178 research outputs found
Improving HTc Josephson Junctions (HTc JJ) by annealing: the role of vacancy-interstitial annihilation
We have studied the annealing effect in transport properties of High
temperature Josephson Junctions (HTc JJ) made by ion irradiation. Low
temperature annealing (80 degrees Celsius) increases the JJ transition
temperature (TJ) and the Ic.Rn product, where Ic is the critical current and Rn
the normal resistance. We found that the spread in JJ characteristics can be
lowered by sufficient long annealing times. Using random walk numerical
simulations, we showed that the characteristic annealing time and the evolution
of the spread in JJ characteristics can be explained by a vacancy-interstitial
annihilation process rather than by an oxygen diffusion one.Comment: 7 pages and 3 figures submitted to Applied Physics Letter
The Effect of Neutral Atoms on Capillary Discharge Z-pinch
We study the effect of neutral atoms on the dynamics of a capillary discharge
Z-pinch, in a regime for which a large soft-x-ray amplification has been
demonstrated. We extended the commonly used one-fluid magneto-hydrodynamics
(MHD) model by separating out the neutral atoms as a second fluid. Numerical
calculations using this extended model yield new predictions for the dynamics
of the pinch collapse, and better agreement with known measured data.Comment: 4 pages, 4 postscript figures, to be published in Phys. Rev. Let
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
We introduce a method to convert stereo 360{\deg} (omnidirectional stereo)
imagery into a layered, multi-sphere image representation for six
degree-of-freedom (6DoF) rendering. Stereo 360{\deg} imagery can be captured
from multi-camera systems for virtual reality (VR), but lacks motion parallax
and correct-in-all-directions disparity cues. Together, these can quickly lead
to VR sickness when viewing content. One solution is to try and generate a
format suitable for 6DoF rendering, such as by estimating depth. However, this
raises questions as to how to handle disoccluded regions in dynamic scenes. Our
approach is to simultaneously learn depth and disocclusions via a multi-sphere
image representation, which can be rendered with correct 6DoF disparity and
motion parallax in VR. This significantly improves comfort for the viewer, and
can be inferred and rendered in real time on modern GPU hardware. Together,
these move towards making VR video a more comfortable immersive medium.Comment: 25 pages, 13 figures, Published at European Conference on Computer
Vision (ECCV 2020), Project Page: http://visual.cs.brown.edu/matryodshk
Four azolesâ profile in the control of Septoria, yellow rust and brown rust in wheat across Europe
Measures in Visualization Space
Postponed access: the file will be available after 2021-08-12Measurement is an integral part of modern science, providing the fundamental means for evaluation, comparison, and prediction. In the context of visualization, several different types of measures have been proposed, ranging from approaches that evaluate particular aspects of visualization techniques, their perceptual characteristics, and even economic factors. Furthermore, there are approaches that attempt to provide means for measuring general properties of the visualization process as a whole. Measures can be quantitative or qualitative, and one of the primary goals is to provide objective means for reasoning about visualizations and their effectiveness. As such, they play a central role in the development of scientific theories for visualization. In this chapter, we provide an overview of the current state of the art, survey and classify different types of visualization measures, characterize their strengths and drawbacks, and provide an outline of open challenges for future research.acceptedVersio
The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions
During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequence
- âŠ