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Abstract

In this work we directly evaluate several emerging parallel pro-
gramming models: Kokkos, RAJA, OpenACC, and OpenMP 4.0,
against the mature CUDA and OpenCL APIs. Each model has
been used to port TeaLeaf, a miniature proxy application, or mini-
app, that solves the heat conduction equation, and belongs to the
Mantevo suite of applications. We find that the best performance
is achieved with device-tuned implementations but that, in many
cases, the performance portable models are able to solve the same
problems to within a 5-20% performance penalty. The models ex-
pose varying levels of complexity to the developer, and they all
present reasonable performance. We believe that complexity will
become the major influencer in the long-term adoption of such
models.

Categories and Subject Descriptors D.1.3 [Software]: Parallel
Programming

1. Introduction

HPC is undergoing significant growth as science and engineer-
ing are increasingly reliant upon large-scale simulations to sup-
port their cutting edge progress. In order to take advantage of su-
percomputing platforms, scientific codes need to be carefully re-
engineered to exploit concurrency. Even after an application has
been parallelised, portability can be a major issue, with many par-
allel programming models tying you to a particular device or plat-
form. Scientific applications are often long-lived and monolithic,
meaning that they cannot be easily rewritten to take advantage of
modern supercomputing resources, greatly inhibiting their poten-
tial [6].

Energy efficiency has become a limiting factor in designing new
HPC technologies, leading to a shift towards many-core devices
and heterogeneous computing [9]. Many of the world’s fastest su-

[Copyright notice will appear here once ’preprint’ option is removed.]

percomputers include a mix of CPUs, GPUs and accelerators, and
this massive increase in node-level parallelism means that applica-
tions are becoming harder to develop for current architecture, and
even harder to future-proof. These factors have created a demand
for programming models that will enable scientific applications to
take advantage of heterogeneous HPC resources, without having to
maintain versions for each device. Importantly, while there are li-
braries and standards that enable some level of functional portabil-
ity, they do not necessarily guarantee performance portability [7].
Given the prohibitive cost of rewriting scientific applications
and the current rapid rate of change, it is imperative that application
developers are well informed when they consider a modern parallel
programming model, in order to safeguard their HPC investments.

1.1 TeaLeaf — A Heat Conduction Mini-App

TeaLeaf is an open source project that belongs to both the UK Mini
App Consortium (UKMAC) [25] and Mantevo project [6]. The
UKMAC represents a consolidated national effort to understand
modern technologies and algorithms, that is fed into by Warwick
University, Oxford University and the University of Bristol, sup-
ported and funded by the Atomic Weapons Establishment (AWE).
The Mantevo project, run by Sandia National Laboratories, is an
award winning collection of open source applications geared to-
wards analysing high performance computing applications.

Mini-apps support the investigation of optimisation, scalability
and performance portability, free from the limitations imposed by
attempting such analyses with fully functional scientific applica-
tions. Importantly, this supports research into techniques for opti-
mising such codes that can eventually be transferred into real sci-
entific applications. Tealeaf, in particular, has just enough func-
tionality to be representative of the performance profile and com-
putational complexity exposed by a production code, whilst main-
taining a small codebase that is amenable to experimentation. The
program is characterised by two of the seven dwarfs of High Perfor-
mance Computing [1], Structured Grid and Sparse Linear Algebra.

The two-dimensional TealLeaf implementation contains three it-
erative sparse matrix solvers: Conjugate Gradient (CG), Cheby-
shev, and Chebyshev Polynomially Preconditioned CG (PPCG) [2],
each of which uses a 5 point stencil to solve the heat diffusion equa-
tion using face centred diffusion coefficients based on cell aver-
age densities. To ensure numerical stability of a parabolic partial
differential equation with a tractable timestep, an implicit method
is employed. The explicit solution, though simple to implement is
constrained by a timestep that scales as 1/dx? [25].
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// Setup device data environment

#pragma omp target data \
map(to: r[:r_len]) map(tofrom: p[p_len])

{
// Offload calculation using resident data
#pragma omp target if(OFFLOAD) device(DEVICE_ID)
#pragma omp parallel for
for(int jj = @; jj < y; ++jJ)

{
for(int kk = @; kk < x; ++kk)
{
const int index = jj * x + kk;
p[index] = beta * p[index] + r[index];
¥
}

} // Only p is read back from device

Figure 1. Example of Tealeaf function written using OpenMP
4.0.

2. Programming Models Background

Each of the programming models presented in this work require a
different development approach, and expose varying levels of com-
plexity and functional portability. Some details of the background,
abstract approach and syntax relevant to TeaLeaf are presented.

2.1 OpenMP 4.0

OpenMP is a directive-based programming model that is widely
adopted for parallel programming targetting CPUs in shared mem-
ory environments. The new standard, OpenMP 4.0 [18], introduces
a number of directives that are designed to allow portability to ac-
celerators through offloading [14]. The execution model takes di-
rections from the host to offload computationally expensive opera-
tions to an accelerator device [26].

It must be noted that there is currently only limited compiler
support for the offloading, which means that, at the time of writing,
the TealLeaf OpenMP 4.0 version can only be tested on Intel Xeon
Phi Knights Corner (KNC) devices.

The syntax of relevant and new OpenMP 4.0 statements is
presented in Figure 1 and discussed below:

e omp target map(direction: array): This region surrounds a
section of code that will be offloaded, while potentially map-
ping some data onto the device.

e omp target data: Maps data onto a device for the duration
of the scope, allowing multiple target regions to utilise data
maintained on the device, avoiding unnecessary data transfers.

e omp update to(variable or array): Makes a variable or array
in both memory spaces consistent by copying to or from the
device.

e omp simd: Although not related to offloading, the simd direc-
tive is an important new feature that attempts to force loops
to vectorise that wouldn’t usually auto-vectorise, limiting the
changes required to enable vectorisation.

OpenMP 4.0 is the principal open standard using a directive
based approach, and offers a highly usable interface for parallel
performance on heterogeneous devices. At the time of writing com-
piler support is limited, but several of the main compiler vendors
are planning to introduce GPU-targetting functionality in the near
future.

// Setup data scope on the device
#pragma acc data copyin(r[:r_len]) copy(p[:p_len])
{
// Loops to be offloaded to the device
#ipragma acc kernels loop independent \
collapse(2) present(p[:p_len], r[:r_len])
for(int jj = @; jj < y; ++33)

{
for(int kk = @; kk < x; ++kk)
{
const int index = jj * x + kk;
p[index] = beta * p[index] + r[index];
}
}

} // Only p is read back from device

Figure 2. Example of Tealeaf function written with OpenACC.

2.2 OpenACC

OpenACC is another directive-based programming model that sup-
ports offloading to NVIDIA GPUs and, more recently, x86 CPUs
when using the PGI 15.10 compiler suite. Developers can use a se-
lection of directives to inform the compiler as to how optimal code
can be generated with minimal changes to a parallelisable code-
base.

The directives are very similar to those in OpenMP 4.0, and
expose similar functionality, the syntax of which is shown in Figure
2 and discussed below:

e acc data copy(a): Copies a to and from the device at the
beginning and end of the scope.

e acc kernels present(a): Denotes a region of code that is to be
offloaded to the target device, where a has already been copied
onto the device by an enclosing data scope.

e acc loop independent: Signifies that a particular loop has data-
independent iterations that can be offloaded to a device for
parallel execution without internal synchronisation.

In order to support finer control over parallelism, it is possible
to suggest the way that the iteration space should be decomposed
using the gang, worker, and vector directives.

2.3 The RAJA Portability Layer

The RAJA programming model is a brand new abstraction layer
designed by Lawrence Livermore National Laboratories (LLNL) to
improve performance portability of advanced simulation and com-
puting (ASC) codes. The key technical paper by Hornung et al. [7]
outlined two core goals: (1) to abstract away “non-portable com-
piler and platform-specific directives” and other implementation
details, insulating application developers, and (2) to make it easier
for application developers to tune data layout and memory access
for optimal operation on diverse memory hierarchies.

They suggest that organising and controlling memory locality is
an essential step in porting serial scientific applications to run on
parallel architectures, a position consistent with others who have
tackled the same problem [22, 27]. Decomposing the problem do-
mains into smaller units allows threads to have improved utilisation
of shared data caches, but can lead to non shared data and “do-
main management operations” saturating the available resources.
In principal, RAJA makes it easier to perform chunking, allowing
optimisation of instruction and data cache utilisation.
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// One time initialisation of indirection
RAJA: :RangelSet full _domain(@, x * y);

// Dispatch computation by policy
forall<policy>(full_domain, [&](int index) {
pl[index] = beta * p[index] + r[index];

I3

Figure 3. Example of TeaLeaf function written using RAJA.

An example of the syntax is shown in Figure 3, and there are
several abstractions that are foundational to the design of the model,
which are discussed below:

e Separate loop body from traversal: This decoupling makes it
possible to choose device-optimal access patterns for a function
without altering the loop body.

Partition iteration space into work units (Segments): Ab-
stracting access patterns into Segments, which fetch data using
different access strategies. When different access patterns are
required for a single operation, dividing memory access pat-
terns into similar types allows the strategies to be handled sep-
arately, potentially in parallel.

Segment dispatch and execution (Indexsets): RAJA supports
combining the previous features, allowing Segments to be ag-
gregated based on type and dispatched for execution using a
loop template. Indexsets represent a policy, e.g. “Dispatch seg-
ments in parallel and launch each segment on either a CPU or
GPU as appropriate”. The developer can recouple the core logic
to a particular Indexset by choosing one of the built-in dispatch
functions and passing a lambda statement (C++11 anonymous
function declaration) containing the loop body.

Internally, the built-in dispatch functions wrap up platform-
specific implementations, for instance a CPU-targetting implemen-
tation can contain OpenMP code, and a GPU-targetting implemen-
tation can use CUDA. Unfortunately, CUDA 7.0 does not currently
support offloading lambda statements from host to device, which
has slowed RAJA’s GPU development. More recently CUDA 7.5
has added experimental support for lambda-based kernels that can
be defined in host code, and the RAJA developers are in the pro-
cess of writing an NVIDIA GPU targetting implementation based
on this functionality.

2.4 Kokkos

The Kokkos framework is part of the Trilinos project, developed by
Sandia National laboratories to provide a modern abstract approach
to developing applications that require performance portability. The
project emphasises the development of “robust algorithms for sci-
entific and engineering applications on parallel computers”. Ed-
wards et al. [4], acknowledge two principal techniques that embody
the philosophy of the model: (1) utilising abstraction to perform
computation on many-core devices, and (2) leveraging the power
of C++ templates to provide portable high performance data layout
tuning functionality.

The programming model provides a range of generic abstrac-
tions that allow the user to create new codes or port existing appli-
cations. An example of the syntax is shown in Figure 4 and some of
the abstract model and implementation details are discussed below:

¢ Execution and Memory Spaces: The library makes a distinc-
tion between execution space and memory space to support
GPUs and accelerators, which need to have distinct memory
from the host CPU. The library handles much of the interaction

// Kokkos functor-style kernel
template <class Device>
struct cg_calc_p

{
typedef Device device_type;

typedef Kokkos::View<double*, Device> k_view;

cg calc_p(double beta, KView p, KView r)
: beta(beta), p(p), r(r) {}

KOKKOS_INLINE_FUNCTION
void operator()(const int index) const
{
p[index] = beta * p[index] + r[index];

}

double beta;
k_view p;
k_view r;

b

// Invoke the kernel from the host
cg _calc_p<DEVICE> cg calc_p_ kernel(beta, p, r);
Kokkos::parallel for(n, cg calc_p kernel);

Figure 4. Example of TealLeaf function written using the Kokkos
framework.

between these spaces but the developer can move data to and
from the spaces using built-in copy methods.

e Data Structures: Kokkos uses Views, which are abstract data
types that support mixing dynamic and compile-time dimen-
sions for optimisation, as well as copy semantics analogous
with the C++ std::shared_ptr, avoiding complex ownership con-
straints.

Functors: The library utilises C++ class constructs called func-
tors, where the function operator is overloaded and encapsulates
the core functional logic. This pattern requires that Views are
declared as local variables inside the class, and supports cus-
tomisable reductions of complex types.

Lambda Support: Lambda constructs can be used instead of
functors to greatly reduce the amount of code required to write
each kernel, but CUDA 7.0 does not currently support the fea-
ture, limiting its functional portability.

Parallel Execution: Two key data parallel execution operations
are provided: parallel_for which encapsulates iterative execu-
tion and parallel_reduce which further allows reduction of data
using some function (defaults to zero-initialised sum).

Underpinning the abstract semantics is an implementation that
uses C++ template meta-programming to rewrite the functors into
device-specific code. Kokkos is currently able to output pthreads,
OpenMP, and CUDA, which supports a good level of functional
portability.

2.5 OpenCL

OpenCL is an open standard for writing applications that can ex-
ecute on heterogeneous many-core devices, that was released in
2008 [17]. The standard was created to offer a low level but portable
abstract model that can support both data and task parallel program-
ming approaches. Given the number of vendor implementations of
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// Create the kernel and setup the kernel args
cg_calc_p = clCreateKernel(program, "cg_calc_p", NULL);
clSetKernelArg(cg_calc_p, @, sizeof(cl_int), 8&x);

// Enqueue the kernel from host code
clEnqueueNDRangeKernel(queue, cg calc_p, work_dim,
NULL, global_size, local_size, @, NULL, NULL);

// OpenCL kernel to calculate new value of P
__kernel void cg_calc_p(int x, int y, double beta,
__global double* p, _ global double* r)

{ int index = get_global_id(@);
if(index < x * y)
{
p[index] = beta * p[index] + r[index];
}
}

Figure 5. Example of Tealeaf function written using OpenCL.

OpenCL, it is by far the most functionally portable model evaluated
by our research.

Some key syntax is presented in Figure 5, and OpenCL’s three
primary abstract models are discussed below:

¢ Platform model: The model represents a host that interacts
with some number of devices, with each device containing
compute units, which in turn contain processing elements [8].

Execution model: Code that is executed on the host and de-
vices have isolated execution spaces, where kernels represent
work that can be completed by a device. Kernels operate within
a particular context established by the host code, which con-
nects devices, kernels, program source and variables. Device-
specific command queues can be created that allow work to be
queued into the device by the host. The queues accept groups of
work items called work groups, which are executed on a com-
pute unit, with each work item being handled by an individual
processing element [15].

Memory model: The memory model separates the distinct
memory regions and objects available to the host and devices
that share a context. Similarly to CUDA this includes a distinc-
tion between host and device memory, as well as some hierar-
chy of memory on the devices that relates to the way data is
mapped in an implementation-specific manner [23].

Because of this hierarchy of abstraction, OpenCL requires boil-
erplate code that is not necessarily required by other models. This
includes setting up platforms, contexts, command queues, all ker-
nel arguments and managing data transit between host and device.
As a consequence, OpenCL is able to support a generic and open
standard that is flexible to modern architecture, and can benefit
from wide adoption on a range of devices, whilst offering exten-
sive scope for performance tuning.

2.6 Compute Unified Device Architecture (CUDA)

CUDA is a mature parallel computing platform developed by
NVIDIA to allow application developers to offload computation
to their own GPUs, and should enable the greatest possible perfor-
mance on NVIDIA devices. The platform supports C-based kernels
and avoids abstracting the GPU architecture, instead exposing it to

// CUDA kernel to calculate new value of P
__global _ void cg_calc_p(int x, int y, double beta,
double* r, double* p)

¢ int index = threadIdx.x + blockIdx.x * blockDim.x;
if(index < x * y)
{
p[index] = beta * p[index] + r[index];
¥
¥

// Invoke kernel from host code
cg_calc_p<<<num_blocks, BLOCK SIZE>>>(beta, r, p);

Figure 6. Example of TeaLeaf function written using CUDA.

enforce decomposition of problems for task, data and thread paral-
lelism. Underpinning the CUDA framework is the Parallel Thread
Execution (PTX) intermediate representation (IR), and CUDA can
be compiled using the nvce compiler for immediate execution or
for just-in-time compilation by the CUDA runtime.

The CUDA syntax is presented in Figure 6 and the abstract
model is discussed below:

e Threading: Local resources are shared amongst threads, with
each processing element of a streaming multiprocessor per-
forming the same operations on individual data elements.

e Kernels and decomposition: To inform the GPU of which
instructions to run, the application developer can create kernels.
Kernels can then be structured onto a grid, and the problem
domain decomposed into sets of thread blocks that are isolated
from each other, each running on an individual multiprocessor
and only sharing global memory.

Memory spaces: There are a number of memory spaces other
than global, for instance registers are the lowest latency mem-
ory, accessible only by individual threads , and local memory is
shared between threads in a particular group. The library pro-
vides memory copy operations for moving data to and from the
device, and there is additional functionality to map data for di-
rect memory access between device and host for improved data
transfer rates.

CUDA represents a pioneering and mature platform for writing
optimised computation to offload to NVIDIA GPUs, but limits the
user to only ever run their code on those devices. It is important to
recognise that any parallel programming model targetting NVIDIA
GPUs will use the CUDA platform and PTX IR to actually offload
computation to the device, meaning that CUDA applications can
provide a lower bound for performance on supported devices.

3. Design, Development, and Findings

Although it is not possible to guarantee that each of the mod-
els is perfectly implemented, the ports were individually consid-
ered and optimised. Each model was categorised as either cross-
platform (OpenCL, Kokkos, RAJA, OpenACC, and OpenMP 4.0)
or platform-specific (CUDA, and OpenMP 3.0), and non-portable
optimisations were strictly avoided for the cross-platform imple-
mentations. In particular, optimisations were chosen that repre-
sented the best performance portability across all supported de-
vices, with some consideration for future portability. Importantly,
Tealeaf’s core solver logic and parameters were kept consistent
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Model CPUs NVIDIA GPUs KNC

OpenMP 3.0 Yes Native
OpenCL Yes Yes Offload
CUDA Yes
OpenMP 4.0 Yes Experimental Offload
Kokkos Yes Yes Native
RAJA Yes Native
OpenACC Yes Yes

Table 1. Supported implementations for each model.

between ports to ensure that each of the programming models were
objectively compared.

While OpenMP 3.0 can be compiled natively on the KNC archi-
tecture, it is not considered a performance portable programming
model and so was used as a best case for performance on the CPU
and KNC. Although the implementation of RAJA available to us
for this research is unreleased and excludes GPU support, we hope
to extend this research to include RAJA GPU results in the future.
Further to this, it must be reiterated that OpenCL’s support extends
beyond that shown in Table 1, to AMD GPUs, FPGAs and a num-
ber of other platforms, making it the most functionally portable of
the models.

Each of the models have an associated development cost, and
expose varying levels of complexity. As Tealeaf is a fairly regu-
lar and structured data-parallel application, it required the use of
the core feature set of each model, but didn’t necessarily represent
some of the more complicated use cases that will be encountered
with large scientific applications. An important trend observed is
that all of the programming models focus on node-level parallelism
and exclude support for inter-node communications, which is han-
dled with MPI in Tealeaf.

There are restrictions on the languages supported by some of
the models, for instance Kokkos and RAJA require that the result-
ing application code is compiled as C++11. Although the origi-
nal TeaLeaf application was an OpenMP Fortran 90 codebase, we
developed a functionally identical OpenMP C implementation to
serve as a starting point for all of the ports.

3.1 OpenMP 4.0

Our initial implementation added a target region to each of the
performance critical functions. At the highest possible scope, above
the main timestep loop, a target data region was introduced that
kept all data resident on the device until convergence was achieved
for the particular step.

As part of other investigations we have ported several mini-apps
to use OpenMP 4.0, and each time have encountered a performance
overhead dependent upon the number of target invocations per-
formed during execution. In Tealeaf’s case it is possible to wrap
the entire solve step in a single target region, achieving a nearly
identical runtime to the optimal OpenMP Fortran 90 native imple-
mentation. Unfortunately, this pattern has two flaws that make it
unsuitable in real codes: (1) MPI communication cannot be handled
from within a target region, and (2) it is potentially non-portable to
other devices, in particular for targetting GPUs that are not intended
to perform complex control flow and data allocations.

While we recognise that there is an overhead inherent with the
target offload regions, we have not been able to prove exactly
what causes it. Our understanding of the target offloading model is
that each region is handled synchronously, theoretically leading to
stalling around each computation. The recently released OpenMP
4.5 specification [19] includes the nowait directive for target re-
gions, ensuring that a stream of target invocations can be queued
on the device for immediate back-to-back execution. We hypothe-

sise that this functionality will have a significant influence on the
target overheads.

Overall, the complexity involved in developing the OpenMP
4.0 port was low, but required more specialist knowledge than
OpenMP 3.0, especially in managing the flow of data to and from
the device. One small difficulty we encountered was that the current
OpenMP 4.0 standard does not perform deep copies of members of
Fortran datatypes inside the map directives. In order to overcome
this problem, it was necessary to pass all variables individually to
functions that map data onto the device. We believe that this small
restriction could present a surprisingly significant overhead for a
large application with pervasive use of custom datatypes.

Also, the target data regions are currently constrained to lexi-
cally structured scopes, which was not an issue for porting Teal.eaf
but may not scale well to more complicated applications. This issue
is addressed in the OpenMP 4.5 specification with the introduction
of the unstructured target enter data and target exit data direc-
tives.

3.2 OpenACC

Our OpenACC implementation of TeaLeaf was completed after the
OpenMP 4.0 port, and we found that the two approaches had many
similarities. In fact, it was possible to use the OpenMP 4.0 codebase
as a starting point, changing the directives but maintaining the same
data transitions.

Our final design embellished each of the data-affecting loops
with the kernels directive, affording the compiler as much flexi-
bility as possible when generating the offloading code. To success-
fully compile all of the loops as accelerator kernels, it was further
necessary to append loop independent to each of the directives,
telling the compiler that the iterations can be executed in parallel.
Finally, to achieve the best possible performance all of the loops
were collapsed, ensuring enough work was available to the target
device. The collapse statement certainly improves performance on
the GPU, but might make performance worse on the CPU.

As with OpenMP 4.0, a data region was created at the highest
possible scope, ensuring that data was kept on the device for an
entire step of the solver, reducing the amount of data transfer be-
tween host and device. Once we had determined the best approach
for parallelising an individual loop, the port took little time to im-
plement, presenting similar complexity to the OpenMP 4.0 port. In
future we want to take the PGI 15.10 compilers and test how the
OpenACC models translates onto CPUs, and discover what level
of performance portability is achievable.

3.3 Kokkos

To port TeaLeaf to use Kokkos, every data-affecting function was
wrapped into a functor, which included a template declaration, con-
structor, overloaded function call operator, and set of local vari-
ables. Generally, the simple reductions in TeaLeaf could be han-
dled by the default Kokkos implementation, which initialises the
reductee to zero and aggregates the value from all sources. In the
one Tealeaf kernel where a multi-variable reduction was required,
it was necessary to write custom initialisation and join functions
which further extended the code size of the functor. Also, all com-
munication between the host and device had to be handled with the
Kokkos abstract copy functions, necessarily exposing some mem-
ory management complexity.

Because each functor in Kokkos flattens the iteration space and
provides a single index parameter, it was necessary to reform each
cell’s spatial location to exclude the halo regions from the compu-
tation. Our original implementation ignored the halo cells using a
conditional statement within the functor body, but it transpired that
Intel MIC native compilation did not optimally handle the local
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using namespace Kokkos;

// call from host
parallel_for(TeamPolicy<DEVICE>(dims.x - 2*halo, kernel);

// Inside Functor
KOKKOS_INLINE_FUNCTION
void operator()(const int index) const

{
int team_offset = (team.league_rank() + halo) * dims.y;
parallel_for(TeamThreadRange(team, halo, dims.y-halo),
[&] (int& j)
{
int index = team_offset + j;
p[index] = beta * p[index] + r[index];
1)
}

Figure 7. Kokkos kernel implementing hierarchical parallelism for
re-encoding loop-level halo exclusions.

conditions. Collaborators from Sandia National Laboratories pro-
posed an alternative approach using hierarchical parallelism.

This solution was incorporated into each performance critical
functor, introducing layers of parallelism throughout the code in
the form of nested lambda functions. Figure 7 demonstrates two-
dimensional hierarchical parallelism added to the functor in Figure
4, and if three-dimensional exclusions were needed, an additional
nested lambda statement would be required. When performing a re-
duction, additional code is needed to critically add the results from
each team. This additional control over the parallelism allows the
halo exclusion to be encoded back into the iteration space, which is
more abstract and well expressed than a loop-body conditional, but
does significantly increase the complexity of each call.

We believe that a key requirement of models like Kokkos is that
they reduce the barrier to entry for scientific application developers
wanting to target heterogeneous platforms. They must limit the dis-
tance between the development effort required of a basic OpenMP
F90/C application and a portable solution written with their APIs.
Kokkos can now be written using lambda expressions instead of
the templated functor syntax, making the code significantly more
succinct, however, the lack of support in CUDA 7.0 meant this im-
provement could not be evaluated in our research. When using the
lambda style, Kokkos presents a convenient and expressive style
that abstracts platform-specific complexities, making it a powerful
model for new applications using C++11.

34 RAJA

As RAJA is currently still in pre-release development, our imple-
mentation may not be representative of the style that will be re-
quired to target GPUs and accelerators. However, for targetting the
CPU, the port required little knowledge beyond C++ lambda func-
tions, and involved a similar development effort to OpenMP 3.0.
Porting to RAJA required changing all of the main loops to be
lambda calls, and creating IndexSets to handle the data traversal.
Because RAJA wraps each function’s iteration space into an indi-
rection array, it was possible to exclude the halo boundaries with-
out any explicit conditions or index calculations in the loop body.
While this did make each of the lambda calls succinct, the pre-
computation of those indirection lists still had to be occur earlier in
the application. Given lots of repetitive access patterns throughout
an application this would likely lead to a reduction of code when
compared to OpenMP, but for cases where data traversal is fairly

diverse between functions, this may lead to a bloat of decoupled
code that generates the indirection lists.

The Tealeaf application does not require particularly compli-
cated data access patterns, and so our evaluation cannot give much
insight into the full power of this feature. We do however believe
that, when introducing RAJA into large codebases, careful design
will be required to outline exactly where the indirection array ini-
tialisation belongs.

We did find that it was necessary to create our own implemen-
tations of the dispatch functions, to handle situations where we had
multiple reduction variables, and for multiple indexing. This flexi-
bility was very useful, but could potentially inhibit long-term porta-
bility, as the custom implementations diverge away from the core
RAJA implementation over time.

Our impression of RAJA is that, given it is not yet released, the
philosophy is sound, and its use of C++11 features made porting
the application very straightforward. Should RAJA maintain this
usability once functional portability is improved, we expect it to
represent a desirable approach to developing new parallel applica-
tions using C++11.

3.5 CUDA

CUDA is well discussed in other research [3, 11, 20], but overall we
found that it exposed greater complexity than all of the ports except
for OpenCL. In order to port TealLeaf to CUDA we essentially
converted all of the loops into CUDA kernels, and wrote data
copying and reduction logic. While this was close in development
effort to Kokkos, CUDA was more complex, primarily because it
was necessary to create a custom GPU-specific reduction, including
reduction code inside all of the individual reduction-based kernels.

Assuming a 1D grid of 1D blocks of threads, you also need
to calculate a block size and corresponding number of blocks, as
well as checking for iteration overspill from within the kernels. Im-
portantly, CUDA offers no portability beyond NVIDIA GPUs, and
offers several features that can potentially increase this complexity
for potentially improved performance.

3.6 OpenCL

Our immediate impression of OpenCL is that it exposed more com-
plexity than the other models, and also required more boilerplate
code to handle the abstract model. However, this model allows the
framework to support many different architectures, and offer the
greatest functional portability of any of the models presented in
this paper. It also means that there is a lot of scope for tuning for a
particular device, should it be necessary. Once the boilerplate code
is complete, the porting experience is not much more complicated
than CUDA, requiring some additional abstract code when kernels
and buffers are created.

One important complication with OpenCL is the reductions as,
similar to CUDA, they have to be manually written but, contrary
to CUDA, they potentially have to target multiple different devices.
In our case, targetting the CPU, GPU and KNC, we would ideally
create device-specific reductions for each of them that take advan-
tage of the device characteristics, but this puts the responsibility on
the developer and inhibits long term portability.

OpenCL 2.0 includes built-in workgroup reductions that can be
implemented by particular vendors, and may offer an important
improvement for performance portability. To reduce the complexity
of OpenCL, there are C++ and Python wrappers, which allow some
improvement in the host-code syntax.

4. Mesh Convergence Performance Analysis

Each of the ports were tested individually using the same problem
parameters for the three solvers: CG, PPCG and Chebyshev. The
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Device Peak BW STREAM BW
Xeon E5-2670 CPUx 2 102.4 GB/s 76.2 GB/s
NVIDIA K20X GPU 250.0 GB/s 180.1 GB/s
Xeon Phi 5110P KNC  320.0 GB/s 159.9 GB/s

Table 2. Devices and corresponding memory bandwidth (BW).

testing was performed on the Blue Crystal supercomputer at the
University of Bristol, and the Swan XC40 supercomputer provided
by Cray Inc., using the modern HPC devices listed in Table 2.

All of the results presented are for a mesh size of 4096x4096,
which represents the point of mesh convergence for the problem,
where a larger mesh size would provide no additional scientific
information.

41 CPU

The CPU results were collected on dual socket Intel Xeon E5-2670
8-core Sandybridge processors, with 16 threads and thread affinity
set to compact. All of the models except for CUDA support parallel
execution on CPU architectures.
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Figure 8. Results for dual socket Intel Xeon E5-2670 CPUs solv-
ing across a 4096x4096 mesh (lower is better).

The pure OpenMP implementations are the fastest options,
with the C++ implementation performing worst on the Cheby-
shev solver, experiencing 15% increased runtime compared with
the Fortran 90 version. Our research found that this performance
difference occurs for identical TeaLeaf code, depending on whether
it was compiled as C or C++, with Intel compilers (15.0.3).

Kokkos demonstrates excellent performance across all of the
solvers, with at most a 10% penalty compared to the C++ imple-
mentation. This is a strong indication of the model’s potential, and
ability to output well configured and optimised code.

The RAJA port exhibits a roughly 20% penalty for the CG and
PPCG solvers, but the Chebyshev solver consistently requires an
additional 40% solve time. We hypothesised that, as the use of in-
direction lists in RAJA precludes vectorisation, the performance
could be indicative of the role that vectorisation plays in good per-
formance for the Chebyshev solver. By creating proof of concept
RAJA loop implementations that utilised the OpenMP 4.0 simd
statement (RAJA SIMD), we were able to improve this performance
by around 20% for the Chebyshev solver bringing it in line with the
other solvers.

The OpenCL CPU implementation suffered from very high
variance, with minimum runtime of 1631s and maximum of 2813s

across 15 tests. While we do not know exactly why this variation
was occuring, we have observed that the Intel OpenCL implemen-
tation uniquely doesn’t use OpenMP to handle the CPU parallelism,
instead using Intel Thread Building Blocks (TBB). Intel TBB oper-
ates a non-deterministic work-stealing scheduler [10], and we have
considered that the variability may have been affected by this func-
tionality. If developer directed thread affinity control were possible,
we expect this variance could be limited. Lee et al. [12] take this
point even further and suggest that affinity control would likely al-
low enhanced performance tuning of OpenCL in general.

Overall, the performance was quite consistent across the models
on the CPU and, excepting some minor performance issues, at most
a20% performance penalty is likely to be observed by choosing any
of the performance portable options.

42 GPU

The results were collected on an NVIDIA Tesla K20X using CUDA
7.0, hosted on Cray Inc.’s XC40 Swan supercomputer. It is impor-
tant to re-iterate here that OpenCL is the only option that can also
target AMD GPUs, which gives it an advantage over the other mod-
els in terms of functional portability. Also, Kokkos uses template
meta-programming to re-write the application code into CUDA,
and OpenCL and OpenACC directly output PTX code.
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Figure 9. Results for GPU implementations on an NVIDIA K20X
solving across a 4096x4096 mesh (lower is better).

The performance results show that both CUDA and OpenCL
perform almost identically, and achieve better results than the other
models. This is a very good result that shows that OpenCL is able to
perform exceptionally well on the GPU, matching the non-portable
and device-optimised CUDA implementation.

OpenACC achieved acceptable results for all of the solvers, with
a roughly 30% penalty for CG and 10% for the other two solvers,
but it must be recognised that the port was the easiest to develop
for the GPU.

The Kokkos implementation also exhibits very good perfor-
mance for the Chebyshev and PPCG solver, suffering less than a
5% performance penalty compared to the CUDA implementation.
Unfortunately, the CG solver demonstrates an unexplained perfor-
mance problem, requiring roughly 50% additional solve time com-
pared with OpenCL and CUDA. In order to test this issue we also
attempted to test on an NVIDIA K20c with CUDA 6.5, but saw
identical problems with the CG solver. Given the results for the
other solvers, we expect that this is a performance issue that could
be fixed or improved given further investigation.
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Some collaboration with Sandia did find that a solution using
hierarchical parallelism (Kokkos HP) was able to improve the per-
formance by around 10% for the CG solver. Unfortunately, this was
to the detriment of the PPCG and Chebyshev solver, which expe-
rienced a more than 20% overhead following the change. In spite
of the problem with the CG solver, the results for Kokkos are im-
pressive and demonstrate a good level of performance portability
between Intel CPU and NVIDIA GPU architectures.

4.3 Intel Xeon Phi Knights Corner

The results were collected using 60 cores with 4 hardware threads
(240 threads total) and thread affinity set to compact. Our overall
impression is that the KNC architecture is challenging to achieve
reasonable and consistent performance on, and we found that sig-
nificant differences in performance profile can be seen between dif-
ferent versions of the device.
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Figure 10. The results on a 61 core Intel Xeon Phi Knights Corner
SE10P on a 4096x4096 mesh (lower is better).

The performance results clearly show that the performance on
the KNC device was far more varied between the programming
models, which is indicative of the challenge it posed. The na-
tively compiled OpenMP Fortran 90 implementation of Tealeaf
represents the best possible performance achievable for all solvers,
maintaining fairly consistent runtimes between the three solvers.

The OpenMP 4.0 port required 45% additional runtime for
the CG solver compared to the Fortran 90 implementation, but
achieved performance to within 10% for both the Chebyshev
and PPCG solvers. As previously discussed, we were able to im-
prove upon our portable OpenMP 4.0 implementation by reducing
the number of target regions, achieving identical performance to
the Fortan OpenMP native port, but making the application non-
portable.

Our OpenCL implementation suffered from unusual behaviour,
achieving acceptable performance for the Chebyshev and PPCG
solvers, but poor performance for the CG solver at nearly 3x worse
performance than the best port. We did observe that running this
identical code on a different version of KNC resulted in the CG
solver runtime reducing to roughly 1100s, with the other solvers
maintaining the same performance. This would appear to suggest
that there is a performance problem that is being caused by an
issue with the architecture or software, as opposed to improper
implementation.

Although RAJA does not come with any automatic support for
native compilation, it was straightforward to use the mmic switch
to natively compile the RAJA port. The results above show that

this did not lead to good performance compared to the Fortran
90 OpenMP implementation, with substantially higher runtimes re-
quired for all solvers. We know that vectorisation is very important
for performance on the KNC and plan to test this with our proof-
of-concept SIMD implementation in the future.

As previously discussed, the Kokkos hierarchical parallelism
variant (Kokkos HP), was developed by Sandia National Labora-
tories to overcome a performance issue with halo exclusion condi-
tions being present in the loop body. This solution originally came
about because the conditions in the body of each loop are handled
particularly inefficiently when being natively compiled. The hier-
archical parallelism solution re-encodes this information so that no
check is required, roughly halving the solve time for the CG and
PPCG solvers on the KNC.

Overall, the results show that each model is able to achieve
acceptable results for at least one solver with some tuning. We
believe that this is enough to suggest that performance portability
could be possible given more maturity and focus on the KNC
architecture.

5. Even-Step Mesh Increment Analysis

The previous results focus upon the mesh convergence limit be-
cause it represents the point at which the programming models are
subjected to the most intensive yet realistic data load. It is also inter-
esting to observe the behaviour that occurs at lower problem sizes,
as it reveals interesting details not seen at the convergence limit.
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Figure 11. A plot of the runtime as problem size is increased in
even steps for all models (lower is better).

There are many distinct features of the plot in Figure 11, in par-
ticular all of the models present different runtime growth patterns.
The problem sizes are shown up to 1225x1225, or 15 x 10° cells,
an order of magnitude smaller than the number of cells at a mesh
size of 4096x4096. Several of the programming models appear to
have a very fast runtime growth rate, in particular OpenMP 4.0,
OpenACC, Kokkos KNC and OpenCL KNC. This growth in run-
time eventually slows and the models become more consistent with
the others as the mesh convergence limit is reached. Each of those
models has a high intercept on the plot and we expect that this run-
time growth is indicative of large overheads in each of the models
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that are hidden as the amount of computation and data processing
is increased.

Another notable feature is that the OpenMP Fortran 90 im-
plementation achieves the best performance up to 9 x 10° cells,
but then the CPU models experience a gradual decrease in perfor-
mance. This change point appears to indicate when the CPU caches
have become saturated and data needs to be stored in DRAM, over
time creating a memory latency and bandwidth bottleneck.

It can also be seen that the GPU-targetting implementations
continue to benefit from linear runtime growth, which demonstrates
that they are effectively utilising the device’s data processing ca-
pabilities. For the KNC, most of the models suffer from the large
overheads at these mesh sizes, but the OpenMP Fortran 90 imple-
mentation demonstrates fairly linear runtime growth similar to the
GPU-targetting models.

6. Bandwidth Analysis

As Tealeaf is a memory bandwidth bound application, observ-
ing the peak bandwidth achieved on each device presents an im-
portant measure of the success of the models at taking advan-
tage of the targetted resources. We present the average bandwidth
achieved across all solvers relative to the bandwidth achieved by
the STREAM benchmark on each of the target devices.
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Figure 12. The percentage of STREAM bandwidth achieved by
each model averaged over all solvers (higher is better).

The results unequivocally show that the device-optimised im-
plementations, OpenMP 3.0 and CUDA, achieve the best overall
memory bandwidth utilisation. Aside from this, we see that most
of the performance portable options fall within a 20% bandwidth
reduction from this point, with several of the CPU and GPU alter-
natives experiencing at most a 10% memory bandwidth penalty.

The Kokkos implementation performs to within 10% of the best
achieved memory bandwidth for both the CPU and GPU, which
is a very impressive result and clearly advocates the potential of
the model. The results on the KNC are poor but the improvement
seen with the hierarchical parallelism update show that better per-
formance may be possible given some device-specific tuning or im-
plementation maturity.

The hierarchical parallelism implementation of Kokkos im-
proved performance on KNC and maintained CPU performance,

but the performance reduction of Chebyshev and PPCG solvers on
the GPU mean there are some trade-offs. It would be possible to
achieve better average performance by combining both solutions
with some conditionality regarding the target device and solver.
However, this starts to put the performance portability responsibil-
ity back in the hands of the application developer, and makes the
resulting code much more complicated than maintaining a single
solution throughout.

7. Related Work

Herdman et al. [5] performed a similar analysis to the one presented
in this research, evaluating OpenACC, OpenCL and CUDA using
a sister mini-app of TeaLeaf’s, CloverLeaf.

Rupp et al. [21] perform an extensive inter- and intra-vendor
performance portability investigation of OpenCL using miniature
linear algebra kernels. Concentrating on structured grid codes,
MclIntosh-Smith et al. [16] used three benchmarks, including the
mini-app CloverLeaf, to investigate the performance portability
of OpenCL across a number of devices. Similarly, Mallinson et
al [15] compared the performance of the OpenCL implementa-
tion of CloverLeaf relative to the performance attainable using
device-optimised ports. Also concentrating on low-level frame-
works: CUDA, OpenCL, and AMD Intermediate Language, Du et
al. [20] investigated inter- and intra-vendor performance portability
on GPU devices.

On the topic of directive-based programming models targetting
accelerators, Lee et al [13] evaluated a range of models with 13
distinct benchmarks. In many cases the performance matched their
hand-tuned CUDA implementations, but certain optimisations were
difficult or even impossible to express with the high-level directive
models.

Using a pattern-based comparison, Wienke et al. [26] compared
both OpenMP 4.0 and OpenACC, finding that OpenACC exposes
more features overall, but that OpenMP 4.0 will likely achieve bet-
ter long-term adoption because of its success on the CPU. Teodoro
et al [24] evaluate the performance profiles of a KNC, GPU, and
CPU with respect to Microscopy Image Analysis. They concluded
that the devices had a significant variance between particular oper-
ations, exposing some preference for particular operations.

8. Future Work

TeaLeaf has a specific performance profile, and it would be very
useful to consider the success of each model relative to applications
that have different requirements such as CloverLeaf and the SN
Application Proxy (SNAP). As described throughout, many of the
programming models evaluated are awaiting compiler support for
particular platforms. Performance portability could be assessed on
additional target hardware not investigated in this paper, or where
there are novel architectural differences such as the Intel Xeon
Phi Knights Landing with its high bandwidth memory. Finally, we
believe that it would be useful to investigate each model’s ability
to handle more complicated requirements such as heterogeneous
compute or adjusting data layouts per device.

9. Conclusions

We have used the mini-app TeaLeaf to test a range of parallel pro-
gramming models, exposing their functional portability and per-
formance portability on three distinct modern HPC devices. Our
research has shown that among the increasing selection of parallel
programming models, there is a varied range of techniques being
used to exploit increasing node-level parallelism, each presenting
individual levels of complexity and support for scientific applica-
tion development.
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Given that the performance has been reasonable for all of the
programming models, we expect that the future of such models will
depend on their ability to improve the ease with which applications
are developed. Beyond the functional portability offered, the level
of complexity that a model exposes is likely to become the deciding
factor as to whether a model is useful to a particular application
developer.

Kokkos and RAJA have been shown to be promising options for
performance portability that are growing in usefulness as they ma-
ture. However, those models will still require up-front investment
to migrate existing C and especially Fortran codes, and may need to
expose additional complexity to achieve good performance across
multiple devices. Although a port written with Kokkos today would
likely have to use functors, which are quite verbose, the more ma-
ture lambda implementations possible with both Kokkos and RAJA
are definitely competitive with those directive based models for
ease of development.

In spite of the variability issues on the CPU, OpenCL is one
of the most performance portable options. Its extensive support
on a range of devices not targetted by the other models, also sets
OpenCL apart. The directive based programming models represent
the best case in terms of development ease, and the fact that they
are language-agnostic between C and Fortran is also a significant
benefit. If implementations of OpenMP 4.0 become available that
can match OpenACC’s performance, we predict it will be well
adopted by scientific application developers as a usable interface
for future-proof performance.

Acknowledgments

This work was funded by an EPSRC CASE studentship supported
by the UK Atomic Weapons Establishment. The authors would like
to extend our gratitude to David Beckingsale at Lawrence Liver-
more National Laboratory for his support with the RAJA port, and
Christian Trott from Sandia National Laboratory for his support
with the Kokkos port. We would also like to thank the University of
Bristol Intel Parallel Computing Center (IPCC), High Performance
Computing Group, and Advanced Computing Research Centre. In-
tel for the provision of an Intel Xeon Phi, and Cray Inc., for allow-
ing us to test on their Swan XC40 supercomputer.

References

[1] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, et al. The Landscape
of Parallel Computing Research: A View from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley, Dec 2006.

[2] M. Boulton and S. McIntosh-Smith. ~ Optimising sparse itera-
tive solvers for many-core computer architectures, 2014. URL
http://www.many-core.group.cam.ac.uk/ukmac2014. UK

Many-Core Developer Conference (UKMAC).

[3] S. Che, M. Boyer, et al. A Performance Study of General-Purpose
Applications on Graphics Processors using CUDA. Journal of Parallel
and Distributed Computing, 68(10):1370 — 1380, 2008.

[4] H. C. Edwards, C. Trott, and D. Sunderland. ~Kokkos: Enabling
manycore performance portability through polymorphic memory ac-
cess patterns. Journal of Parallel and Distributed Computing, T4(12):
3202-3216, 2014.

J. Herdman, W. Gaudin, S. McIntosh-Smith, M. Boulton, D. Beck-
ingsale, A. Mallinson, and S. Jarvis. Accelerating Hydrocodes with
OpenACC, OpenCL and CUDA. In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages
465-471. IEEE, 2012.

[6] M. Heroux, D. Doerfler, et al. Improving Performance via Mini-
applications. Technical Report SAND2009-5574, Sandia National
Laboratories, 2009.

[5

[7] R. Hornung, J. Keasler, et al. The RAJA Portability Layer: Overview
and Status. Technical Report LLNL-TR-661403, Lawrence Livermore
National Laboratory, 2014.

[8] Khronos OpenCL Working Group. The OpenCL Specification Version
1.2,2015.

[9] P. Kogge and J. Shalf. Exascale Computing Trends: Adjusting to the
”New Normal” for Computer Architecture. Computing in Science &
Engineering, 15(6):16-26, 2013.

[10] A. Kukanov, V. Polin, and M. Voss. Flow Graphs, Speculative Locks,
and Task Arenas in Intel® Threading Building Blocks.

[11] D. Lee, 1. Dinov, B. Dong, et al. CUDA optimization strategies for
compute-and memory-bound neuroimaging algorithms. Computer
methods and programs in biomedicine, 106(3):175-187, 2012.

[12] J. H. Lee, K. Patel, N. Nigania, H. Kim, and H. Kim. Opencl per-
formance evaluation on modern multi core cpus. In Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International, pages 1177-1185. IEEE, 2013.

S. Lee and J. Vetter. Early evaluation of directive-based gpu program-
ming models for productive exascale computing. In Proceedings of the
International Conference on High Performance Computing, Network-
ing, Storage and Analysis, page 23. IEEE Computer Society Press,
2012.

C. Liao, Y. Yan, B. de Supinski, D. Quinlan, and B. Chapman. Early
Experiences with the Owill primarily be targettable aopenMP Accel-
erator Model. In OopenMP in the Era of Low Power Devices and
Accelerators, pages 84-98. Springer, 2013.

[15] A. Mallinson, D. Beckingsale, W. Gaudin, J. Herdman, and S. Jarvis.
Towards Portable Performance for Explicit Hydrodynamics Codes.
2013.

S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price. On the Per-
formance Portability of Structured Grid Codes on Many-Core Com-
puter Architectures. In Supercomputing, volume 8488 of Lecture
Notes in Computer Science, pages 53—75. Springer International Pub-
lishing, 2014.

[17] A. Munshi, B. Gaster, T. Mattson, and D. Ginsburg. OpenCL Pro-
gramming Guide. Pearson Education, 2011.

[13]

[14]

[16]

[18] OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 4.0, 2013.

[19] OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 4.5, 2015.

[20] D. Peng, W. Rick, L. Piotr, et al. From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU programming.
Parallel Computing, 38(8):391 — 407, 2012.

[21] K. Rupp, P. Tillet, F. Rudolf, et al. Performance Portability Study of
Linear Algebra Kernels in OpenCL. In Proceedings of the Interna-
tional Workshop on OpenCL 2013 & 2014, IWOCL ’14, pages 8:1—
8:11, New York, NY, USA, 2014. ACM.

[22] A. Sidelnik, S. Maleki, et al. Performance portability with the Chapel
language. In Parallel & Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International, pages 582-594. IEEE, 2012.

[23] J. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in science
& engineering, 12(1-3):66-73, 2010.

[24] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz. Comparative
Performance Analysis of Intel (R) Xeon Phi (TM), GPU, and CPU:
A Case Study from Microscopy Image Analysis. In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International,
pages 1063-1072. IEEE, 2014.

[25] UKMAC. UK Mini-App Consortium: TeaLeaf.
mac.github.io/TeaLeaf, 2015.

[26] S. Wienke, C. Terboven, J. C. Beyer, and M. Miiller. A Pattern-Based
Comparison of OpenACC and OpenMP for Accelerator Computing.
In Euro-Par 2014 Parallel Processing, pages 812—823. Springer, 2014.

[27] Y. Zhang, M. Sinclair II, and A. Chien. Improving performance
portability in OpenCL programs. In Supercomputing, pages 136—150.
Springer, 2013.

http://uk-

2016/1/13



