research

Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks

Abstract

Analyses of samples returned from Comet Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected [1]. Stardust aerogel tracks show considerable compositional diversity and the degree of impact related thermal modification and destruction is also highly variable. We are performing systematic examinations of entire Stardust tracks to discern the representative mineralogy and origins of comet Wild 2 components and to search for well preserved fine grained materials. Previously, we used ultramicrotomy to prepare sequential thin sections of entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes [2]. This technique allows us to characterize the usually well-preserved terminal particle (TP), but also any associated, fine-grained fragments that were shed along the track pathway. This report focuses on coordinated analyses of surviving indigenous cometary materials (crystalline and amorphous) along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs. We examined the distribution of fragments throughout the track from the entrance hole to the TP

    Similar works