41,160 research outputs found

    Near Ultraviolet Emission Spectrum of m-Dlfluorobenzene

    Get PDF

    Vibrational Spectra and Force Fields for 2,3-; 2,4-; 2,5- and 3,4-Dihydroxybenzaldehydes

    Get PDF

    Effects of Fermi surface and superconducting gap structure in the field-rotational experiments: A possible explanation of the cusp-like singularity in YNi2_2B2_2C

    Full text link
    We have studied the field-orientational dependence of zero-energy density of states (FODOS) for a series of systems with different Fermi surface and superconducting gap structures. Instead of phenomenological Doppler-shift method, we use an approximate analytical solution of Eilenberger equation together with self-consistent determination of order parameter and a variational treatment of vortex lattice. First, we compare zero-energy density of states (ZEDOS) when a magnetic field is applied in the nodal direction (νnode(0)\nu_{node}(0)) and in the antinodal direction (νanti(0)\nu_{anti}(0)), by taking account of the field-angle dependence of order parameter. As a result, we found that there exists a crossover magnetic field HH^* so that νanti(0)>νnode(0)\nu_{anti}(0) > \nu_{node}(0) for Hνanti(0)H \nu_{anti}(0) for H>HH > H^*, consistent with our previous analyses. Next, we showed that HH^* and the shape of FODOS are determined by contribution from the small part of Fermi surface where Fermi velocity is parallel to field-rotational plane. In particular, we found that HH^* is lowered and FODOS has broader minima, when a superconducting gap has point nodes, in contrast to the result of the Doppler-shift method. We also studied the effects of in-plane anisotropy of Fermi surface. We found that in-plane anisotropy of quasi-two dimensional Fermi surface sometimes becomes larger than the effects of Doppler-shift and can destroy the Doppler-shift predominant region. In particular, this tendency is strong in a multi-band system where superconducting coherence lengths are isotropic. Finally, we addressed the problem of cusp-like singularity in YNi2_2B2_2C and present a possible explanation of this phenomenon.Comment: 13pages, 23figure

    Dynamics of quantum dot superradiance

    Full text link
    The possibility of realizing the superradiant regime of electromagnetic emission by the assembly of quantum dots is considered. The overall dynamical process is analyzed in detail. It is shown that there can occur several qualitatively different stages of evolution. The process starts with dipolar waves triggering the spontaneous radiation of individual dots. This corresponds to the fluctuation stage, when the dots are not yet noticeably correlated with each other. The second is the quantum stage, when the dot interactions through the common radiation field become more important, but the coherence is not yet developed. The third is the coherent stage, when the dots radiate coherently, emitting a superradiant pulse. After the superradiant pulse, the system of dots relaxes to an incoherent state in the relaxation stage. If there is no external permanent pumping, or the effective dot interactions are weak, the system tends to a stationary state during the last stationary stage, when coherence dies out to a low, practically negligible, level. In the case of permanent pumping, there exists the sixth stage of pulsing superradiance, when the system of dots emits separate coherent pulses.Comment: Latex file, 31 pages, 3 figure

    Dynamical behavior of U-shaped double layers: cavity formation and filamentary structures

    Get PDF
    International audienceObservations from the Polar and FAST satellites have revealed a host of intriguing features of the auroral accelerations processes in the upward current region (UCR). These features include: (i) large-amplitude parallel and perpendicular fluctuating as well as quasi-static electric fields in density cavities, (ii) fairly large-amplitude unipolar parallel electric fields like in a strong double layer (DL), (iii) variety of wave modes, (iv) counter-streaming of upward going ion beams and downward accelerated electrons, (v) horizontally corrugated bottom region of the potential structures (PS), in which electron and ion accelerations occur, (vi) filamentary ion beams in the corrugated PS, and (vii) both upward and downward moving narrow regions of parallel electric fields, inferred from the frequency drifts of the auroral kilometric radiations. Numerical simulations of U-shaped potential structures reveal that such observed features of the UCR are integral parts of dynamically evolving auroral U-shaped potential structures. Using a 2.5-D particle-in-cell (PIC) code we simulate a U-shaped broad potentialstructure (USBPS). The dynamical behavior revealed by the simulation includes: (i) recurring redistribution of the parallel potential drop (PPD) in the PS, (ii) its up and downward motion, (iii) formation of filaments in the potential and density structures, and (iv) creation of filamentary as well as broad extended density cavities. The formation of the filamentary structures is initiated by an ion-beam driven instability of an oblique ion mode trapped inside a broad cavity, when it becomes sufficiently thin in height. The filaments of the PS create filamentary electron beams, which generate waves at frequencies above the lower hybrid frequency, affecting plasma heating. This results in plasma evacuation and formation of a cavity extended in height. The waves associated with filamentary electron beams also evolve into electron holes. The transverse and parallel scale lengths of the regions with large EE_{\vert \vert} and EbotE_{bot} as well as their magnitudes are compared with satellite data

    Ground State and Elementary Excitations of the S=1 Kagome Heisenberg Antiferromagnet

    Get PDF
    Low energy spectrum of the S=1 kagom\'e Heisenberg antiferromagnet (KHAF) is studied by means of exact diagonalization and the cluster expansion. The magnitude of the energy gap of the magnetic excitation is consistent with the recent experimental observation for \mpynn. In contrast to the S=1/2S=1/2 KHAF, the non-magnetic excitations have finite energy gap comparable to the magnetic excitation. As a physical picture of the ground state, the hexagon singlet solid state is proposed and verified by variational analysis.Comment: 5 pages, 7 eps figures, 2 tables, Fig. 4 correcte

    Constraints and Period Relations in Bosonic Strings at Genus-g

    Full text link
    We examine some of the implications of implementing the usual boundary conditions on the closed bosonic string in the hamiltonian framework. Using the KN formalism, it is shown that at the quantum level, the resulting constraints lead to relations among the periods of the basis 1-forms. These are compared with those of Riemanns' which arise from a different consideration.Comment: 16 pages, (Plain Tex), NUS/HEP/9320
    corecore