5,781 research outputs found

    On the Adoption of Partial Least Squares in Psychological Research: Caveat Emptor

    Get PDF
    The partial least squares technique (PLS) has been touted as a viable alternative to latent variable structural equation modeling (SEM) for evaluating theoretical models in the differential psychology domain. We bring some balance to the discussion by reviewing the broader methodological literature to highlight: (1) the misleading characterization of PLS as an SEM method; (2) limitations of PLS for global model testing; (3) problems in testing the significance of path coefficients; (4) extremely high false positive rates when using empirical confidence intervals in conjunction with a new "sign change correction" for path coefficients; (5) misconceptions surrounding the supposedly superior ability of PLS to handle small sample sizes and non-normality; and (6) conceptual and statistical problems with formative measurement and the application of PLS to such models. Additionally, we also reanalyze the dataset provided by Willaby et al. (2015; doi:10.1016/j.paid.2014.09.008) to highlight the limitations of PLS. Our broader review and analysis of the available evidence makes it clear that PLS is not useful for statistical estimation and testing

    Partial least squares path modeling: Time for some serious second thoughts

    Get PDF
    Partial least squares (PLS) path modeling is increasingly being promoted as a technique of choice for various analysis scenarios, despite the serious shortcomings of the method. The current lack of methodological justification for PLS prompted the editors of this journal to declare that research using this technique is likely to be deck-rejected (Guide and Ketokivi, 2015). To provide clarification on the inappropriateness of PLS for applied research, we provide a non-technical review and empirical demonstration of its inherent, intractable problems. We show that although the PLS technique is promoted as a structural equation modeling (SEM) technique, it is simply regression with scale scores and thus has very limited capabilities to handle the wide array of problems for which applied researchers use SEM. To that end, we explain why the use of PLS weights and many rules of thumb that are commonly employed with PLS are unjustifiable, followed by addressing why the touted advantages of the method are simply untenable

    Is the partial pressure of carbon dioxide in the blood related to the development of retinopathy of prematurity?

    Get PDF
    AIMS—To determine the role of carbon dioxide in the development of retinopathy of prematurity (ROP).
METHODS—This was a retrospective cohort study of 25 consecutive infants admitted to the neonatal unit with continuously recorded physiological data. The daily mean and standard deviation (SD) of transcutaneous carbon dioxide partial pressure (tcPCO(2)) was compared between infants who had stage 1 or 2 ROP and stage 3 ROP. The time spent hypocarbic (<3 kPa) and/or hypercarbic (>10 kPa and >12 kPa) was also compared between these groups. Intermittent arterial carbon dioxide tension was also measured and compared with the simultaneous tcPCO(2) data.
RESULTS—There were no significant differences in carbon dioxide variability or time spent hypocarbic and/or hypercarbic between the ROP groups on any day. 86% of transcutaneous values were within 1.5 kPa of the simultaneous arterial value.
CONCLUSION—TcPCO(2) measurement can be a very useful management technique. However, in this cohort neither variable blood carbon dioxide tension nor duration of hypercarbia or hypocarbia in the first 2 weeks of life was associated with the development or severity of ROP.


    Critiquing Variational Theories of the Anderson-Hubbard Model: Real-Space Self-Consistent Hartree-Fock Solutions

    Full text link
    A simple and commonly employed approximate technique with which one can examine spatially disordered systems when strong electronic correlations are present is based on the use of real-space unrestricted self-consistent Hartree-Fock wave functions. In such an approach the disorder is treated exactly while the correlations are treated approximately. In this report we critique the success of this approximation by making comparisons between such solutions and the exact wave functions for the Anderson-Hubbard model. Due to the sizes of the complete Hilbert spaces for these problems, the comparisons are restricted to small one-dimensional chains, up to ten sites, and a 4x4 two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about 63,500 and 166 million states, respectively. We have completed these calculations both at and away from 1/2 filling. This approximation is based on a variational approach which minimizes the Hartree-Fock energy, and we have completed comparisons of the exact and Hartree-Fock energies. However, in order to assess the success of this approximation in reproducing ground-state correlations we have completed comparisons of the local charge and spin correlations, including the calculation of the overlap of the Hartree-Fock wave functions with those of the exact solutions. We find that this approximation reproduces the local charge densities to quite a high accuracy, but that the local spin correlations, as represented by , are not as well represented. In addition to these comparisons, we discuss the properties of the spin degrees of freedom in the HF approximation, and where in the disorder-interaction phase diagram such physics may be important

    Social Access Solar Gardens for Australia

    Full text link

    Computerisation and decision making in neonatal intensive care: a cognitive engineering investigation

    Get PDF
    This paper reports results from a cognitive engineering study that looked at the role of computerised monitoring in neonatal intensive care. A range of methodologies was used: interviews with neonatal staff, ward observations, and experimental techniques. The purpose was to investigate the sources of information used by clinicians when making decisions in the neonatal ICU. It was found that, although it was welcomed by staff, computerised monitoring played a secondary role in the clinicians' decision making (especially for junior and nursing staff) and that staff used the computer less often than indicated by self-reports. Factors that seemed to affect staff use of the computer were the lack (or shortage) of training on the system, the specific clinical conditions involved, and the availability of alternative sources of information. These findings have relevant repercussions for the design of computerised decision support in intensive care and suggest ways in which computerised monitoring can be enhanced, namely: by systematic staff training, by making available online certain types of clinical information, by adapting the user interface, and by developing intelligent algorithms

    Tracking Performance Portability on the Yellow Brick Road to Exascale

    Get PDF
    corecore