diversity of movement patterns between species sharing
the same island habitats support the notion that broader-scale
measures such as large MPAs may actually provide the greatest
overall biodiversity conservation benefits, although their efficacy
is likely to be context dependent. For example, large shark MPAs
are likely to be most effective in areas of high shark abundance
where there are low levels of historical shark fishing mortality, as
seen in The Bahamas and supported by work done on reef sharks
living amongst atolls in the PacificOcean (White et al., 2017). Our
data support the notion that no-take marine reserves are likely
to be effective at protecting Caribbean reef sharks, corroborating
results from a recent modeling approach which found that shark
MPAs spanning at least 100 km would provide full protection for
∼70% for this species (Dwyer et al., 2020). However, our results
also suggest that small, well-designed patches will likely not be
sufficient to capture the space use of all species, and that larger
spatial measures will be needed to effectively tackle the greater
issue of the loss of shark biodiversity, especially for nations with
multiple, connected islands. The relatively low seasonality for
tiger sharks suggests moderate to high residency or potential
partial migration and contests the more highly migratory nature
of tiger sharks that has been observed at other locations in
The Bahamas, such as Grand Bahama, which is thought to
serve reproductive purposes (Sulikowski et al., 2016). A parallel
investigation into the long-range movements of tiger sharks in
both arrays suggests that at least some individuals will embark
on long distance migrations (A. Gallagher, Unpublished data),
but they do not appear to be as common or wide-ranging than
other subpopulations in the region (e.g., Hammerschlag et al.,
2012; Graham et al., 2016). Mature individuals are present in
our study regions, although less common than places like a
known aggregation site, nicknamed “Tiger Beach,” off The Little
Bahama Bank (Hammerschlag et al., 2017). As such, there may be
fine-scale genetic underpinnings to these differential migration
dynamics, as seen in other elasmobranchs (e.g., winter skate,
Frisk et al., 2019), although this remains unknown. Caribbean
reef sharks in the present study exhibited high site fidelity
to relatively constricted regions of fringing coral reef habitat

adjacent to the continental shelf drop off (Tongue of the Ocean in
New Providence, Exuma Sound in the Exumas), which supports
previous work on this species (Chapman et al., 2005; Shipley
et al., 2018). The observed differences in space use, connectivity,
and dispersal between Caribbean reef sharks and tiger sharks as
described here, may in-part explain observed trends in relative
abundances over the last 50 years. Through comparing catch
data from scientific long-line surveys undertaken before and after
MPA designation in 2011, Talwar et al. (2020) illustrated a relative
increase in catch rates of Caribbean reef sharks, yet no change in
catch rates for tiger sharks. Taken together, these findings may
illustrate the disproportionate benefits of shark MPAs for highly
resident species, compared to a lesser effect on more transient
species that move beyond the Bahamas EEZ boundary (Howey-
Jordan et al., 2013; Graham et al., 2016; Guttridge et al., 2017).
Nevertheless, due to the diversity of behavioral types in both
species described here (e.g., some individuals exhibit high site
fidelity, whereas others may be roaming), local and regional scale
measures such as MPAs and the shark sanctuary will have added
conservation benefits such as promoting population resilience to
future stressors.

While large MPAs and shark sanctuaries have been criticized
in the past, these data shine new light on the notion that these
large MPAs can effectively safeguard existing populations of
reef-associated sharks, for which there is still a general lack
of detailed information on their movement and habitat use
worldwide. Indeed, the abundance of reef-associated sharks
inferred via underwater camera surveys has been shown to
be among the highest in nations where shark sanctuaries
have been established (MacNeil et al., 2020). Therefore, the
long-term conservation significance of these species-specific
protected areas should not be overlooked or unfairly critiqued
until there is a greater body of studies to reference. Indeed,
shark MPAs, including shark sanctuaries, provide researchers
arguably the greatest undisturbed opportunity to study the
biology, life-history, and behavior of multiple shark species
where few external stressors exist, which also providing a
temporal buffer against harvest by which spatial conservation
measures or even non-place-based management can
be refined.

Conclusions
Our study provided an interannual, multi-species comparison of
the space use, connectivity, and drivers of movement for two
abundant shark species in the largest shark MPA in the Atlantic
Ocean at two distinct sites. The information presented here
suggests that The Bahamas shark sanctuary affords protection
to reef sharks during critical life stages, such as juveniles and
their growth into adults, and that large, protected areas provide
substantial benefits to reef sharks in the Caribbean. Tiger sharks,
in contrast, are more highly migratory and may spend some
portion of time outside of The Bahamas EEZ. Given that there
was no connectivity between our two arrays, no detections
from these sharks on outside arrays (either in the Bahamas
or United States) and high long-term site fidelity to tagging
locations, our data suggest that large marine protected areas
will most benefit tiger sharks on an island-to-island basis.
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Furthermore, our findings suggest that the effective conservation
of Caribbean reef sharks in the region is therefore tied to the
continued implementation and enforcement of the shark MPA
in The Bahamas and is likely to further increase ecological and
economic benefits to The Bahamas in future years. We also
demonstrated important species-habitat linkages, particularly for
linking tiger sharks and seagrass meadows in New Providence, a
trend that probably holds for other areas of the Great Bahamas
Bank, including other areas of the Exumas (Garcia et al., 2020).
Although the ultimate functionality of tiger sharks on Bahamian
ecosystems was beyond the scope of this study, the removal of
this species from these habitats may have detrimental effects
across many ecosystems as previously hypothesized (Heithaus
et al., 2014). Large MPAs should play a pivotal role in pursuing
the goal of restoring the abundance of marine life in our
oceans by 2050 (Duarte et al., 2020). Large MPAs can effectively
conserve resident andmigratory sharks in the Greater Caribbean,
including the network of habitats they use, and should likewise be
a valuable tool in other countries bearing similar characteristics
(Gallagher et al., 2020).
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