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Abstract—We present a major update to the GPU-STREAM
benchmark, first shown at SC’15. The original benchmark
allowed comparison of achievable memory bandwidth perfor-
mance through the STREAM kernels on OpenCL devices. GPU-
STREAM v2.0 extends the benchmark to another dimension:
the kernels are implemented in a wide range of popular state-
of-the-art parallel programming models. This allows an intuitive
comparison of performance across a diverse set of programming
models and devices, investigating whether choice of model mat-
ters to performance and performance portability. In particular
we investigate 7 parallel programming languages (OpenMP 4.x,
OpenACC, Kokkos, RAJA, SYCL, CUDA and OpenCL) across
12 devices (6 GPUs from NVIDIA and AMD, Intel Xeon Phi
(Knights Landing), 4 generations of Intel Xeon CPUs, and IBM
Power 8).

I. MEASURING MEMORY BANDWIDTH

The STREAM benchmark is well known for measuring the
achievable memory bandwidth on CPU architectures [1]. It
consists of four kernels: copy, add, multiply and triad. Each
kernel performs a simple floating point arithmetic operation
per element from one or more arrays and stores the result in
another array. It is simple to count the number of useful bytes
moved and hence calculate the sustained memory bandwidth.

II. PROGRAMMING MODELS

There has been recent interest in different programming
models, with new versions of existing standards compet-
ing with new alternatives that are emerging. We have used
OpenCL and CUDA to represent ‘close-to-the-metal’ parallel
programming languages. OpenCL is a portable programming
model and we previously demonstrated that it can achieve a
good fraction of peak memory bandwidth on a range of GPUs
for the STREAM kernels [2]. CUDA is available for NVIDIA
GPUs, but also x86 CPUs via the PGI compiler. Both these
models require the programmer to implement parallelism in a
fine grained manner.

OpenMP 4 and OpenACC allow regions of code to be
offloaded to a device through the use of preprocessor/compiler
directives. Parallel code is identified typically at the loop level.
OpenMP additionally allows native execution of parallel code
through directives, which we use for the CPUs and Xeon Phi.

RAJA, Kokkos and SYCL are all C++ based programming
models with loop bodies expressed as lambda functions and
executed via a “parallel for” routine.

All these models can target different multi- and many-core
devices. The programmer, therefore, surely hopes to write their

code in their favourite model and achieve some degree of both
performance and performance portability across a range of
devices.

III. RESULTS AND CONCLUSIONS

Table I lists the 12 hardware devices we tested. These
cover a wide range of different architectures but also represent
the latest commercially available hardware. The theoretical
peak memory bandwidth for each device as published by the
respective vendors is listed. Note that Intel do not publish an
exact figure for Xeon Phi MCDRAM bandwidth saying it is
roughly five times that of DDR; we have taken this number
as an approximation.

We take McCalpin STREAM as a baseline figure for the
Intel x86 and IBM Power architectures. This is implemented
in OpenMP 3 and so is unable to run on GPUs. We run the
STREAM kernels, implemented in each of the 7 programming
models, on each of the 12 devices, where supported. Note that
some configurations are not available due to unavailability
of compilers and we denote these results as ‘N/A’ in the
upcoming figures. A few results we were not able to obtain
because of library or system incompatibility: we denote these
as ‘X’. We use an array size of 225 double precision elements
and run 100 iterations of each kernel.

Figure 1 shows the fraction of theoretical peak performance
obtained by each device, for each implementation in the
different programming models of the triad kernel. Firstly note
that C++ OpenMP running on CPUs takes a performance hit
over the C OpenMP implementation of McCalpin STREAM.
The C++ based approaches of RAJA and Kokkos demonstrate
performance similar to the close-to-the-metal performance of
CUDA and OpenCL on the NVIDIA GPUs, however neither
support AMD GPUs. Both models use OpenMP for CPU
support and demonstrate that there is little overhead using their
abstractions over a directive based approach.

Both OpenMP and OpenACC show good performance on
NVIDIA GPUs, with OpenACC also running well on the
AMD S9150 (Hawaii architecture) GPU. OpenACC in general
shows poor performance compared to OpenMP and McCalpin
STREAM on the CPUs however.

Figure 2 shows the raw performance of the triad kernel.
Note that the MCDRAM available to the KNL offers the
highest achievable memory bandwidth of the devices we
tested, with the AMD Fury X coming close in second (the
only GPU tested with High Bandwidth Memory). GPUs still



TABLE I
LIST OF DEVICES

Name Peak Memory BW (GB/s)
NVIDIA K20X GPU 250
NVIDIA K40 GPU 288

NVIDIA K80 GPU (1 GPU) 240
NVIDIA GTX 980 Ti GPU 224

AMD S9150 GPU 320
AMD Fury X GPU 512

Intel E5-2670 (Sandy Bridge) CPU 2×51.2=102.4
Intel E5-2697 v2 (Ivy Bridge) CPU 2×59.7=119.4

Intel E5-2698 v3 (Haswell) CPU 2×68=136
Intel E5-2699 v4 (Broadwell) CPU 2×76.8=153.6

Intel Xeon Phi (Knights Landing) 7210 ∼5×102 = 510
IBM Power 8 CPU 2×192=384
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Fig. 1. Fraction of peak performance

offer an increased memory bandwidth over CPUs in general,
however the IBM Power 8 CPU provides more bandwidth than
any of the NVIDIA GPUs.
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Fig. 2. Peak performance

GPU-STREAM is Open Source and available on GitHub
at github.com/UoB-HPC/GPU-STREAM. The webpage
maintains a repository of all our results and we encourage
new submissions.
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