1,175 research outputs found

    Coordinated In Situ Analyses of Organic Nanoglobules in the Sutter's Mill Meteorite

    Get PDF
    The Sutter s Mill meteorite is a newly fallen carbonaceous chondrite that was collected and curated quickly after its fall [1]. Preliminary petrographic and isotopic investigations suggest affinities to the CM2 carbonaceous chondrites. The primitive nature of this meteorite and its rapid recovery provide an opportunity to investigate primordial solar system organic matter in a unique new sample. Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and N-15/N-14 relative to terrestrial values [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [2]. Some meteorites and IDPs contain gm-size inclusions with extreme H and N isotopic anomalies [3-5], possibly due to preserved primordial organic grains. The abundance and isotopic composition of C in Sutter's Mill were found to be similar to the Tagish Lake meteorite [6]. In the Tagish Lake meteorite, the principle carriers of large H and N isotopic anomalies are sub-micron hollow organic spherules known as organic nanoglobules [7]. Organic nanoglobules are commonly distributed among primitive meteorites [8, 9] and cometary samples [10]. Here we report in-situ analyses of organic nano-globules in the Sutter's Mill meteorite using UV fluorescence imaging, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), NanoSIMS, and ultrafast two-step laser mass spectrometry (ultra-L2MS)

    Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks

    Get PDF
    Analyses of samples returned from Comet Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected [1]. Stardust aerogel tracks show considerable compositional diversity and the degree of impact related thermal modification and destruction is also highly variable. We are performing systematic examinations of entire Stardust tracks to discern the representative mineralogy and origins of comet Wild 2 components and to search for well preserved fine grained materials. Previously, we used ultramicrotomy to prepare sequential thin sections of entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes [2]. This technique allows us to characterize the usually well-preserved terminal particle (TP), but also any associated, fine-grained fragments that were shed along the track pathway. This report focuses on coordinated analyses of surviving indigenous cometary materials (crystalline and amorphous) along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs. We examined the distribution of fragments throughout the track from the entrance hole to the TP

    Systematic Examination of Stardust Bulbous Track Wall Materials

    Get PDF
    Analyses of Comet Wild-2 samples returned by NASA's Stardust spacecraft have focused primarily on terminal particles (TPs) or well-preserved fine-grained materials along the track walls [1,2]. However much of the collected material was melted and mixed intimately with the aerogel by the hypervelocity impact [3,4]. We are performing systematic examinations of entire Stardust tracks to establish the mineralogy and origins of all comet Wild 2 components [7,8]. This report focuses on coordinated analyses of indigenous crystalline and amorphous/melt cometary materials along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs

    Coordinated Analysis of Organic Matter in Primitive Meteorites

    Get PDF
    Carbonaceous chondrites (CC) preserve a diverse range of organic matter formed within cold interstellar environments, the solar nebula, and during subsequent parent body asteroidal processing. This organic matter maintains a unique geochemical and istopic record of organic evolution [1-4]. Bulk studies of organics within CC have revealed a complex array of organic species. However, bulk studies invariably involve solvent extraction, resulting in a loss of spatial context of the host mineral matrix [3, 5]. Correlated in situ chemical and isotopic studies suggest preservation of interstellar organics in the form of spherical, often hollow, micrometer sized organic nano-globules. Nanoglobules often exhibit significant delta 15N and delta D enrichments that imply formation through fractionation of ion-molecule reactions within cold molecular clouds and/or the outer protoplanetary disk [5]. In situ studies such as 6-8 are necessary to understand the organic evolutionary stages of nanoglobules and other components in the nebula and parent body [7]. We carried out coordinated in situ micrometer-scale chemical, mineralogical and isotopic studies of the Murchison (CM2), QUE 99177 (CR3), and Tagish Lake (C2 Ung) CC. These studies were performed using fluorescent microscopy, two-step laser mass spectrometry (microL2MS), NanoSIMS, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Spectroscopy (EDX). Comparative analysis of three different meteorites will help reveal the effects of parent body processes on the chemistry and isotopic composition of organic matter

    Presolar Materials in a Giant Cluster IDP of Probable Cometary Origin

    Get PDF
    Chondritic porous interplanetary dust particles (CP-IDPs) have been linked to comets by their fragile structure, primitive mineralogy, dynamics, and abundant interstellar materials. But differences have emerged between 'cometary' CP-IDPs and comet 81P/Wild 2 Stardust Mission samples. Particles resembling Ca-Al-rich inclusions (CAIs), chondrules, and amoeboid olivine aggregates (AOAs) in Wild 2 samples are rare in CP-IDPs. Unlike IDPs, presolar materials are scarce in Wild 2 samples. These differences may be due to selection effects, such as destruction of fine grained (presolar) components during the 6 km/s aerogel impact collection of Wild 2 samples. Large refractory grains observed in Wild 2 samples are also unlikely to be found in most (less than 30 micrometers) IDPs. Presolar materials provide a measure of primitive-ness of meteorites and IDPs. Organic matter in IDPs and chondrites shows H and N isotopic anomalies attributed to low-T interstellar or protosolar disk chemistry, where the largest anomalies occur in the most primitive samples. Presolar silicates are abundant in meteorites with low levels of aqueous alteration (Acfer 094 approximately 200 ppm) and scarce in altered chondrites (e.g. Semarkona approximately 20 ppm). Presolar silicates in minimally altered CP-IDPs range from approximately 400 ppm to 15,000 ppm, possibly reflecting variable levels of destruction in the solar nebula or statistical variations due to small sample sizes. Here we present preliminary isotopic and mineralogical studies of a very large CP-IDP. The goals of this study are to more accurately determine the abundances of presolar components of CP-IDP material for comparison with comet Wild 2 samples and meteorites. The large mass of this IDP presents a unique opportunity to accurately determine the abundance of pre-solar grains in a likely cometary sample

    Nebular and Interstellar Materials in a Giant Cluster IDP of Probable Cometary Origin

    Get PDF
    Comets contain a complex mixture of materials with presolar and Solar System origins. Chondritic porous interplanetary dust particles (CP-IDPs) are associated with comets by their fragile nature, unequilibrated anhydrous mineralogy and high abundances of circumstellar grains and isotopically anomalous organic materials. Comet 81P/Wild 2 samples returned by the Stardust spacecraft contain presolar materials as well as refractory 16O-rich Ca-Al-rich inclusion- (CAI), chondrule-, and AOA-like materials. We are conducting coordinated chemical, mineralogical, and isotopic studies of a giant cluster CP-IDP (U2-20-GCA) to determine the proportions of inner Solar System and interstellar materials. We previously found that this IDP contains abundant presolar silicates (approx. 1,800 ppm) and 15N-rich hotspots [6]

    The very faint X-ray binary IGR J17062-6143: a truncated disc, no pulsations, and a possible outflow

    Get PDF
    We present a comprehensive X-ray study of the neutron star low-mass X-ray binary IGR J17062-6143, which has been accreting at low luminosities since its discovery in 2006. Analysing NuSTAR, XMM–Newton, and Swift observations, we investigate the very faint nature of this source through three approaches: modelling the relativistic reflection spectrum to constrain the accretion geometry, performing high-resolution X-ray spectroscopy to search for an outflow, and searching for the recently reported millisecond X-ray pulsations. We find a strongly truncated accretion disc at 77+22−18 gravitational radii (∼164 km) assuming a high inclination, although a low inclination and a disc extending to the neutron star cannot be excluded. The high-resolution spectroscopy reveals evidence for oxygen-rich circumbinary material, possibly resulting from a blueshifted, collisionally ionized outflow. Finally, we do not detect any pulsations. We discuss these results in the broader context of possible explanations for the persistent faint nature of weakly accreting neutron stars. The results are consistent with both an ultra-compact binary orbit and a magnetically truncated accretion flow, although both cannot be unambiguously inferred. We also discuss the nature of the donor star and conclude that it is likely a CO or O–Ne–Mg white dwarf, consistent with recent multiwavelength modelling

    Organics preserved in anhydrous interplanetary dust particles: Pristine or not?

    Get PDF
    The chondritic‐porous subset of interplanetary dust particles (CP‐IDPs) are thought to have a cometary origin. Since the CP‐IDPs are anhydrous and unaltered by aqueous processes that are common to chondritic organic matter (OM), they represent the most pristine material of the solar system. However, the study of IDP OM might be hindered by their further alteration by flash heating during atmospheric entry, and we have limited understanding on how short‐term heating influences their organic content. In order to investigate this problem, five CP‐IDPs were studied for their OM contents, distributions, and isotopic compositions at the submicro‐ to nanoscale levels. The OM contained in the IDPs in this study spans the spectrum from primitive OM to that which has been significantly processed by heat. Similarities in the Raman D bands of the meteoritic and IDP OMs indicate that the overall gain in the sizes of crystalline domains in response to heating is similar. However, the Raman ΓG values of the OM in all of the five IDPs clearly deviate from those of chondritic OM that had been processed during a prolonged episode of parent body heating. Such disparity suggests that the nonaromatic contents of the OM are different. Short duration heating further increases the H/C ratio and reduces the δ13C and δD values of the IDP OM. Our findings suggest that IDP OM contains a significant proportion of disordered C with low H content, such as sp2 olefinic C=C, sp3 C–C, and/or carbonyl contents as bridging material

    Building a stochastic template bank for detecting massive black hole binaries

    Full text link
    Coalescence of two massive black holes is the strongest and most promising source for LISA. In fact, gravitational signal from the end of inspiral and merger will be detectable throughout the Universe. In this article we describe the first step in the two-step hierarchical search for gravitational wave signal from the inspiraling massive BH binaries. It is based on the routinely used in the ground base gravitational wave astronomy method of filtering the data through the bank of templates. However we use a novel Monte-Carlo based (stochastic) method to lay a grid in the parameter space, and we use the likelihood maximized analytically over some parameters, known as F-statistic, as a detection statistic. We build a coarse template bank to detect gravitational wave signals and to make preliminary parameter estimation. The best candidates will be followed up using Metropolis-Hasting stochastic search to refine the parameter estimation. We demonstrate the performance of the method by applying it to the Mock LISA data challenge 1B (training data set).Comment: revtex4, 8 figure
    corecore