
 Deakin, T. J., Poenaru, A., Lin, T., & Mcintosh-Smith, S. N. (2020).
Tracking Performance Portability on the Yellow Brick Road to
Exascale. In Proceedings of P3HPC 2020: International Workshop on
Performance, Portability, and Productivity in HPC, Held in conjunction
with SC 2020: The International Conference for High Performance
Computing, Networking, Storage and Analysis (pp. 1-13). [9309052]
(Proceedings of P3HPC 2020: International Workshop on
Performance, Portability, and Productivity in HPC, Held in conjunction
with SC 2020: The International Conference for High Performance
Computing, Networking, Storage and Analysis). Institute of Electrical
and Electronics Engineers (IEEE).
https://doi.org/10.1109/P3HPC51967.2020.00006
Peer reviewed version

Link to published version (if available):
10.1109/P3HPC51967.2020.00006

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via IEEE at P3HPC51967.2020.00006. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/334958644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1109/P3HPC51967.2020.00006
https://research-information.bris.ac.uk/en/publications/a09a2ef5-2758-47b0-a957-748d2ba9bb6c
https://research-information.bris.ac.uk/en/publications/a09a2ef5-2758-47b0-a957-748d2ba9bb6c

Tracking Performance Portability on the Yellow
Brick Road to Exascale

Tom Deakin∗, Andrei Poenaru∗, Tom Lin∗ and Simon McIntosh-Smith∗
∗Department of Computer Science, University of Bristol, UK

Email: {tom.deakin, andrei.poenaru, s.mcintosh-smith}@bristol.ac.uk

Abstract—With Exascale machines on our immediate horizon,
there is a pressing need for applications to be made ready to best
exploit these systems. However, there will be multiple paths to
Exascale, with each system relying on processor and accelerator
technologies from different vendors. As such, applications will
be required to be portable between these different architectures,
but it is also critical that they are efficient too. These double
requirements for portability and efficiency begets the need for
performance portability. In this study we survey the performance
portability of different programming models, including the open
standards OpenMP and SYCL, across the diverse landscape of
Exascale and pre-Exascale processors from Intel, AMD, NVIDIA,
Fujitsu, Marvell, and Amazon, together encompassing GPUs and
CPUs based on both x86 and Arm architectures. We also take
a historical view and analyse how performance portability has
changed over the last year.

Index Terms—performance portability, programming models

I. INTRODUCTION

Exascale-class supercomputers are on the immediate horizon,
and are proving to be built using a diverse range of high-
performance architectures. The United States systems are pre-
dominately heterogeneous GPU-accelerated nodes, whilst the
Fugaku supercomputer in Japan uses a homogeneous many-
core CPU design, which exploits high bandwidth memory
technology similar to GPUs. The GPU accelerators are pro-
vided by different vendors, with three GPU vendors (AMD,
Intel, and NVIDIA) now in this space, along with multiple
CPU vendors, including AMD, Fujitsu (Arm) and Intel. This
range of different classes of architectures, with a choice from
multiple vendors, demonstrates the acute need for developing
performance-portable applications.

Parallel programming models are developed to target these
different systems. Although some of these models are pro-
prietary to specific vendors, the more attractive approaches
are the open and standardised models which allow for a
wide support base and cross-platform ecosystem. OpenMP
and SYCL are two flagship examples of standardised models
which enable us — as developers — to write performance-
portable programs. The Kokkos abstraction framework offers
another approach, adding another layer on top of the choice
of programming model, to insulate users from this choice, at
the expense, of course, of choosing an open-source, but not
industry-standard, model.

This work was supported through ASiMoV under EPSRC grant number
EP/S005072/1.

To further enable the development of performance-portable
programs, in this study we update and greatly expand our
earlier, wide-reaching study on performance portability [1].
We include the latest and greatest architectures, including for
the first time the Arm-based Fujitsu A64FX processor, the
NVIDIA Ampere GPU, and Intel GPUs. Thus, this study spans
the processor architecture design space of the first Exascale
machines.

As this work is an expansion and update of the 2019 study,
we are able to begin to explore the historical perspective for
how performance portability changes over time. The ecosys-
tems surrounding each of the processors have had time to
expand and mature, and therefore by refreshing many of the
results from the original study in 2019 we can track the
progress of support, performance, and performance portability.

In this update, for the first time we include results from
applications written in SYCL. The applications we include
are all open source and were ported for the purposes of this
study, thus representing a contribution to the community in
and of itself. SYCL is a key part of the Exascale ecosystem
for Argonne National Laboratory [2], and is a critical part of
the performance portability landscape today.

The contributions of this study can be summarised as:

• We expand the hardware coverage of our previous study
by including the latest and greatest processors from all
major HPC vendors. This study includes results from the
key architecture tracks that are being used at Exascale.

• Applications developed in SYCL are included in this
study, thus broadening the scope to include the key on-
node programming models that will be used at Exascale.

• We provide a retrospective update on the performance
portability landscape, including how the software ecosys-
tem has evolved to demonstrate improved coverage.

II. METHODOLOGY

We take a similar approach to our prior peer-reviewed rigorous
study into performance portability [1]. To this end, we consider
a number of codes, each written in multiple programming
models. This allows us to target a wide range of processors,
and use a variety of compilers. Where more than one compiler
is available, we test them all and select the best result. As
before, we measure the efficiency of each implementation on
each architecture, with the primary focus that a consistent
and high efficiency is measured across all platforms for any

implementation. This motivates our description of performance
portability:

Definition 1. A code is performance-portable if it can achieve
a similar fraction of performance efficiency on a desired set
of target architectures.
• The efficiency is calculated as either application or archi-

tectural efficiency, as defined by Pennycook et al. [3].
• We expect that efficiency to be high (ideally 80% or more

of peak or best performance).

To this end, we once again set about a broad reaching
survey of platforms and programming models. Each code
is implemented in six parallel programming models relevant
to Exascale: OpenMP, OpenCL, OpenACC, CUDA, Kokkos,
and, in addition for this updated study, SYCL. This collection
represents a range of approaches for performance portability:
compiler directives, modern C++ abstractions, as well as low-
level APIs. A key feature of many of these models is to expose
the programmer to the dual memory spaces of the host and
the attached device, which may be a GPU or indeed the host
CPU itself expressed through this abstraction.

The OpenMP standard is a collection of compiler directives
for programming shared memory CPUs with optional attached
devices which have their own separate memory spaces [4].
There are implicit rules and explicit controls defined for how
data should be moved between the host and device memory
spaces. It is up to the programmer to write directives to
control the data movement between the two memory spaces,
although the compiler (and features in OpenMP 5.0) can assist
with using common directives for expressing parallelism in
both cases. Because of this difference in memory models, the
OpenMP codes we use are not strictly single source; however,
we present unified results for OpenMP as the model itself is
able to target both devices. It is beyond the scope of this paper
to delve into this topic further.

OpenACC began as a trailblazer for the OpenMP standard,
but remains to this day due to the commercial support of
NVIDIA [5]. Compiler directives are used to show which
loops can be parallelised and also to provide rules for mapping
data between the host and device memory spaces. As with
OpenMP, compiler support is provided to selectively ignore
the directives when compiling simply for the host.

OpenCL is an open-standard parallel programming model
from Khronos for programming heterogeneous devices [6].
Parallelism is expressed through kernel programming, where
kernels contain essentially the loop bodies, with multiple
copies executed on the device in parallel. It is a fairly low level
model and as such has historically provided wide platform
support. CUDA follows a similar kernel programming model
to OpenCL, and is a commercial product for programming
only NVIDIA GPUs [7].

Kokkos is a C++ library abstraction layer which enables
programmers to express parallel patterns and data spaces in an
abstract manner, relying on the Kokkos library to map these
to an underlying model such as OpenMP, CUDA or HIP [8].
This approach insulates the programmer from vendor-locked

programming models by providing a path from common code
to a variety of backends, increasing the portability. As an
abstraction layer, compiler support for Kokkos is not required,
which therefore places the burden of writing and maintaining
backeneds on Kokkos itself, rather than shared between the
compiler community. Kokkos supports a kernel style of pro-
gramming, where lambda functions are written to describe the
execution of a single loop iteration (similar to the kernels of
OpenCL) and are executed over a range in parallel.

SYCL is a single-source C++ parallel programming model
for heterogeneous systems [9]. Much of the original design of
SYCL stemmed from the ideas in OpenCL, but it shares many
similarities with C++ abstraction layers such as Kokkos. In
particular, kernels are defined using lambda functions, where
multiple instances are then instantiated on a device, and a
Buffer abstraction is used for data. Based on how buffers
are used in kernels, a dependency graph is constructed for
execution, providing a powerful and convenient tasking model
on top of a kernel-based programming approach. There is
significant momentum behind the SYCL programming model
at present following the announcement by Intel of their support
for it as part of their oneAPI, which is providing a crucial path
to Exascale for the Aurora supercomputer due to be installed
at Argonne National Laboratory [2].

The hardware platforms we used for this study along with
key performance details are summarised in Table I. This
selection covers a wide sweep of the commonly available
processors at the time of writing. Importantly, this list covers
processors from the major hardware vendors in both the CPU
and GPU spaces. For the most part, these architectures fall
somewhere on the roadmap to Exascale-class architectures,
and some are already used in pre-Exascale systems, such as
the Fujitsu A64FX processor. It is important to note where
CPUs are configured in single- or dual-socket systems, since
this can often determine the total memory bandwidth available
on each system, because the number of memory controllers is
typically configured per-socket.

What is common in all these processors (both CPUs and
GPUs alike) is that they contain a large number of cores, and
each of these cores typically provides some form of SIMD
(or vector) parallelism. As such, there is a high degree of
concurrency that needs to be exploited. As the performance
of many HPC applications is bound by the main memory
bandwidth, the trends to increase this resource can also be
seen. GPU accelerators have typically provided an advantage
here by utilising High Bandwidth Memory (HBM), although
with the Intel Xeon Phi (Knights Landing) and now the Fujitsu
A64FX we are seeing CPU-based architectures using the
same technology and offering comparable levels of memory
bandwidth. A key difference here is that such a CPU does not
require heterogeneous programming.

This range of systems also highlights the diversity in
vendors in both CPU and GPU technology. We include three
Arm-based processors alongside four x86-based CPUs. We
also include GPUs from three vendors: AMD, Intel, and
NVIDIA. Whilst not all of these processors are destined for

TABLE I: Tehcnical specifications of the processors used in this study

Processor Type* Vendor Details Cores/
Compute
Units

Clock
(GHz)

Peak
memory
bandwidth
(GB/s)

Peak
FP64
FLOPs
(TFLOP/s)

Cascade Lake 2S CPU Intel Xeon Gold 6248 2 x 20 2.50 282 3.2
Skylake 2S CPU Intel Xeon Platinum 8176 2 x 28 2.10 256 3.8
Knights Landing CPU Intel Xeon Phi 7210 64 1.30 490 2.7
Rome 2S CPU AMD EPYC 7742 2 x 64 2.25 410 4.6
Power 9 2S CPU IBM — 2 x 20 3.20 340 1.0
ThunderX2 2S CPU Marvell — 2 x 32 2.50 288 1.3
Graviton 2 CPU Amazon Arm Neoverse N1 64 2.50 205 0.6
A64FX CPU Fujitsu — 48 (+4) 2.20 1024 3.4
P100 GPU NVIDIA PCIe 56 1.13 732 4.0
V100 GPU NVIDIA SXM2 80 1.37 900 7.0
A100 GPU NVIDIA — 108 1.40 1555 9.7
RTX 2080 Ti Consumer GPU NVIDIA — 68 1.25 616 0.4
Radeon VII Consumer GPU AMD — 60 1.40 1000 3.5
MI50 GPU AMD — 60 1.73 1024 6.6
Iris Pro Gen 9 Integrated GPU Intel i7-6770HQ/Iris Pro 580 72 2.6/0.4 34 0.9
* “2S” indicates a dual-socket system

announced Exascale machines, the specific processors here
all lie directly on a path to Exascale-era processors. This
diversity of architectures, and in particular the diversity in
attached accelerators, shows the need for writing performance-
portable programs. It is no longer possible to write vendor-
specific code, as there is now a wider landscape of vendors
and processors to program for.

In this study, by focusing on portable programming models,
we can provide insights into the current performance porta-
bility landscape. Our previous study provided a wealth of
results [1], and having this historical data allows us to compare
and assess how the landscape is changing. We restrict this
historical analysis to the subset of platforms common between
the two studies; see Section V for this analysis. In future years
we hope to extend this analysis and begin to observe and track
changes to the performance portability ecosystem over time.

III. BABELSTREAM

BabelStream is an implementation of the traditional McCalpin
STREAM kernels with a number of key differences in order
to better align with modern HPC software styles [10], [11].
Arrays are allocated on the heap as opposed to the stack, and
the size of the arrays is known only at run-time rather than at
compile-time. This is in keeping with HPC codes which might
read their input in from a file, for instance. BabelStream also
has wide support for different platforms by providing imple-
mentations in many different parallel programming models in
a common framework.

In this study we explore the performance portability of
the Triad and Dot kernels. These kernels are both memory-
bandwidth-bound, and are highly relatable building blocks to
patterns found in many codes. For the Triad kernel we consider
two problem sizes so as to explore performance portability
of different inputs. We include this in response to the large
last-level cache sizes of some of the processors in this study,
so as to ensure the data is streamed from main memory
rather than held in cache. However some devices do not

have sufficient memory capacity for the larger problem size.
The dot-product kernel is shown to explore the performance
portability potential of reduction kernels.

A. Triad

Triad is the typical kernel used to measure the sustained
memory bandwidth attainable on a given processor. It reads
two large arrays and sums a multiple of one to the other,
storing the result in a third array. Every update to the array
is independent, with no sharing of data between array entries
(unlike in a stencil update), and so it is easy to parallelise
across the entire length of the array. The arrays are large, and
should be held in main memory. As the kernel has no reuse
of array elements, data must be moved from main memory,
through the cache hierarchy, and then written back to main
memory.

Figure 1a shows the achieved memory bandwidth in
GBytes/s (where 1 GByte is 109 Bytes) for arrays of 225

FP64 elements. As a throughput metric, the higher values
indicate better performance. In the figure, an ‘X’ represents an
impossible combination of platform and programming model
(such as CUDA on anything not from NVIDIA), and ‘E’
represents a value which is possible but we encountered an
error whilst collecting the result. The colour map ranges from
low numbers in green to high numbers in yellow.

For the first time we see Arm-based CPU architectures with
HBM technology: the A64FX processor. This offers memory
bandwidth similar to GPUs such as NVIDIA’s V100. Note
that on A64FX with the Fujitsu compiler we had to ensure
the pointers were correctly labelled with __restrict and
const qualifiers in order to attain this bandwidth; we expect
this will not be required as the compiler matures. The AMD
Rome system uses traditional DDR memory technology and
has the highest bandwidth of all the CPUs with this constraint.
Note that care must be taken to recall which CPU systems
are dual- and single-socket when comparing bandwidth: the

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

203
211
448
305
224
229
173
804
552
788

-
533
488
729
26.8

163
180
315
481
241
226
169
595
559
831

-
555
781
708
X

68.5
70.6
322
162
158
X
X
X

551
830

1361
555
99.0
88.3

X

X
X
X
X
X
X
X
X

551
837

1370
556
X
X
X

98.0
113
287
64.9

X
93.5

X
X

552
X

1356
554
821
778
27.3

100
110
263
287
200
217
54.3
147
526
774

1358
530
808
E

27.4

BabelStream Triad array size=2**25

(a) Sustained memory bandwidth in GBytes/s, higher is better

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

72%
83%
91%
74%
66%
80%
84%
79%
75%
88%

-
87%
49%
71%
79%

58%
70%
64%

118%
71%
79%
82%
58%
76%
92%

-
90%
78%
69%

X

24%
28%
66%
40%
47%

X
X
X

75%
92%
88%
90%
10%
9%
X

X
X
X
X
X
X
X
X

75%
93%
88%
90%

X
X
X

35%
44%
59%
16%

X
32%

X
X

75%
X

87%
90%
82%
76%
80%

36%
43%
54%
70%
59%
75%
26%
14%
72%
86%
87%
86%
81%

E
80%

BabelStream Triad array size=2**25

(b) Architectural efficiency, higher is better

Fig. 1: BabelStream Triad results for arrays of length 225 FP64 elements

Graviton 2 processor is single socket, and as such shows highly
competitive per-socket bandwidth.

The NVIDIA A100 GPU achieves the highest bandwidth of
all our platforms, in line with the highest peak performance
as listed in Table I. The Intel IrisPro GPU is an integrated
GPU within the CPU package and shares access to the same
physical memory as the CPU. As such, we do not expect
the peak performance to be competitive with the other HPC
GPUs; however, it is important to include Intel GPU results in
order to have sufficient coverage of Exascale technologies. The
AMD MI50 GPU likewise represents the best available GPU
from AMD at the present time and has similar performance
to NVIDIA’s V100 GPU.

In contrast to our previous study [1], three models show al-
most complete coverage of all the platforms: OpenMP, Kokkos
and SYCL. This indicates that those models are portable across
a wide range of processors; portability is a prerequisite to
performance portability.

The architectural efficiency is computed based on the results
in Figure 1a as a fraction of the theoretical peak in Table I.
We plot this efficiency in Figure 1b. Here the colour map
instead ranges from low numbers in pink to high numbers in
green: we feel that the pink clearly highlights where efficiency
is low. Consistent high efficiency indicates good performance
portability under our definition in Section II.

Plotting efficiency shows the effects of the substantial last
level cache on the AMD Rome CPU: 2 × 256 = 512 MiB
on the dual-socket system. The input arrays are 256 MiB in
size, yielding a total application footprint of 768 MiB, only 1.5
times larger than the cache size. According to the STREAM
run rules1, this is not a valid configuration as much of the
arrays can be held in cache. We see this for the Kokkos
result, where the efficiency exceeds 100% of the main memory
bandwidth, indicating cache effects are in play. This motivates
the need to consider a larger problem size.

1https://www.cs.virginia.edu/stream/ref.html#size

1) Performance portability of BabelStream Triad: Although
the heatmaps can provide intuitive information about the
distribution of efficiencies, and it looks like the three portable
models identified above (OpenMP, Kokkos and SYCL) are
doing well in also providing good performance in general,
we can be more precise by using the performance portability
metric PP as defined by Pennycook et al. [3]. PP is defined as
the harmonic mean of efficiencies over a set of platforms, or
else zero if one of more platforms in the set is not supported.
Table II shows the performance portability metric results for
each programming model calculated from the architectural
efficiencies shown in Figure 1b. For all models as there are
some platforms where we were not able to generate a result,
we observe PP values of zero for all platforms according to
the definition of the metric.

We restrict the platforms for each model to only those
where results were generated, then recompute the PP. For
those platforms where results do not exist, the ecosystem
needs enrichment from (primarily) vendors in order to bring
support for these models to their platforms: we remind the
readers of the dangers of using proprietary models where
such support can only be provided from one source. For
OpenMP this excludes the A100 GPU, and we see a PP
showing the expected performance is 75% of architectural
efficiency. Similarly, Kokkos shows a similar PP = 75%.
OpenACC is low, although this was clear from the low values
on many platforms in Figure 1b; there are also only two-thirds
of the platforms with results. CUDA likewise has very low
portability, but does attain close to the peak performance on
the NVIDIA GPUs it will run on (note architectural efficiency
of 100% is unachievable).

The PP for OpenCL combined with the absent results from
Figure 1b is disappointing. OpenCL is demonstrating high
performance on GPUs, but on CPUs we find that either the
runtime is lacking performance, or on Arm platforms there
is not official support (we used POCL on Arm and IBM to
generate the results we could, but not all platforms were able

TABLE II: Performance portability metric for BabelStream Triad

PP by programming model
Platform set OpenMP Kokkos OpenACC CUDA OpenCL SYCL

All platforms 0 0 0 0 0 0
All non-zero platforms 75.2 74.7 27.3 86.1 46.6 47.4

Supported CPUs 77.9 71.6 35.9 0 30.8 36.1
Supported GPUs 71.8 80.2 22.8 86.1 81.4 81.7

Large input non-zero platforms 56.2 69.5 27.2 85.9 44.8 55.1

to build POCL). This issue bleeds into SYCL a little, which
on Intel CPUs uses the Intel OpenCL runtime for support. The
Figure 1b (and [12]) shows the tightly coupled performance
between OpenCL and SYCL on these platforms. We find in
general that SYCL performance is close to that of the model
used for the underlying implementation.

In order to expand on the differences between PP for
OpenMP, Kokkos and SYCL, we considered the performance
portability over CPUs and GPUs in isolation in order to see if
support for a class of processors are limiting the performance
of any given model. We again compute PP over the supported
CPUs and GPUs for each model, presenting the numbers in
the final two rows of the first section of Table II.

For Kokkos, we find that similar PP values are attained on
both classes of processor, with PP on CPUs a little lower than
on GPUs. This shows that Kokkos is successfully providing
isolation from the underlying implementations required to
run on the hardware from different vendors. This abstraction
comes at a cost however, for Kokkos is not a standard
but an open-source project and so support for the various
backends comes from the core Kokkos team at Sandia National
Laboratories and other collaborators to the project. As such we
could not run on an Intel GPU with Kokkos at this time as
such devices are not supported by the Kokkos build system.
As a library abstraction layer too, Kokkos must maintain
this layer in isolation; many vendors’ compilers and parallel
runtimes are collaborating around the LLVM project as a
common infrastructure helping mature the wider ecosystem
in partnership. Kokkos is a very real pragmatic solution for
providing performance portability but with a high cost of
ownership; standards based programming models on the other
hand have active support directly from the vendors.

We find the two PP values for OpenMP on CPU and
GPUs shows promise, and the gap between performance on
CPUs and GPUs is similarly small as it is for Kokkos. The
GPU performance is much improved from our earlier studies,
however still trails a little behind the CPU performance. The
community has much improved over the last year, with GCC
10 bringing support for NVIDIA and AMD GPUs, and Intel’s
C++ compiler as shipped under oneAPI (note this is distinct
from both the DPC++ compiler and their usual production
compiler) support OpenMP on Intel GPUs. Combined with
the support in Cray’s CCE and LLVM’s Clang, the base for
support is very wide. On CPUs however, OpenMP continues
to provide the leading performance of the models tested.

The situation for SYCL shows that it is the CPU perfor-

mance that is holding back the PP value. On GPUs, we
see PP = 82% which is close to the underlying models of
OpenCL and CUDA, yet on CPUs we see a much lower
value. This is visible in the heatmap in Figure 1b by the
low pink-coloured values particularly on Intel and some Arm-
based CPUs. SYCL has a wide support base, however there
are primarily two backends used for SYCL: OpenMP and
OpenCL. For the OpenCL backends, such as those on Intel, we
see the performance again limited by the issues surrounding
thread spawning that has long plagued these runtimes (we
first saw this for BabelStream in 2015 [13] and it remains
through to 2018 [10], 2019 [1] and 2020 [12]). The OpenMP
backends have other limitations: they typically use a library-
based implementation, rather than compiler-based, and the cur-
rent mainline approaches map SYCL work-items to OpenMP
threads2. This means that threads are accessing adjacent mem-
ory locations which produces poor parallel memory access
patterns. As BabelStream is main memory bandwidth bound,
this limitation is sometimes less visible in the results as the
bottleneck of moving memory from memory into the caches is
sufficient to mask this problem; the problem can be observed
for other simple patterns [12]. Therefore, the community needs
to focus around improving the support for SYCL on CPUs.
This is highly likely with planned improvements to hipSYCL3

and Intel’s support of SYCL as part of oneAPI.

B. Effects of using a larger input size for Triad

We supplement these results with a larger input of 229 FP64
elements in order to mitigate the size of the large last-level
cache on Rome. This has a memory footprint of 12 GiB which
far exceeds the cache size. The peak bandwidth results are
shown in Figure 2a with the architectural efficiency shown in
Figure 2b. As expected, the Rome result is now lower than
100% indicating the cache residency effects are mitigated.

BabelStream allocates some host vectors in the driver code
for results checking; by default these are allocated before the
programming models allocate the memory used for execution.
Due to the strong NUMA effects on A64FX, this means that
only for this large problem, the memory in the first NUMA
domain is used up by these vectors, resulting in the memory
used for execution to be allocated in other NUMA regions.
For the result presented we moved this driver allocation until
after the benchmark has run, and we are working to redesign
the benchmark execution to take this into account universally.

2https://github.com/illuhad/hipCPU#implementation
3https://github.com/illuhad/hipSYCL/pull/289

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

200
207
E

230
222
233
165
817
558
843

-
X

165
710
E

157
158
E

234
242
228
165
605
555
846

-
X

777
733
X

67.7
68.1
305
230
222
X
X
X

546
838

1368
X

105
95.2

X

X
X
X
X
X
X
X
X

556
844

1398
X
X
X
X

97.2
110
E

110
X

95.6
X
X
E
X

1396
X

801
780
E

98.7
111
E

227
213
204
137
275
554
841

1374
X

810
E
E

BabelStream Triad array size=2**29

(a) Sustained memory bandwidth in GBytes/s, higher is better

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

71%
81%

E
56%
65%
81%
80%
80%
76%
94%

-
X

16%
69%

E

56%
62%

E
57%
71%
79%
81%
59%
76%
94%

-
X

78%
72%

X

24%
27%
62%
56%
65%

X
X
X

75%
93%
88%

X
10%
9%
X

X
X
X
X
X
X
X
X

76%
94%
90%

X
X
X
X

35%
43%

E
27%

X
33%

X
X
E
X

90%
X

80%
76%

E

35%
43%

E
55%
63%
71%
67%
27%
76%
93%
88%

X
81%

E
E

BabelStream Triad array size=2**29

(b) Architectural efficiency, higher is better

Fig. 2: BabelStream Triad results for arrays of length 229 FP64 elements

We would like to note that although the Knights Landing
has sufficient memory for this problem, many of the models
ran out of memory.

The PP values for this large problem are shown as the
final row in Table II. For both OpenMP and Kokkos, we
see the expected performance efficiency is around 30% and
12% lower respectively (a raw reduction of 23% and 9%).
Such changes in PP with problem size are in line with the
changes previously seen by Daniel and Panetta [14]. As such,
as Exascale technologies are enabling larger problems to be
solved, it is important to consider how performance portability
might be effected by the changes in input problem.

C. Dot

The BabelStream application contains an extension to the
traditional STREAM benchmark in the form of a dot-product
kernel. This read-only kernel takes two arrays and sums the
element-wise product to produce a single value. This requires
a parallel reduction, which is a key parallel pattern in many
HPC codes. Unlike Triad, the Dot product requires some
communication between the units of parallel work (threads,
or equivalent) in order to produce just a single result. Many
programming models embed first-class support for reductions
in the language; of the programming models we use here this
is the case for OpenMP, Kokkos and OpenACC. The other
models require users to write their own reduction kernel. We
would like to highlight that first-class reduction support has
been added to SYCL in the 2020 provisional version however
BabelStream is currently implemented with SYCL 1.2.1.

The architectural efficiency of the BabelStream Dot kernel
for arrays of length 225 FP64 elements is shown in Figure 3.
It is clear that in comparison with the Triad kernel, it is rare
to attain high efficiency for a great many of the combinations
of platform and programming model. This is seen in Table III
showing the PP. Kokkos fares best here, supporting the greatest
number of platforms with the best efficiencies. Reductions
in OpenMP on CPUs show similar expected efficiencies to

the Triad kernel, but OpenMP on GPUs shows much room
for improvement. We know that the reductions on GPUs in
the open-source LLVM OpenMP implementation are in need
for optimisation, and these results provide clear evidence for
this. SYCL on GPUs shows little overhead over OpenCL,
which is as we would expect as both use the same manual
implementation of a reduction. However, there is less success
on CPUs despite tuning the number of work-groups based
on device preferences as reported by the OpenCL and SYCL
runtimes. The performance of OpenACC is similar to Triad.

OpenMP
Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100
A100

Turing
Radeon VII

MI50
IrisPro Gen9

80%
90%
71%
95%
69%
71%
87%
82%
79%
2%

-
5%
3%

31%
47%

79%
93%
69%
154%
70%
77%
86%
18%
81%
73%

-
93%
58%
43%

X

28%
33%
65%
54%
51%

X
X
X

71%
80%
64%
85%
4%
4%
X

X
X
X
X
X
X
X
X

78%
95%
81%
93%

X
X
X

7%
8%

19%
1%
X

5%
X
X

80%
X

83%
92%
80%
69%
70%

6%
8%
10%
0%

-
0%
0%
0%
68%

-
80%
82%

E
E

70%

BabelStream Dot array size=2**25

Fig. 3: BabelStream Dot architectural efficiency results for
arrays of length 225 FP64 elements, higher is better

Therefore, the reduction parallel pattern highlights the need
to improvements in the support from many of the parallel
programming model runtimes. The key focus in our opinion
should be on improving the support for OpenMP reductions
on GPUs and to implement the latest SYCL 2020 provision
specification which provides first-class support for reductions
in SYCL. As with Triad, it is the CPU performance which is
limiting the numerical results for SYCL at this time.

TABLE III: Performance portability metric for BabelStream Dot

PP by programming model
Platform set OpenMP Kokkos OpenACC CUDA OpenCL SYCL

All platforms 0 0 0 0 0 0
All non-zero platforms 11.0 59.8 15.6 86.1 7.4 0.7

Supported CPUs 79.7 57.1 42.0 0.0 3.5 0.4
Supported GPUs 5.1 64.6 10.3 86.1 78.3 74.6

IV. CLOVERLEAF

CloverLeaf is a 2D hydrodynamics mini-app for solving
Euler equations [15]. It operates on a structured grid, with a
around a dozen kernels either looping over the vertices or the
central values performing either stencil or local updates.

We use the typical bm_16 input which has a mesh size of
3840-by-3840 cells. This has a memory footprint of a few
hundred MB, and so it exceeds the size of the last level
cache on many processors, and the low operational intensity
means CloverLeaf is principally main-memory-bandwidth-
bound. The trend for increasingly large caches means that for
the AMD Rome processor this problem size is well within
the 256 MiB last level cache capacity per socket. We will
show that for CloverLeaf, as was the case for the BabelStream
results in Figure 1a, Rome was able to attain performance
close to those processors with HBM due to the problem fitting
in cache. It is important to note that CloverLeaf is a mini-app,
and as such the input sizes provided with the code are designed
to be representative, and so it is not necessarily feasible to
simply increase the mesh size to exceed cache sizes.

We show the total runtime, in seconds, for CloverLeaf in
Figure 4a. Any combinations of platform and programming
model which are impossible to collect are shown with an ‘X’.
For combinations for which we encountered an error at build
time which we could not resolve have been marked as ‘B’.
Any runtime errors, which range from execution completing
but with erroneous results to execution finishing early due to
a crash, we denote with ‘E’.

The Fujitsu A64FX processor, which has HBM, achieves
performance similar to that of the V100, which uses similar
memory technology, although as with any new system we
expect to see improvements in the software stack of the A64FX
in the future. Indeed, the OpenMP result for A64FX is lower
than MPI due to the NUMA effects of the Core Memory Group
(CMG) design, and for a production-style run of a hybrid code
where one MPI rank is launched per CMG with OpenMP used
across cores in the CMG we see the performance improve
to levels very close to flat MPI performance. Still, these
are promising results, as close-to-GPU performance can be
obtained without needing to program with a heterogeneous
programming model.

We include MPI results in our study, augmenting the ap-
proach taken with our earlier study [1]. We can see that on
x86 processors, MPI and OpenMP attain very similar levels
of performance. However, on two of the three Arm-based
processors we observe that OpenMP performance is reduced
compared to MPI. On A64FX we have already identified

this as occurring due to NUMA. On the Amazon Graviton
2 processor, however, we observe this trend reversed. This
therefore requires future investigation and collaborations with
the various compiler and software teams to understand this
difference going forwards.

The Kokkos build used for Cascade Lake simply targets
Skylake, and similarly Kokkos does not yet know about the
A64FX processor, with only a generic ARMv8.1 target being
the most specific option in this case. This means that the
compiler flags as selected by the Kokkos library may not
be optimal for these processors, as reflected in the larger
performance overhead compared to the underlying OpenMP
compared to the other platforms. The reduced performance
on Knights Landing due to the lack of vectorisation is an
outstanding issue from 20194.

The OpenMP target version of CloverLeaf was written in
OpenMP 4.0 for the Intel Xeon Phi (Knights Corner). As such,
this code is suffering from its age relative to the updates in the
OpenMP standard, and if this paper is accepted for publication
we hope to provide new results for CloverLeaf using OpenMP
4.5 on GPUs. The OpenCL version is written using C++98,
and so for the non-Intel CPUs where we were using the POCL
library for support, we found an incompatibility as POCL
requires a newer version of C++.

For the SYCL results on NVIDIA GPUs, much of the
slowdown is attributed to the timestep reduction [12].

Comparisons using Figure 4a are useful for determining
which processor was able to run the problem the fastest, but
that is not the focus of this work. Indeed, some processors
such as the IrisPro GPU do not currently have comparable
specifications to the HPC GPUs (see Table I), but we include
them here because they lay the foundational stones on the path
to Exascale. A more meaningful comparison can be drawn by
computing the application efficiency [3], and we show these
results in Figure 4b. This shows the performance relative to
the fastest runtime observed on that architecture. We can use
these efficiencies to calculate PP, shown in Table IV.

As with BabelStream, we find that there is still at least
one platform where there is no result for each programming
model, thus giving a PP value of zero. We again recalculate on
the supported platforms, but note that for CloverLeaf there are
fewer platforms contributing than for BabelStream. CloverLeaf
is a significantly larger application and many of the versions
are hybrid in base language (Fortran plus C and/or C++),
meaning a correct compilation for some of the programming
models can be challenging.

4https://github.com/kokkos/kokkos/issues/2216

MPI
OpenMP

Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100

Turing
Radeon VII

MI50
IrisPro Gen9

380
374
243
242
373
391
503
196
X
X
X
X
X
X

381
413
248
237
395
448
466
696
E
B
E
B
E
B

429
409
943
287
504
698
493

1300
162
107
210
E

390
X

882
883
593
729

8244
X
X
X

133
90.5
197

5375
3928

X

X
X
X
X
X
X
X
X

138
88.9
211
X
X
X

862
757

1868
E
X
B
X
X
E
X

248
190
375

3677

722
716

1613
849

2296
1553

E
4181
606
195
317
E
E

3368

CloverLeaf bm 16.in

(a) Total runtime in seconds, lower is better

MPI
OpenMP

Kokkos

OpenACC
CUDA

OpenCL
SYCL

Cascade Lake
Skylake

Knights Landing
Rome

Power 9
ThunderX2
Graviton 2

A64FX
P100
V100

Turing
Radeon VII

MI50
IrisPro Gen9

100%
100%
100%
98%

100%
100%
93%

100%
X
X
X
X
X
X

100%
91%
98%

100%
95%
87%

100%
28%

E
B
E
B
E
B

89%
92%
26%
83%
74%
56%
95%
15%
82%
83%
94%

E
96%

X

43%
42%
41%
32%
5%
X
X
X

100%
98%

100%
4%

10%
X

X
X
X
X
X
X
X
X

97%
100%
93%

X
X
X

44%
49%
13%

E
X
E
X
X
E
X

79%
100%
100%
92%

53%
52%
15%
28%
16%
25%

E
5%

22%
46%
62%

E
E

100%

CloverLeaf bm 16.in

(b) Application Efficiency, higher is better

Fig. 4: CloverLeaf results with clover_bm_16.in input

TABLE IV: Performance portability metric for CloverLeaf

PP by programming model
Platform set MPI OpenMP Kokkos OpenACC CUDA OpenCL SYCL

All platforms 0 0 0 0 0 0 0
All non-zero platforms 98.8 73.5 53.0 13.5 96.5 42.9 20.1

Supported CPUs 98.8 73.5 44.1 15.5 0 25.1 24.9
Supported GPUs 0 0 88.4 12.0 96.5 91.9 42.8

MPI shows close-to-optimum performance portability on
CPUs and, when comparing to OpenMP, we see how the
performance loss on some of the non-x86 platforms reduces
the PP there. Still, on CPU platforms OpenMP still has the
highest PP of the solely-intra-node programming models.
The other models on CPUs do not yet provide compelling
results due to the variability in efficiency values. As with
BabelStream, we find the OpenACC performance on CPUs
is limited, and there are very few choices in compilers with
which to explore this in detail.

For SYCL, we rely on hipSYCL, which at the time of
writing has non-optimal memory access patterns on CPUs
due to the use of the hipCPU library (recall our comments
in Section III-A1). On Intel platforms, we use DPC++, which
unlike hipCPU, uses OpenCL for its implementation. The re-
sults in this paper extend our work on other systems exploring
a SYCL implementation of CloverLeaf [12]. In both cases, the
performance of SYCL is limited by issues in Intel’s OpenCL
runtime, the parallelism in hipCPU, and ROCm stack issues
on AMD platforms. However, platforms support for SYCL
is strong, with compilers building our code on all platforms,
although three platforms had runtime errors. We expect the
situation here to improve in the very near future as compilers
and drivers mature.

On GPUs, we find that OpenCL and CUDA provide the best
performance on the devices they support. Again, OpenACC
shows little overhead to CUDA on NVIDIA GPUs, but on
AMD GPUs we find the performance from the GCC compiler
significantly lower, which is shown in the low PP value despite

the contributions from platforms with close to 100% efficiency.
Kokkos is showing a high degree of performance portability

for CloverLeaf, for although its total PP is not as high as
OpenMP, we were able to measure results on both CPUs and
GPUs. The PP on the CPU platforms is reduced from the
lower efficiency values on both Knights Landing and A64FX:
without these included we see PP = 78.7% on CPUs, and PP =
82.3% also including the supported GPUs, which shows that
where Kokkos has been sufficiently tuned to the underlying
architecture and underlying model, it succeeds in providing
good opportunities for achieving performance portability.

CloverLeaf, as a larger more complex code, stretches the
performance portable programming models beyond Babel-
Stream. Some of the implementations have remained un-
touched for a number of years and as compilers, systems and
platforms have been upgraded, updating the build systems and
base language versions has become a necessary task which
we will explore in the future. Overall we find that Kokkos
helps insulate from the underlying models and platforms, and
where Kokkos itself has built in support for the platform the
performance is both good and consistent, aligning with our
definition of performance portability in Section II.

V. HISTORICAL COMPARISONS

Systematic evaluation of performance portability requires a
consistent approach to benchmarking. This study continues our
previous effort in running different applications in different
programming models on a wide variety of diverse architec-
tures [1]. As a result of this crucial data, we can begin to track
the historical changes in performance portability of these codes

over time. We begin this study in earnest here, focusing on the
Triad kernel from BabelStream. We choose this as it has the
most complete results over the generations of benchmarking
this particular code, and is often highly insightful into how
other memory bandwidth bound codes behave.

In addition to the results from Deakin et al. from 2019 [1],
we also use BabelStream results from our earlier work in
2018 [10], where there are a number of platforms in common
between these studies. We select the processors common to
these two studies and consider the changes in efficiency for
the various programming models. We also include results from
an Intel Xeon E2699 v4 (Broadwell) dual-socket system from
the 2018 study which is still available today, and so we were
able to run the application there as part of this study.

Architectural efficiencies for the subset of platforms com-
mon between these three studies are plotted in Figure 5. Each
programming model is shown separately. Each line tracks the
efficiency for one processor from the three studies between
the years 2018 and 2020.

The notation PPx is used to represent the performance
portability metric PP computed on the platforms in the year x.

OpenMP shows good progress, with improved performance
for Knights Landing and most GPUs, and in particular the
support for the AMD GPU thanks to the GCC compiler.
Crucially, PP2020 = 74.7% is non-zero, because all platforms
are supported, in contrast to last year, where support was
lacking for the AMD GPU. The PP2020 value is very similar
to PP2018 = 65.3% but over a much increased platform
set. Note that if we exclude the AMD GPU from 2019, we
find PP2019\AMD = 82.1% indicating that some platforms
have reduced efficiency in 2020, notably the Power 9 and the
ThunderX2. This latter result is lower because in 2019 not all
cores were used, because higher efficiency was attainable in
that smaller configuration, but this year we always collect all
results using all available cores. Most of the results are tightly
clustered around 80% efficiency (with PP2020\AMD = 80.5%),
showing that high consistent performance is on the near
horizon with OpenMP.

Kokkos has showed steady levels of efficiency over these
three studies. With the support available for AMD GPUs in
the latest results, the figure shows that the efficiency on this
platform is better than what is achievable with the current
implementation of OpenMP in GCC. We find PP2019\AMD =
76.7% (excluding the AMD GPU; including it has PP2019 = 0)
and PP2020 = 74.3%, which shows a sustained level efficiency
over time, even when new platforms are added. On the
three platforms in 2018, PP2018 = 65.7% which shows the
small improvements on those platforms observed by the slight
upward trend on the graph. What is most noticeable here is
that most of the efficiency data is fairly clustered, and exceeds
60% on all these platforms. Notice that PP2020 for Kokkos is
3.8 percentage points lower than the majority of the OpenMP
data when we exclude the Radeon VII, indicating that Kokkos
does show a very small overhead in its abstractions, but it more
than makes up for this when all platforms are considered.

For OpenACC, Figure 5 shows that on NVIDIA GPUs,

the performance is stable in this time period. However, it
is clear that this model suffers from the limited support on
other architectures. On all processors from other vendors, the
performance has fallen. Note too that both PP2019 and PP2020

are zero due to the lack of support for Arm. Despite the
progress with GCC supporting OpenACC offload to AMD
GPUs, Cray have removed support for OpenACC in their latest
compiler, leaving only one commercial compiler (PGI) that
supports this framework, which itself is due to be overhauled
as part of the NVIDIA HPC SDK which was made available
after these results were collected. The results are spread out
over the entire efficiency range, in contrast to the clustered
results of OpenMP and Kokkos.

The efficiencies for OpenCL seem consistent, but they
remain spread out. The PP is zero for both 2019 and 2020
as there are some platforms for which is it not possible to
run OpenCL. The 2019 study had access to a V100 with
an x86 host which was not available for this study, and the
IBM Power host for the V100 in this study does not have an
OpenCL driver. As such we see efficiency for the V100 drop
to zero. Additionally, although we were able to use POCL
to bring OpenCL support to Arm CPUs, this did not work
on IBM Power so there was no way to run OpenCL on an
IBM-based system. We find that for the non-zero platforms,
PP2019 = 67.6% and PP2020 = 56.0%. This reduction is felt

due to the high efficiency of the V100 from 2019 keeping
the PP value buoyant no longer being included in this statistic.
If we compute PP on the two Intel platforms, the P100 and
Turing and Radeon VII GPUs we see a very stable change
from PP2019 = 64.1 to PP2020 = 65.6. Figure 5 also confirms
the observations made in Section III-A1 regarding the fact that
the performance on CPUs is limiting the overall performance
portability of OpenCL.

Both the clustering of the data and the historical trends
observable in plots such as those shown in Figure 5 pro-
vide valuable insight into measuring changes in performance
portability. Going forward, we hope to be able to extend this
plot to track performance portability over future studies. This
will augment this contribution which already begins to track
the continental drifts in the landscape of programming HPC
processors. In addition, as we collect more historical data from
other programming models, notably SYCL, we can track their
progress in their enablement of performance portability.

VI. CONCLUSION

This study provides a wealth of performance results for
codes written in lots of different parallel programming models.
These models all allow for performance-portable programs to
be written, and by benchmarking applications written in those
models on the latest hardware on the path towards Exascale,
we can assess how successfully they achieve that aim. It is a
multi-faceted problem, however, for although in theory all such
programs can be portable and performance-portable across
system, the reality can differ based on system and platform
support. As such, surveying this landscape is an important
endeavour and we hope that the results we present here can

2018 2019 2020
Year

0

20

40

60

80

100
A

rc
hi

te
ct

ur
al

 E
ffi

ci
en

cy
 (%

)
model = OpenMP

2018 2019 2020
Year

model = Kokkos

2018 2019 2020
Year

model = OpenACC

2018 2019 2020
Year

model = OpenCL

Broadwell Knights Landing P100 Skylake Power 9 ThunderX2 V100 Turing Radeon VII

Fig. 5: Tracking changes of architectural efficiency in 2018–2020

help improve the ecosystem and allow developments in the
fundamental understanding of what performance portability
means. In addition, the results can help build a historical
picture of how the performance portability landscape is chang-
ing as we are propelled towards ever increasing levels of
parallelism.

We include SYCL in this study. SYCL is a crucial part of
the path to Exascale programming, and is one viable choice for
using cross-platform open standards for programming highly
parallel heterogeneous systems. The situation is promising, but
on CPU platforms there needs to be significant investment
from vendors in order to ensure that performance and support
are suitable. We plan to continue to observe how support for
SYCL progresses over the coming years.

Kokkos continues to provide isolation from the underlying
programming models by hiding vendor-specific models behind
a common abstraction. This means that where Kokkos has sup-
port for a platform, we can observe good levels of performance
portability. For BabelStream Triad, we found that Kokkos and
OpenMP had similar levels of performance portability. For
the reductions required in the Dot kernel, the performance on
GPUs is lower for OpenMP, but this was not the case for
Kokkos, as they can provide optimised implementations for
such patterns. This clearly comes at a huge cost of ownership,
and this can be observed as the Kokkos project has expanded to
include contributions of backends from the wider community.

The support for OpenMP is considerably more robust that
in our study last year, observed though our tracking of the
historical changes in performance portability of all the models
in Section V. The support for OpenMP GPUs in particular has
improved, where the efforts of the open-source communities
of GCC and LLVM have paid dividends. In addition, with
the Intel compiler now supporting Intel GPUs, OpenMP is the
first model we explored which has platform support from all
classes of processor (with the exception of the A100 where
we were not provided with a result, however note that this
is in a similar class to the other NVIDIA GPUs). The PP
values for OpenMP confirm performance portability for this
open-standard parallel programming model.

ACKNOWLEDGMENT

This work is funded by the EPSRC ASiMoV project
(EP/S005072/1). We extend our thanks for Fujitsu for access
to the FX1000 system under the Early Access Program. This
work used the Isambard UK National Tier-2 HPC Service
(http://gw4.ac.uk/isambard/) operated by GW4 and the UK
Met Office, and funded by EPSRC (EP/P020224/1). Access
to the Cray XC50 supercomputer ‘Swan’ was kindly provided
through the Cray Marketing Partner Network. This work was
carried out using the computational facilities of the Advanced
Computing Research Centre (ACRC), University of Bristol
— http://www.bristol.ac.uk/acrc/. We also used their ‘Cluster
in the Cloud’ tools (https://cluster-in-the-cloud.readthedocs.
io/en/latest/) for configuring Amazon Web Services. This
work used the HPC Zoo, a research cluster run by the
High-Performance Computing Group at the University of
Bristol — https://uob-hpc.github.io/zoo/. This work used the
DiRAC@Durham facility managed by the Institute for Com-
putational Cosmology on behalf of the STFC DiRAC HPC
Facility (www.dirac.ac.uk). The equipment was funded by
BEIS capital funding via STFC capital grants ST/P002293/1,
ST/R002371/1 and ST/S002502/1, Durham University and
STFC operations grant ST/R000832/1. DiRAC is part of the
National e-Infrastructure. The NVIDIA A100 results have
been provided by Paul Graham from NVIDIA.

REFERENCES

[1] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson,
C. Popa, and J. Salmon, “Performance Portability across Diverse Com-
puter Architectures,” in 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC). Denver,
CO: IEEE, nov 2019, pp. 1–13.

[2] “Khronos Steps Towards Widespread Deployment of SYCL
with Release of SYCL 2020 Provisional Specification,”
2020. [Online]. Available: https://www.khronos.org/news/press/
khronos-releases-sycl-2020-provisional-specification

[3] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A Metric for Performance
Portability,” in Programming Models, Benchmarking and Simulation
(PMBS) workshop at SC, 2016, pp. 1–7.

[4] OpenMP Application Programming Interface, OpenMP Architecture
Review Board, 2015, Version 4.5.

[5] The OpenACC Application Programming Interface, The OpenACC
Community, 2019, Version 3.0.

[6] The OpenCL Specification, Khronos, 2012, Version 1.2.
[7] CUDA Toolkit Documentation v11.0.3, NVIDIA,

https://docs.nvidia.com/cuda/.

[8] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[9] SYCL Specification, Khronos, 2020, Version 1.2.1, Document Revision
7.

[10] T. Deakin, J. Price, M. Martineau, and S. McIntosh Smith, “Evalu-
ating attainable memory bandwidth of parallel programming models
via BabelStream,” International Journal of Computational Science and
Engineering, vol. 17, no. 3, pp. 247–262, 2018.

[11] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers,” IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, pp. 19–25,
dec 1995.

[12] T. Deakin and S. McIntosh-Smith, “Evaluating the performance of HPC-
style SYCL applications,” in Proceedings of the International Workshop
on OpenCL. New York, NY, USA: ACM, apr 2020, pp. 1–11.

[13] ——, “GPU-STREAM: Benchmarking the achievable memory band-
width of Graphics Processing Units (poster),” in Supercomputing,
Austin, Texas, 2015.

[14] D. F. Daniel and J. Panetta, “On Applying Performance Portability
Metrics,” in 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC). IEEE, nov 2019, pp.
50–59.

[15] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price, “On the
Performance Portability of Structured Grid Codes on Many-Core Com-
puter Architectures,” in Supercomputing, ser. Lecture Notes in Computer
Science, J. M. Kunkel, T. Ludwig, and H. W. Meuer, Eds. Cham:
Springer International Publishing, 2014, vol. 8488, pp. 53–75.

APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: TRACKING

PERFORMANCE PORTABILITY ON THE YELLOW BRICK
ROAD TO EXASCALE

A. Abstract

Capturing the performance of implementations of codes in
different parallel programming models across multiple plat-
forms required a systematic and reproducible approach. Many
different programming environments, systems and compilers
were required in order to collect these results. We describe
here the scripts which we developed to build and run each
code in a consistent manner across platforms. The scripts were
made flexible to allow us to test multiple compilers where a
choice was available.

B. Description

1) Check-list (artifact meta information): Fill in whatever
is applicable with some informal keywords and remove the rest

• Program: BabelStream, CloverLeaf.
• Compilation: Variety of compilers, detailed in scripts.
• Data set: Input files detailed in scripts.
• Run-time environment: We used a wide range of compilers

(and version numbers) for this study: Cray, GCC, LLVM, XL,
PGI, Fujitsu and the Arm compilers.

• Hardware: We run on a number of systems in order to have
large coverage of platforms. See the Acknowledgements section
for system details.

• Execution: Detailed in scripts.
• Output: We have saved the output for all results in the

repository.
• Experiment workflow: Codes are built and run via a set of

scripts written in a common format.
• Publicly available?: Yes.
2) How software can be obtained (if available): The scripts

which download, build and run the software on each sys-
tem are available on GitHub: https://github.com/UoB-HPC/
performance-portability. The source code for the mini-apps
themselves are all available on GitHub. The location of these
may be viewed in the corresponding common.sh script in
the benchmarks repository.

3) Hardware dependencies: The mini-apps used in this
study are designed to run on different architectures, and in
general there is a version of each code which runs on the
hardware listed in the checklist above. Please see the main
body of the paper for currently unsupported or unavailable
combinations.

4) Software dependencies: Each system has a unique set
of compilers and programming environments. We installed
additional compilers as required. The Kokkos versions were
built using Kokkos 3.1 or the devlop branch compiled on each
system. The combinations of system and compiler is detailed
in the options available for each benchmark.sh script in
our repository.

5) Datasets: We detail the input deck or problem param-
eters for each mini-app. Each input deck is a standard one
which ships with the source code of the mini-app.
• BabelStream: The default problem of 225 and 229 FP64

elements per array.

• CloverLeaf: clover_bm16.in.

C. Installation

On each system, we clone the benchmark repository:

git clone \
https://github.com/UoB-HPC/\
performance-portability

cd benchmarking

D. Experiment workflow

The scripts are designed to download, build and run the
mini-app, setting the correct paths so it can be build and run
against the correct software versions.

Change to the mini-app and platform/system subdirectory,
for example:

cd babelstream/tx2-isambard

Then to download and build the code with the default
compiler and programming model, execute:

./benchmark.sh build

A different choice of compiler and model can be supplied to
this command. To build the Kokkos version of BabelStream
with GCC, one might execute:

./benchmark.sh build gcc-9.2 kokkos

The code is run (possibly by submitting a job to the system
queue) as follows:

./benchmark.sh run

Any choices of compiler and model when building must also
be supplied when running. For the previous example, the
command to run the code following building is:

./benchmark.sh run gcc-9.2 kokkos

To see the supported combinations of compiler and pro-
gramming model, run the script without any arguments:

./benchmark.sh

E. Evaluation and expected result

Once the code has finished running on the system (directly
or via a job submission queue), any output is saved in a file
named with the following convention:

<code>-<platform>_<compiler>_<model>.out

The stdout output is captured in an output file in this
directory. Any output files created by the application are also
placed here.

For our previous example of Kokkos BabelStream on Thun-
derX2, the following directory would contain the built binary:

benchmarking/2020/babelstream/\
tx2-isamabard/BabelStream-tx2_gcc-8.2_kokkos

and output would be saved in the current working directory:

BabelStream-tx2_gcc-8.2_kokkos.out

F. Experiment customization

The benchmark.sh script and corresponding run.job
script are both designed to be easily customisable to add
additional compilers and models.

