Infrared and Raman spectral studies and evaluation of force fields for the three isomeric methoxy benzaldehydes

D N Singh, I D Singh and R A Yadav

Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India

F-mail . rayadav(a)banaras.ernet.in

Received 1 March 2001, accepted 26 April 2002

Abstract Infrared and Raman spectra of three isomeric methoxy benzaldehydes have been studied and vibrational assignments to different infrared and Raman wavenumbers have been proposed. In order to check the proposed vibrational assignments, force field calculations using the Wilson's FG-matrix method were carried out. It could be possible to assign all the 48 normal modes and determine consistent force fields for all the three molecules.

Keywords ---- Force fields IR and Raman spectra, vibrational spectra

PACS Nos. 33 20 Fa. 33 20 Fb, 33 20 Tp

1. Introduction

Vibrational spectra of anisole [1,2] and its derivatives have received considerable attention as the former is a representative model compound for a number of chemically and biologically interesting systems. For example, the wood constituent lignin contains units of the methoxyphenyl type [3]. Structure activity relationship of one-ring psychotomimetics depend on the number of methoxy substituents [4] and their orientation is known to be of importance for their pharmacological properties [5]. Horak et al [6] investigated infrared and Raman spectra of para-halogenated anisoles and Josefi et al [7] studied vibrational and NMR spectra of meta-halogenated anisoles. Mooney [8] reported the infrared spectra of o- and p-chloro and o- and p-bromo anisoles. Infrared spectra of m-fluoro [9], p-fluoro and p-chloro anisoles [10] and some nitroanisoles [11] have also been reported. UV absorption spectra of anisole and some of its mono-halogenated derivatives were studied by Dearden and Forbes [12]. Electrical nature of the OCH₃ group was investigated using Raman spectroscopy by Venkateswarlu and Radhakrishnan [13]. Vibrational spectra of *m*- and *p*-methyl anisoles were reported

in literature [14,15]. Molecular interactions in anisidines have been investigated using dipole moments [16], electronic spectra [17] and infrared spectra and heat of dilution [18]. Similarly, vibrational spectra of CHO substituted benzenes have been extensively studied by a large number of workers (Ref. [19] and Refs. cited therein). The earlier spectroscopic studies were confined to anisoles, substituted anisoles, and substituted benzaldehydes and their substituted counter parts received little attention. Therefore, we have undertaken a systematic vibrational spectroscopic investigation of some aldehydes substituted anisoles. The present paper deals with the recording and analysis of the Raman and the infrared spectra, proposing consistent vibrational assignments and evaluation of the force fields for the three isomeric methoxy benzaldehydes (MBDs).

2. Experimental

Pure grade o- and m-isomers were purchased from Fluka, A.G. (Switzerland) and p-isomer was purchased from Sigma Chemical Co., (USA). All the three isomers form colourless liquids at room temperature and were used as purchased for recording the infrared spectra. However, prior to recording the Raman spectra, these compounds were vacuum-distilled twice to minimize the fluorescence background.

The infrared spectra of the three compounds were recorded at room temperature in pure liquid and CCl_4 solution phases at different concentrations in the region 200–4000 cm⁻¹ on a Perkin Elmer-621 spectrometer by placing the liquid between two CsI plates. The spectrometer was calibrated with the spectrum of polystyrene thin film.

The Raman spectra were recorded on a Jobin Yuvon Ramanor HG.2S spectrometer. The samples were placed in a quartz cell. The o- and m-isomers were excited by the 5145 A line and the p-isomer with the 4880 A line of an Ar⁺ laser with 100-300 mW power at the samples. The depolarization ratios were measured using a half wave plate. The spectrometer was calibrated with the spectra of CHCl₃, CCl_4 and CS_2 . The accuracy of the measurements was estimated to be within ± 3 cm⁻¹ and the resolution was better than 3 cm⁻¹ throughout the entire range under the experimental conditions employed for recording the infrared and the Raman spectra.

3. Force field calculation

It has been argued [20] that in the anisole molecule $(C_6H_5.OCH_3)$, all the atoms excepting the H atoms of CH₃ group, are in the same plane. During force field calculations, Zwarich *et al* [21] took the benzaldehyde molecule $(C_6H_5.CHO)$ to be planar. To the best of authors' information, the structures of the three isomeric MBDs have not been reported so far. Therefore, in the present study, the CHO group, the O and C atoms of the OCH₃ group and one of the phenyl ring. With this assumed structural model, the three isomers belong to the C_s point group and the 48 normal modes of vibration are distributed between the two species a' and a'' of the C_s point group as :

- (i) phenyl ring : 21a' + 9a'',
- (ii) OCH₃ group : 7a' + 5a'',
- (iii) CHO group : 7a' + 2a''.

The following were the structural parameters for the OCH₃ moeity [22] used for the calculation of the *G* matrix elements : $r(C-OCH_3) = 1.356$ Å, r(C'-H) = 1.10 Å, $r(O-CH_3) = 1.435$ Å, $\alpha(C-O-C') = 118.1^{\circ}$, $\alpha(O-C'-H) = 109.5^{\circ}$, where C'denotes the carbon atoms of the OCH₃ group. The structural parameters for benzaldehyde part are same as in Ref. [21].

The vibrational problem was set up in terms of the internal coordinates and from these the symmetry coordinates were constructed assuming $C_{3\nu}$ local symmetry for the CH₃ group. Here, all the planar bending internal coordinates are of β -type as used in Ref. [19]. The symmetry coordinates for

the phenyl ring and for the OCH₃ and the CHO groups were constructed as earlier [19]. It may also be noted here that each of the ring, torsional internal coordinates have been taken to be the average of the two internal coordinates, $\Delta \Phi_{CCCC}$ and $\Delta \Phi_{XCCY}$ (X, Y = H/OCH₃/CHO) and the torsional internal coordinates for the CH₃ group about the O-CH₃ bond was formed by averaging the three dihedral angle deformations and similarly, for the CHO group, by averaging all the four dihedral angle deformations.

In constructing the F matrix elements, the total number of force constants considered were 78, 78 and 77 for the o-, m- and p-isomers respectively. The starting set of force constants were transferred from the work on benzaldehyde [21,23] for benzaldehyde part and from Refs. [2,24-28] for the methoxy group. The interaction constants for which no values were available in literature were taken as zero to start with. Six force constants, namely, $v(C-OCH_3)/v(C-CHO)$. α (H-C'-O)/ α (H-C'-O), α (H-C'-H)/ α (H-C'-H), α (C-O) C)/ ν (O--CH₃), ν (O--CH₃)/ α (H--C'--O) and τ (C--OCH₃)/ τ (C--CHO) were kept fixed with zero values due to the fact that these have either small contributions to the potential energy distributions (PEDs) or large uncertainties. After 2-3 iterations, a good fit between the observed and the calculated fundamentals have been obtained. All the force constants their descriptions, numerical values and dispersions are given in Table 1.

4. Results and discussion

For vibrational assignments, assistance has also been taken from the vibrational assignments made for benzene derivatives containing OCH₃ [1,2,24-28] and CHO [19,21,29,30] groups All the observed infrared and Raman wavenumbers along with the calculated wavenumbers, PEDs and the proposed assignments are collected in Tables 2–4. The discussion of the normal mode assignments can be divided into the following four groups :

- (i) the phenyl ring modes,
- (ii) the CHO group modes,
- (iii) the O--CH₃ group modes and
- (iv) the CH₃ group modes.

4.1. Phenyl ring modes :

Since many of the phenyl ring modes are well established only some important and controversial modes would be discussed in the following. Some of the phenyl ring modes are substituent sensitive [31]. Amongst such modes are the ring breathing mode-1, the trigonal planar ring bending mode-12, the Kekule C=C stretching mode-14 and the umbrella C-H non-planar bending mode-11.

For *m*-substituted benzenes the ring breathing mode is assigned at 1000 cm⁻¹ owing to its characteristic intensity

Table 1. Valence force constants for isomeric MBDs.

#	a),•	@,*		a	
S.N and Description	0-N	1BD	<i>m</i> -M	BD	<i>p</i> -N	IBD
		Planar principal for	rce constants			
1. v(C-C) (R)	6.4845	0.1358	6 4850	0.3809	6.4924	0.1184
2. ν (C–OCH ₃) (r_1)	5.7476	0.1841	5.7477	0.0	5.7492	0.1651
3 v(CCHO) (r ₂)	4 6681	0 9291	° 4 6677	0 1 1 8 1	4 6676	0 5013
4. ν (C-H) (r_i , $i = 3-6$)	5 0874	0.0169	5.0878	0 0330	5 0922	0 0215
5 $v(C=O)(r_8)$	9.6364	0.1238	9.6358	0.1275	9.6358	0.7173
6. v(C'-H) (r ₇)	4.1125	0 0305	4.1103	0 0511	4 1072	0 0388
7 α (C–C–C) (α)	1.4104	0.1299	1.4098	0 3264	1.4104	0.0620
8. β (C-OCH ₃) (β ₁)	1 7320	0.1844	1.7322	0 1061	1.7356	0.9809
9. β(C-CHO) (β ₂)	1.5893	0.1259	1.5893	0.0	1.5925	0.1393
10 β (C-H) (β_i , i = 3, .6)	1 0179	0.0165	1.0245	0 0280	1.0284	0.0193
11. β (C=O) (θ_2)	1.8699	0 0	1.8699	00	1.8699	0.0
12. β (C'-H) (θ_1)	1.2426	0.1258	1.2425	0.0971	1.2524	0.0644
13. α(C-O-CH ₃) (θ ₉)	1.2870	0.2408	1 2868	0.8925	1.2917	0 4090
14. v(O-CH ₃) (r ₉)	5.2647	0.8953	5.2647	0.1258	5.2647	0 0
15 $v(C''-H)$ (r _i , i = 10-12)	4.6398	0 8953	4 6391	0 0314	4.6384	0 0236
16 α (O-C"-H) (θ_i , $i = 3-5$)	0 6727	0 2373	0.6697	0 0448	0.6726	0.0
17 α (II-C"-II) (θ_i , $i = 6-8$)	0.5795	0.3490	0 5790	0.0225	0.5739	0 0174
	No	on-planar principal	force constants			
18 $\phi(C-C-C-C)$ (ϕ)	0.0633	0 0088	0.0603	0.0267	0 0710	0 0149
19 γ (C-OCH ₃) (δ_1)	0 2061	0 0757	0 2060	0 0504	0 2172	0 2003
20 γ (C-CHO) (δ_2)	0 3170	0.0508	0.3165	0.1434	0.3188	0.340
21 γ (C-H) (δ_{i} , $i = 3.6$)	0 3359	0.0116	0 3360	0.0373	0 3213	0.020
22 τ (C-CHO) (τ)	0 0090	0 0	0 0083	0 0	0.0085	0.0
23. ω(CHO) (ω)	0 4044	0 1227	0.4027	0.0657	0.4042	0.0423
$24 = \tau(C \cdot OCH_1)(\tau_1)$	0 0238	0 0015	0 0237	0.0863	0 0246	0.0
25. τ (O-CH ₃) (τ_2)	0 0061	0.0060	0.0062	0.0047	0.0071	0.0
	F	Planar interaction fo	arce constants			
26 (RR) ^o	0 7781	0.0	0 7781	0.0	0 7781	0.0
27 (<i>RR</i>) <i>m</i>	-0 3492	0.0	0 3492	0.0	-0.3492	0.0
28 (RR)p	0.2717	0.0	0.2717	0.0	0.2717	0.0
$29 (\alpha \alpha)^{\alpha}$	-0.0135	0.0	-0.0135	0.0	-0.0135	0.0
$30 (Ba)^{\circ}$	0.4968	0.0	0.4968	0.0	0.4968	0.0
$\frac{1}{(r_{r}R_{r})^{0}}$	0.4500	0.0	0.0653	0.0	0.0653	0.0
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	0.0582	0.0	0.0582	0.0	0.0582	0.0
$\frac{1}{3} r_{0} \theta_{1}$	-0.3332	0.0	-0 3332	0.0	-0.3332	0.0
$A = B \alpha_{ij} = B \alpha_{ij} (i = 3, 4, 6)$	0.0700	0.0	0.0700	0.0	0.0700	0.0
$S = R_{1}r_{1} = P_{1}u_{1} + (1 = 3, \pi_{1}, 0)$	0.4534	0 3376	0 4535	0 9317	0.4504	0.691
$36 R_{\rm or} = R_{\rm or}$	_0.0704	0.5570	-0.0705	0.1029	-0.0678	0.497
$\frac{1}{2} = \frac{1}{2} $	-0.0704	0.0000	-0 1231	0.1630	-0.1251	0.455
$\frac{1}{38} = \frac{1}{2} \frac$	0.6729	0.1019	0.6738	0.0	0.6738	0.0
$\frac{1}{10} \frac{1}{10} = \frac{1}{10}$	0.0736	0.0	0.1919	0.0	0.1919	0.0
$\frac{1}{10} \frac{1}{10} = \frac{1}{10} $	0 1717	0.0	0.7252	0.0	0 2352	0.0

Table 1. (Cont'd)

	#	(d)	. *	(<i>u</i>)	.•	<u>@</u> ,	+
	S.N and Description	o-M	IBD	<i>m</i> -M	BD	<i>p</i> -M	BD
41.	$R_{i}\beta_{i} = -R_{i-1}\beta_{i} (i = 3,$	-0 2853	00	-0.2853	0.0	-0.2853	0 0
42	$R_{i+1}\beta_i = -R_{i-2}\beta_i \ (i = 3,6)$	-0 0092	00	-0 0092	0.0	-0.0092	0.0
43	$\beta_{1,2}R_{1} = -\beta_{1+3}R_{1} (1 = 3, 6)$	0.0186	0.0	0 0186	0 0	0.0186	00
44	r109	-0 2003	0 4765	-0 2001	0.7740	0 1989	0 5709
45.	r1r9	-0 9246	0 5128	-0.9248	0 7069	0.9251	0 1001
46.	$r_2 \theta_1$	-0 0643	0.0	-0.0643	0.0	-0 0643	0.0
47.	$r_i r_{i+1}$ (i = 3,6)	0 0337	0 0	0 0337	0.0	0.0337	0.0
48 .	$r_{i}r_{i+2}$ ($i = 3, 6$)	0.0275	0 0	0.0275	0.0	0.0275	0.0
49 .	$r_i r_{i+3}$ ($i = 3,6$)	-0 1452	0.0	-0.1452	0.0	-0 1452	0.0
50.	$\beta_1\beta_2$	-0.4380	0.9129	-0 4378	0.4728	-0.4322	0 4674
51	$\beta_i\beta_{i+1}\ (i=3,\ldots 6)$	-0 0206	0.0	-0 0206	0.0	-0 0206	0 Q
52.	$\beta_i\beta_{i+2}\ (i=3,\6)$	-0 0549	0 0	-0.0549	0.0	-0.0549	0.0
53	$\beta_{i}\beta_{i+3}$ (<i>i</i> = 3,6)	-0.0158	00	-0.0158	0.0	-0 0158	0.0
54.	$\theta_1 \theta_2$	-0.5510	0 0	-0.5510	0.0	-0.5510	0.0
55.	$r_i r_{i+1}$ ($i = 10, 11, 12$)	0.0093	0.0120	0.0074	0 0225	0 0103	0.0170
56.	$\theta_3 \theta_7 = \theta_3 \theta_8 = \theta_4 \theta_6 =$	0.0721	0.1260	0 0726	0 0472	0 0673	0 0431
	$\theta_4 \theta_8 = \theta_5 \theta_6 = \theta_5 \theta_7$						
57.	$\beta_2 \theta_1$	0.0049	0 0	0 0049	0.0	0 0049	0.0
58	$\beta_2 \theta_2$	0.2682	0 0	0.2682	0 0	0 2682	0.0
		Nor	n-planar interaction	force constants			
59 .	$\phi_i \phi_{i+1}$ ($i = 1,6$)	- 0 0204	0.0	-0.0354	0.0	- 0 0354	0.0
60	$\delta_i \delta_{i+1}$ $(i=3, -6)$	0 0092	0.0	0.0092	0.0	0 0092	0.0
61	$\delta_i \delta_{i+2} \ (i=3, -6)$	-0 0213	0.0	- 0.0213	0.0	- 0.0213	0.0
62 .	$\delta_i \delta_{i+3} \ (i=3, \ldots 6)$	-0.0045	0.0	~0 0045	0.0	0 0045	0.0
63 .	$\delta_{i}\phi_{i}=-\delta_{i}\phi_{i-1} \ (i=3,\ldots 6)$	- 0 0204	0.0	-0 0335	0 0	-0 0335	0.0
64 .	$\delta_2\phi_2=-\phi_1\delta_2$	0.0104	0.0	0.0104	0.0	0.0104	0 0
65	$\delta_2 \delta_1$	0.0096	0.0	0.0096	0 0	0.0096	0 0
66 .	$\delta_2\delta_4=\delta_2\delta_6$	-0 0103	0 0	-0.0103	0.0	0 0103	0 0
67 .	$\delta_2 \delta_5$	0.0185	0.0	0 0185	0 0	-	
68 .	$\delta_2 \omega$	0 0359	0.0	0.0359	0.0	0 0359	0.0
69 .	$\phi_1 \tau = \phi_2 \tau$	0.0062	0 0	0.0062	0 0	0 0062	0.0
70 .	$\omega\phi_2=-\phi_1\omega$	0.0137	0.0	0 0137	0.0	0 0137	0.0
71	$\phi_1\tau_1 = \phi_6\tau_1$	-0 0080	0 0480	- 0.0076	0 0571	-0 0041	0.0380
72 .	τ ₁ τ ₂	0.0033	0 0040	0 0039	0 0179	-0.0008	0.0

#: o, m and p stand for ortho, meta and para respectively : R_i (i = 1, 2, 3...6) is bond $C_i - C_{i-1}$ where C1 is the carbon atom of the phenyl ring to which the OCH₃ group is attached. R_i , i_{ii} and i are internal coordinates from the atom C_i in a clockwise sense. C' aldehyde group carbon C'' CH₃ group carbon.

@: Units of force constants are as follows : mdyne/A for stretch and stretch-stretch interaction, mdyne/rad for stretch-bond interaction and mdyne A/rad² for the remaining force constants.

*: The force constants for which dispersions are zero were kept fixed.

and depolarization features in the Raman spectrum. In the present case too the Raman frequency at 996 cm⁻¹ for the *m*-isomer is assigned to this mode. For a number of mono-, *o*- and *p*-substituted benzenes the ring breathing mode is assigned at ~1040 and ~800 cm⁻¹ respectively [29,32,33]. In the present case, for the *o*-isomer there are two Raman

frequencies 1044 and 786 cm⁻¹ having identical features which could be correlated to the ring breathing mode-1. However, the higher frequency is better assigned to the mode C-H in-plane bending and hence, the lower one is assigned to the mode-1. For the *p*-MBD the ring breathing mode is assigned at 860 cm⁻¹.

Table 2. Observed and calculated frequencies for o-MBD*.

Observed				Proposed	s	
Raman	Infra	red	C	alculated	assignments*	p
(hquid)	(liquid)	CCl4 Sol		Potential		ç
cm ⁻¹ Rel. Int	cm ⁻ Rel.	cm ⁻⁺ Rel	cm ⁻¹	energy		e
& Dep	2100 sh		2105			<u> </u>
-	2075 (8)		2077	4(90)	C-II stretch ($20a$)	a'
3077 (1, 42)	3075 (8)		3077	4(98)	C-II stretch (2)	a'
3057 (1, 25)		-	3052	4(100)	C-H stretch (20b)	a'
3012 (0, <i>p</i>)	3010 (8)		3012	4(102)	C-H stretch $(7b)$	u'
-	2965 (8)	-	2953	15(100)	CH ₃ asym stretch	a"
2947 (1, <i>p</i>)	2945 (9)	-	2955	15(99)	CH ₃ asym stretch	a'
2847 (1, .35)	2853 (9)	2840 (7)	2847	1 5(99)	CH ₃ sym stretch	a'
2752 (0, <i>p</i>)	2755 (8)	-	2755	6(9 9)	C-H stretch CHO group	a'
[1687 (10, .29)	1700 (10)	1680 (9)	1679	5(4 9), 3(23), 12(21), 1(10), 11(7)	FR between 1677, C=O stretch and 2 × 856	u'
1667 (3, 29)	1650 (10)	1658 (8)		1		
1602 (9, 46)	1588 (9, br)	1594 (10)	1614	1(57), 2(19), 7(14), 10(6)	C=C stretch (8b)	a'
1584 (2, .38)	1570 sh	1570 sh	1566	1(70), 10(13), 7(11), 5(10), 2(5)	C=C stretch (8a)	a'
1484 (3, .36)	1485 sh	1470 (9)	1499	1(44), 10(39), 2(7), 7(5)	C=C stretch (19b)	a'
	-	-	1.467	17(100)	CH ₃ asym deform	a"
1463 (1, 38)	1461 (10)	1461 (9)	1465	17(98)	CH ₄ asym deform	a'
1440 (1. 33)	1428 (9)	1436 (9)	1449	10(41), 1(29), 5(8), 17(6), 16(5)	C=C stretch (19a)	a'
	-		1425	10(19), 11(18), 12(18), 1(14), 14(11), 16(10), 17(9)	CH3 sym. deform	a'
1397 (2, .34)	1395 (10)	1398 (8)	1378	12(37), 10(22), 11(21), 1(15), 5(11)	C-Hipb CHO group	a'
1304 (1, 65)	1298 (10)	1298 sh	1313	1(41), 10(21), 16(19), 2(16), 17(15), 7(9)	C-OCH ₃ stretch (7a)	a'
-	1288 (10)	1280 (9)	1286	1(117), 10(16), 7(6)	C-C steretch (14)	a'
1248 (10, .17)	1236 (9)	1241 (10)	1243	10(80), 1(12)	C-Cipb. (3)	a'
1192 (6, 23)	1178 (9)	1183 (9)	1193	10(76), 1(13)	C-Hipb (9a)	a'
1163 (5, .23)	1156 (10)	1157 (9)	1163	3(26), 7(24), 10(19), 1(18), 12(11).	C-CHO stretch (13)	a'
1104 (3, 36)	1098 (9)	1098 (8)	1109	1(39), 10(28), 7(10), 16(7)	C-H i.p.b, (18a)	a'
_		-	1059	16(71), 1(14), 10(5)	CH ₃ parallel rock	ď
-	-		1040	16(97)	CH3 perpendicular rock	a"
1044 (6, .14)	1039 (10)	1038 (10)	1026	1(64), 10(16), 7(6)	С–Нірь. (18 <i>b</i>)	a'
1026 (1 26)	1020 (10)	1020 (10)	1005	14(38), 1(21), 16(17),	O-CH ₃ stretch	a'
				17(12), 7(12)		
1009 (0, .10)	-	-	1004	21(85), 18(23), 23(12)	C-H o.p.b. (5)	а"
-	-	-	992	21(58), 23(33), 18(17)	C-H o.p b. (17b)	а"
-	944 (6)	940 (5)	962	23(43), 21(50), 18(14)	CHO wagging	a"
-	856 (8)	853 (6)	866	21(85), 18(19)	C-Hopb (17a)	a"
837 (144)	831 (10)	830 (9)	841	7(47), 3(18), 1(12), 12(6)	CCC i.p.b. (12)	a'
786 (6, 13)	790 (9)	790 (9)	810	1(27), 7(27), 2(14)	C=C stretch (1)	a'
786 (6, .13)	790 (9)	790 (9)	810	1(2!), 1(2!), 2(1+)		

Table	2	(Could)
INDIC	4.	(Conra)

Observed					Proposed	- S
Raman	Infr	ared	(alculated	assignments*	
(liquid)	(liquid)	CCl ₄ Sol		Potential		ı
cm ⁻ ' Rel. Int & Dep.	cm ^{-,} Rei	Int	cm ·	distribution ^{ab}		e s
756 (0, dp)	758 (10)	754 (10)	750	21(91), 18(12)	C-Ho.pb (11)	u"
726 (0, .63)	720 (7)	718 (6)	713	18(33), 21(18), 20(14), 19(9)	C-C-C-C torsion (4)	a"
640 (1, .36)	641 (9)	643 (7)	621	7(55), 1(11), 12(6)	CCC i p.b (6a)	u'
583 (2, .71)	580 (7)	580 (3)	582	7(27), 13(24), 11(12), 1(8), 8(7)	C-Oipb.	a'
529 (0, ?)	526 (6)	521 (2)			436 + 92	A'
480 (1, .70)	480 (8)	480 (4)	494	20 (43), 18 (19), 19(15), 21(10)	C-C-C-C torsion (16a)	a'
436 (0, 1.0)	428 (7)	430 (2)	426	18(39), 19(29), 21(6)	C-OCH ₁ o.p b. (10a)	<i>a</i> "
402 (4, .18)	400 (3)		420	7(33), 8(19), 9(19), 2(13), 3(11), 1(6)	СССірь (6 <i>b</i>)	и'
-	341 (1)	-	349	11(21), 13(21), 1(13), 2(8), 3(8), 7(7)	C-O-C angle bending	a'
277 (1, .67)	275 (3)	-	272	18(24), 19(19), 25(15), 20(15), 24(9), 21(9)	С СПО ор b (10 <i>b</i>)	<i>u</i> "
	230 (4)	-	221	18(35), 22(35) 25(10)	C-C C-C torsion (16b)	<i>a</i> "
201 (1, 65)	-	-	203	9(37), 8(30), 13(21), 11(14), 7(8)	C OCH; 1 p b (9 <i>b</i>)	۰.
-	-		164	9(30), 8(28), 13(12) 11(9)	C-CHO (p.b. (15)	,
166 (0, dp)	-	-	163	25(70), 19(8)	•) CII ₃ torsion	u'
128 (0, dp)	_		133	22(44), 18(32), 24(5), 25(5)	C-CHO torsion	u"
-	-	_	92	24(85), 19(9), 28(8), 22(5)	COCH ₃ torsion	<i>a</i> "

Abbreviations used . Rel. int = Relative intensity, Dep = depolarization ratio, br = broad, sh = shoulder, i p b = in-plane bend, o p.b = out-of-plane bend, sym. = symmetric, asym. = asymmetric, deform = deformation, sol. = solution FR = Fermi resonance

@: The numbers out side the brackets are the force constants number defined in Table 1 and those within the brackets are the corresponding contributions

*. The modes corresponding to the benzene modes as given by Wilson are given within the brackets following each assignments

The modes 1 and 12 of *m*-substituted benzenes give rise to two frequencies in the neighbourhood of 1000 cm⁻¹ and 750 cm⁻¹. As the ring breathing mode-1 for the *m*-isomer has already been assigned at 996 cm⁻¹, the mode-12 is assigned at the frequency 760 cm⁻¹ which is in a Fermi resonance with the first overtone of the fundamental at 382 cm⁻¹. For the *p*-MBD the trigonal bending mode 12 is assigned at 720 cm⁻¹, whereas for the *o*-MBD the frequency 837 cm⁻¹ is assigned to this mode.

In the present case, the NCA suggests that the C=C stretching and C-H planar bending force constants give rise to two frequencies in the region $1240-1300 \text{ cm}^{-1}$. For all the three isomers, the lower frequency is assigned to the C-H planar bending mode-3 and the higher one to the Kekule C-C stretching mode-14. From Tables 2-4, it is obvious that the mode 3 is a pure C-H bending mode for the *p*-isomer whereas it shows a weak and a substantial mixings with the

C-C stretching for the o- and *m*-isomers respectively. Similarly, the Kekule mode-14 appears to be a pure C=C stretching mode having a little mixing with the C-H planar bending mode for the o- and *p*-isomers. For the *m*-isomer it remains almost a pure mode having mixing with several other planar modes.

The C-H non-planar bending mode-11 (umbrella mode) is expected to appear in the regions 735-770, 770-795 and 795-820 cm⁻¹ for *o*-, *m*- and *p*-substituted benzenes [34]. In the present case, this mode is assigned at the frequencies 756. 742 and 771 cm⁻¹ for the *o*-, *m*- and *p*-isomers respectively. The PED for this mode indicates that this is largely a pure C-H non-planar bending mode, having a small mixing with the ring C-C-C-C torsion.

The C-OCH₃ stretching mode is assigned at 1200 cm¹ for anisole by Balfour [1] whereas Ramana Rao and coworkers [2,24,26,28] assigned this mode for the same

able 3. Observed and calculated frequencies for m-MBD#

Observed					Proposed	
Raman	Infra	ared	(Talculated	assignments*	р е
(hquid)	(liquid)	CCl ₄ Sol		Potential		c
cm ⁺ Rel Int & Dep.	Int	Int	cm ·	distribution ^(a)		e s
3200 (0, <i>p</i>)					2*1602	.1'
3181 (0, <i>p</i>)	-	-			2*1593	A^{\prime}
-		-	3105	4(96)	C-H stretch (20b)	a'
3080 (2, 42)	3075 (5)	-	3079	4(9 / B)	C-H stretch (2)	a'
3040 (0, <i>p</i>)			3050	4(Î00)	C-II stretch (20a)	a'
3020 (1, <i>p</i>)	3013 (6)	-	3012	4(102)	C-II stretch (7a)	a'
2960 (0. dp)	2965 (7)	-	2953	15(100)	CH ₁ asym stretch	a"
2945 (1, <i>p</i>)	2951 (7)		2955	1 5(9 9)	CH ₃ asym stretch	a'
2839 (1, 35)	2845 (9)	2841 (7)	2846	15(99)	CH ₃ sym-stretch	a'
2740(0, p)	2738 (6)	2741 (7)	2750	6(9 9)	C H stretch CHO group	u'
1703 (10, 29)	1701 (10)	1700 (10)	1716	5(46), 12(26), 3(17), 1(11), 11(7)	FR between 1691, C=O stretch and	<i>a</i> ′
1445 (2 - 20)	14.91 (10)	1681 (0)			1041 + 050	
• 1685 (5, 29)	1081 (10)	1081 (9)	1601	1(54) 2(21) 7(14) 1()(18)	C=C stratish (94)	
1607 (2, 59)	- 1500 h		1004	1(34), 2(21), 7(14), 10(18)	L B bats and 1507	u u'
1602(2 - 44) 1593(2 - 44)	1599 Sh 1586 (10)	1580 (10)	1570	1(72), 7(10), 5(8),	C-C stretch (8 <i>a</i>) and	a
	1200 (10)	, (1.)	1.70	10(7), 8(7)	1196 + 399	
L	-		1513	1(40), 10(22), 2(9) 7(8), 3(6)	C-C stretch (19b)	a'
1491 (1 - 37)	1480 (10)	1480 (9)	1475	1(38), 10(38), 17(15), 5(6)	C = C stretch (19a)	a'
			1464	17(101)	CH ₃ asym deform	<i>a</i> "
: 362 (1 32)	1460 (10)	1459 (10)	1464	17(85), 10(8), 1(7)	CH ₃ asym deform	u'
(1387) 41)	1431 (9)	1430 (9)	1425	10(40), 1(17), 16(13), 17(11), 14(13)	CH ₃ sym deform	a'
1389 (1, 35)	1385 (9)	1380 (9)	1370	12(54), 11(36), 5(24), 10(6), 1(5)	C Hipb CHO group	a'
1329 (3, 16)	1329 (9)	1322 (10)	1334	1(41), 16(19), 10(15), 17(15), 2(12), 7(10)	C-OCH3 stretch (13)	a'
1291 (2, 18)	1286 (10)	1288 (9)	1288	1(85), 10(13), 16(11), 17(9). 2(8), 11(6), 7(5)	C=C stretch (14)	a'
1269 (10, 12)	1266 (10)	1260 (9)	1240	10(90), 1(39)	C-H i p.b. (3)	a'
1258 (sh, p)					1041 + 209	A'
1196 (3, .21)	1188 (8)	1190 (9)	1197	. 10(84), 1(10)	C-Hiph (96)	a'
[1167 (1, p)	1161 (10)	1160 (10)		1	FR between 1161,	a'
1154 (2, 33)	1150 (10)	1148 (9)	1146	3(23), 7(24), 10(21), 1(10), 12(9), 16(8)	C-CHO stretch (7b) and 1038 + 127	
1076 (1, <i>p</i>)	1076 (6)	1080 (8)	1089	1(40), 10(25), 7(12)	CH i.p.b. (18b)	a'
1040 (1, .23)	1041 (10)	1040 (10)	1050	16(73), 1(10)	CH ₃ parallel rock	a'
-	-	_	1038	16(98)	CH ₃ perpendicular rock	a"
-	-	-	1025	1(42), 10(15), 14(16). 7(10), 16(9), 17(6)	C-Hip.b (18a)	a'

Table 3. (Cont'd)

Observed				Proposed	s	
Raman	Infra	ared	(Calculated	assignments*	р с
(liquid)	(liquid)	CC14 Sol		Potential		i,
cm ⁻¹ Rel. Int	cm ¹ Rel	cm ⁻¹ Rel	cm 1	energy		e
& Dep	Int	Int		distribution		2
-	1001 sh	1000 sh	1005	23(80), 20(8), 21(8)	CHO wagging	a"
996 (9, 35)	991 (7)	990 (6)	999	1(60), 7(15), 14(8), 3(6)	C=C stretch (1)	a'
960 (0, dp)	960 (4)	965 (4)	977	, 21(97), 18(30)	С-Норь (5)	a"
935 (0, dp)	928 (8)	925 (8)	900	21(95), 18(21)	C-Ho.pb (17a)	a"
909 (0, <i>p</i>)		-	9()9	1(22), 14(20), 7(17). 3(12), 16(9), 2(7)	O-CH ₃ stretch	a'
897 (0, dp)	899 (8)	890 (8)	885	21(91), 18(21), 23(5)	C-Hopb (17b)	a"
775 (2, 15)	776 (10)	770 (10)	761	7(44), 1(18), 2(8), 3(5)	FR between 760, C-C-C 1 p b (12)	a'
742 (5, 08)	735 (8)	740 (8)		j	and 2*382	
759 (sh, dp)	759 (6)	750 (7)	756	21(36), 18(22), 19(6), 23(5)	C-C-C-C torsion (4)	a"
•			742	21(83), 18(19)	C-H o.p.b. (11)	a"
650 (2, .23)	650 (5)	650 (6)	620	7(45), 13(14), 1(9), 11(9)	C=Oipb	a'
	634 (8)	630 (7)			420 + 209	A"
557 (2, 53)	552 (5)	550 (5)	580	7(43), 13(14), 1(13), 1(8)	CCC ipb (6a)	u'
455 (3, 44)	455 (2)	458 (1)	469	20(40), 18(27), 21(7)	FR between 452, C-C-C-C torsion	а"
L 449 (4, .43)				J	(16a) and 233 + 207	
421 (1, dp)	420 (4)	420 (4)	436	19(48), 18(29), 20(7)	C-OCH3 opb (10a)	<i>u</i> "
-	-	•	399	7(22), 9(22), 3(21), L1(19), 1(9), 8(7)	CC-Cipb (6a)	u'
382 (2, 19)	-	-	386	7(20), 8(21), 2(20), 13(15), 14(12), 1(11)	C-O-C angle bending	u'
277 (0, 31)	270 (3)		277	18(32), 25(13), 22(13), 19(13), 21(11)	$C \cdot C - C - C$ torsion (16b)	а"
233 (0, .30)	250 (3)	-	241	18(22), 20(18), 22(14), 4(14), 25(11), 21(10)	С-СНОорь (10 <i>b</i>)	a"
209 (1, 7)	-	-	207	8(42), 13(32), 9(28)	C-OCH3 1.p b (15)	a'
167 (1, .77)	-	-	165	25(74), 19(8)	OCH ₃ torsion	a"
-	-		158	9(39), 8(13), 11(9), 12(8)	C-CHO i p.b (9a)	a'
127 (1. 87)		-	135	22(64), 18(13), 20(9), 24(7)	CCHO torsion	a"
		-	84	24(84), 19(9), 25(7), 21(6), 20(5)	C-OCH ₃ torsion	a"

#, *, @ : Symbols defined in Table 2

molecule in the region 1250-1325 cm⁻¹. In the present case this mode could be assigned at the frequencies 1304, 1329 and 1320 cm⁻¹ for *o*-, *m*- and *p*-isomers respectively. For all the three isomers it is a strongly mixed mode having mixing with the ring C-C stretching, phenyl C-H plane bending, ring angle bending and the CH₃ deformation and rocking modes.

The C-CHO stretching mode falls in the region where other planar modes are also expected to appear. Hence, this mode is likely to have strong interaction with the other modes. In the present case this mode is assigned at the frequencies 1163 and 1164 cm⁻¹ for the *o*- and *p*-isomers respectively. For the *m*-MBD there are two frequencies 1167 and 1154 cm⁻¹ in the Raman and 1160 and 1148 cm⁻¹ in the IR spectra having identical features. These are explained in terms of Fermi resonance between the C--CHO stretching fundamental and combination band 1038 (*a*", cal.) + 127 (*a*"). The PED for this mode suggests that this mode indeed appears to interact strongly with several planar modes for all the three isomers.

Table 4. Observed and calculated frequencies for p-MBD#.

Observed				Proposed	S	
Raman	Infr	ared		Calculated	assignments*	p
(liquid)	(liquid)	CCl ₄ Sol		Potential		ç
cm ⁻¹ Rel. Int.	cm ⁻¹ Rel.	cm ⁻¹ Rel.	cm ¹	energy		e
2202 (0)	1/11.	111		distribution	3+1/02	<u></u>
3202(0, p)					2*1603	A'
3160 (0, ?)			2102		2*1581	A'
3104 (0, .16)	-	-	3103	₩(96)	C-H stretch $(20a)$	a' .
3082 (2, .19)	-		3082	•(98)	C-H stretch (2)	a'
3057 (1, .30)	-	-	3054	4 (100)	C-H stretch (20b)	<i>a'</i>
3017 (1, .29)	-	-	3014	♦ (102)	C-H stretch $(7b)$	a'
2961 (0, dp)	2956 (6)	A.W.,	2952	15(100)	CH ₃ asym stretch	<i>a</i> "
2944 (7, .0)	2945 (6)	-	2954	15(99)	CH ₃ asym. stretch	a'
2915 (sh, p)					1699 + 1220	Α'
2847 (10, .09)	2829 (7)	2830 (9)	2847	15(99)	CH ₃ sym. stretch	a'
2744 (4, .20)	2732 (6)	2731 (8)	2753	6(99)	C-H stretch CHO group	a'
1699 (4, 32)	1693 (8)	1695 (7)	1714	5(48), 12(27), 3(18), 11(8), 1(7)	FR between 1696, C=O stretch and 2 × 860	a'
1683 (7, 25)	1680 (8)	1680 (0)		1		
1603 (10, .30)	1600 (9)	1600 (10)	1590	1(45), 2(27), 10(18), 7(14), 14(7)	C=C stretch (8a)	<i>a</i> ′
1580 (4, .27)	1577 (8)	1570 (8)	1566	1(83), 7(12), 10(8), 8(6)	C=C stretch (8b)	a'
1515 (0, 60)	1510 (8)	-	1524	1(48), 10(38), 5(8), 7(8)	C=C stretch (19a)	a'
_	-		1463	17(79), 1(11)	CH ₃ asym deform	u'
1464 (0, 43)	1461 (6)	-	1460	17(100)	CH ₃ asym deform	а"
1446 (sh, p)	1442 (6)	-	1444	1(30), 17(29), 10(15), 14(12), 16(9)	CH ₃ sym deform.	a'
1431 (2, .26)	1426 (6)	-	1432	1(33), 10(29), 16(9), 17(8), 14(7), 5(6)	C - C stretch (19b)	a'
1395 (0, .26)	1392 (5)	1390 (5)	1369	12(55), 11(40), 5(24)	C-H i p b. CHO group	a'
1320 (1, 14)	1316 (7)	1318 (8)	1319	16(25), 17(20), 10(20), 2(19), 1(16), 7(12)	C-OCH ₃ stretch (7 <i>a</i>)	a'
1307 (sh, p)	1302 (6)	1305 (8)	1289	1(121), 10(33)	C=C steretch (14)	a'
1264 (2, .14)	1260 (8)	1265 (8)	1270	10(100)	C-H i.p.b (3)	a'
1220 (3, 25)	1216 (7)	1215 (6)	1213	10(60), 1(22)	C-H i p.b. (9a)	a'
1184 (1, .12)	1182 (6)	1180 (4)			839 + 335; 945 + 240	A'
1164 (9, .07)	1161 (8)	1160 (8)	1167	7(28), 3(26), 1(21), 10(14), 12(10)	C-CHO stretch (13)	a'
1113 (0, ,40)	-	_	1119	10(40), 1(37), 7(6)	C-H i.p.b. (18b)	a'
-	-	-	1057	16(77), 1(8)	CH ₃ parallel rock	a'
-	_	-	1040	16(97)	CH ₃ perpendicular rock	a"
1029 (0, .45)	1025 (7)	1020 (8)	1017	1(44), 7(28), 10(17)	C-H i.p.b. (18a)	a'
1009 (0, .50)	-	-	1006	23(81), 21(7), 20(7)	CHO wagging	a"
_	_	_	995	14(38), 1(32),	O-CH ₃ stretch	a'
				16(16), 17(10)		
-	-	-	971	21(89), 18(33), 18(17)	C-H o.p.b. (17a)	а"
-	945 (4)	960 (6)	947	21(83), 18(35)	C–H o.p.b. (5)	а"
860 (2, .02)	857 (7)	858 (5)	870	1(43), 7(18), 3(6), 14(5)	C=C stretch (1)	<u>a'</u>

Table 4. (Cont'd.)

	Observed				Proposed	
Raman	Infra	red		Calculated	assignments*	р е
(liquid)	(liquid)	CCl ₄ Sol.		Potential		c
cm ' Rel. Int	cm ⁻¹ Rel.	cm ⁻¹ Ref.	cm ⁻¹	energy distribution [@]		e
830 (1 02)	922 (7)	P20 (5)	820	21(00) 18(28)	(-Honh (17h)	
839 (1, 02) 771 (0, 10)	633(7)	830 (3)	020	21(90), 10(20)	С-но.р.о. (176)	<i>a</i> "
771 (0, .18)		-	768	21(83), 18(27)	С-Нор.в. (11)	a"
762 (0, .14)	-	_	762	21(32), 18(21), 20(10), 19(8)	C-C-C-C torsion (4)	u"
720 (0, 50)	716 (3)	720 (6)	718	7(21), 1(18), 3(16), 2(13), 13(6), 12(5)	CCC i p b. (12)	u'
646 (2, 28)	653 (5)	650 (6)	670	7(84)	FR between 640,	a'
635 (2, .50)	-	-		j	CCC i.p.b. (6b) and 2*335	
611 (1, .11)	607 (5)	608 (8)	579	7(28), 11(17), 1(10), 9(8), 8(8), 13(5)	C=O i.p bend	a'
515 (0; <i>p</i>)	514 (5)				335 + 169	A'
491 (0, 45)		480 (7)	481	18(36), 21(17)	CCC -C torsion (16b)	a"
-	-	-	452	19(32), 20(36), 18(16)	C-OCH3 o p.b. (10b)	a"
424 (0, ?)	-	430 (3)	422	13(22), 11(18), 1(15), 3(9), 2(8), 8(8), 7(6)	FR between α (C–O–C) and 240 + 169 cm ⁻¹	a'
397 (0, .23)	392 (5)	390 (4)		7(6)		
373 (1, .14)	-		359	7(31), 8(23), 9(19), 2(11), 3(10), 1(6), 11(5), 14(5)	С-С-С і р b. (6 <i>а</i>)	a'
335 (0, 66)	-		330	18(24), 19(28), 20(21), 21(10), 22(5), 25(13), 24(7)	C-CHO o p.b. (10a)	a"
273 (1, .16)	283 (4)				2*133, lattice mode	A'
-	248 (4)	240 (3)	226	22(28), 25(24). 18(22), 21(8)	C-C-C-C torsion (16a)	а"
191 (1, 58)			200	9(34), 8(32), 13(23), 11(8), 7(8), 12(5)	C-OCH3 i.p b. (9b)	u'
-	_	-	168	9(31), 8(19), 13(15). 1(9), 11(6), 12(6)	С-СНО і.р.в (15)	a'
-	-	-	169	25(54), 22(22), 19(12), 18(8)	O-CH ₃ torsion	а"
			133	24(40), 22(28), 18(8), 20(8), 25(7)	C-CHO torsion	a"
	-	-	78	24(48), 18(13), 22(13), 21(7), 19(6), 20(5)	C-OCH ₃ torsion	а"

*, #, @ · Symbols defined in Table 2.

4.2 CHO group modes

The C-H stretching mode is assigned at the frequencies 2752, 2740 and 2744 cm⁻¹ for the *o*-, *m*- and *p*-isomers respectively. In the C=O stretching region two frequencies have been observed for all the three isomers. Appearance of the doublet in each case is explained in terms of the Fermi resonance between the C=O stretching fundamental and a suitable combination/overtone frequencies. The C-H planar bending mode of the CHO group is observed near 1380 cm⁻¹ for benzaldehyde and its derivatives [19,21,29,30].

In the present case, it is assigned in a very narrow region $1380-1400 \text{ cm}^{-1}$.

The C=O in-plane bending mode is assigned in the region 600–620 cm⁻¹ for benzaldehyde and at 587 cm⁻¹ for benzaldehyde-d₆ [12]. In the present case, the frequencies 583, 650 and 611 cm⁻¹ are assigned to this mode in light of the PEDs. Out of the two CHO non-planar modes, one corresponds to the wagging mode and has a magnitude near 1000 cm⁻¹. The present force field calculations place this mode at 962, 1001 and 1009 cm⁻¹ for the *o*-, *m*- and

p-isomers respectively. Zwarich et al [21] and Compagnaro and Wood [35] have assigned the CHO torsional mode near 135 cm⁻¹. In the present case, the frequencies 128 and 127 cm⁻¹ observed for the o- and m-isomers respectively are assigned to the CHO torsional mode. For the p-isomer, no frequency is observed near 130 cm⁻¹. The force field calculation places this mode at 133 cm⁻¹ for the *p*-isomer. It is to be noted here that except the C-H stretching mode all the remaining five internal modes of the CHO group are coupled modes. However, it is to be noted that the C=O stretching and the C-H (CHO) planar bending modes are localized group modes as these two involve force constants of the CHO group only, except that the C=O stretching mode has very small contribution from the ring C=C stretching force constant. The C-H non-planar wagging mode also appears to be a pure mode for the *m*- and *p*-isomers whereas for the o-isomer it shows strong mixing with the ring C-H non-planar bending and the C-C-C-C torsional modes. The CHO torsional mode, is mixed with the ring C--C--C torsion for the o- and p-isomers whereas for the p-isomer this is mixed with the OCH₃ torsional mode.

4.3 O-CH₃ group modes :

The O-CH₃ mode is assigned at ~1040 cm⁻¹ for anisole [1] and in the region 1000-1100 cm⁻¹ for anisole and its derivatives [24,26,28]. This mode is assigned at 1026, 909 and 995 cm⁻¹ for the *o*-, *m*- and *p*-MBDs respectively. The present NCA suggests that this mode is strongly mixed with the CH₃ deformation and the ring C-C stretching modes for all the three isomers. Difference in magnitudes of this mode for the *o*-, *m*- and *p*-MBDs suggests that this mode is influenced by the substituent.

The C-O-CH₃ angle bending mode is assigned near 300 cm⁻¹ for anisole by Owen and Hester [20] and at 421 cm⁻¹ for *p*-MBD by Compagnaro and Wood [35]. Ramana Rao et al [2,24,26,28] have proposed assignment for this mode in the region 300-670 cm⁻¹ for anisole and its derivatives. As this mode lies in the region of the ring planar C-C-C angle bending modes 6 (a,b), a strong mixing amongst these two modes and other planar modes is expected. The C-O-CH₃ angle bending mode is assigned at 341, 382 and 430 cm⁻¹ for the o-, m- and p-isomers respectively. The PED for this mode suggests a strong mixing of this mode with other planar modes (Tables 2-4). The torsional mode of the OCH₃ group was observed for anisole at 100 cm⁻¹ by some workers [30,31]. Balfour [1] assigned this mode at 81.5 cm⁻¹ and Lakshmaiah and Ramana Rao [24] calculated this mode to be at 58 cm⁻¹ for anisole. This mode is expected to lie beyond the investigated range presently. The calculated frequencies for this mode for the three isomers o-, m- and p- are respectively 92, 84 and 78 cm⁻¹.

4.4. CH₃ group modes :

For the OCH₃ group compounds, the mode v_s appears in the range 2825–2870 cm⁻¹, lower in magnitude compared to its value in CH₃ compounds (2860–2935 cm⁻¹), whereas the two v_{as} modes for both the types of compounds lie in the same region 2925–2985 cm⁻¹. The PEDs for these modes suggest that these are pure CH₃ stretching modes.

The deformation mode δ_s of the CH₃ group lies in the region 1285–1370 cm⁻¹ in OCH₃ compounds [31]. However, the present force field calculations place this mode at 1440 cm⁻¹ for all the three isomers. It could be seen from Tables 2-4 that this is a strongly mixed mode for the three isomers. The two δ_{as} modes for the OCH₃ compounds also lie in the region of δ_{us} of the CH₃ compounds (1410– 1470 cm⁻¹) and are substituent independent modes. In the present case, it could be seen from the PEDs that the two δ_{as} modes are pure CH₃ group modes. The two rocking modes a' + a'' of the CH₃ group lie in the rang 990– 1070 cm⁻¹ for OCH₃ and CH₃ compounds and the present assignments for three modes are also in the above region. It is interesting to note that these are also pure CH₃ group modes.

The CH₃ torsional mode could be assigned at ~ 165 cm⁻¹ in all the three cases. It is to be noted here that this is a pure mode for the *o*- and *m*-isomers whereas it shows a strong mixing with the CHO torsional mode and a weak mixing with other non-planar modes for the *p*-isomer.

Acknowledgments

The authors are grateful to Dr. T K Gundoo Rao, RSIC, IIT, Mumbai for his help in getting recorded the Raman spectra and to the Head, Department of Chemistry, Banaras Hindu University for the IR spectra. Two of the authors (DNS and IDS) are grateful to the Banaras Hindu University for the financial support in the form of fellowships.

References

- [1] Walter J Balfour Spectrochim. Acta 39A 795 (1983)
- [2] V Ashok Babu, B Lakshmaiah, K Sree Ramulu and G Ramana Rao Indian J. Pure Appl. Phys. 25 58 (1987)
- [3] K V Sarkanen and C H Ludwing (eds) Occurrence, Formation and Reactions (New York : Wiley Interscience) (1971)
- [4] A T Shulgin, T Sargent and C Naranjo Nature (London) 221 537 (1969)
- [5] L N Domelsmith, L L Munchausen and K N Houk J. Am. Chem. Soc. 99 4311 (1977)
- [6] M Horak, E R Lippincott and R K Khanna Spectrochim. Acta 23A 1111 (1967)
- [7] R Josefi, E Drahoradova and M Horak Collect. Czech. Chem. Commun. 39 1541 (1974)
- [8] E F Mooney Spectrochim. Acta 19 877 (1963)

- [9] P D Singh Indian J Pure Appl Phys 7 430 (1969)
- [10] J N Ram and K N Upadhya Spectrochim. Acta 22 1427 (1966)
- [11] A N Pandey and N K Sanyal Indian J Pure Appl. Phys 9 376 (1971)
- [12] J C Dearden and W F Forbes Gan J Chem 37 1305 (1959)
- [13] K Venkateswarlu and M Radhakrishnan Spectrochim Acta 18 1433 (1962)
- [14] C P D Dwivedi and S N Sharma Indian J Pure Appl Phys. 11 787 (1973)
- [15] S N Sharma Acta Phys Pol. 62A 449 (1982)
- [16] V E Sahini and L Telea Reveu Roum Chim. 21 321 (1976)
- [17] V E Sahini and I. Telea Reveu Roum Chim. 21 645 (1976)
- [18] V E Sahini and L Telea Reveu Roum Chim. 23 483 (1976)
- [19] D N Singh, I D Singh and R A Yadav Indian J Phys 76B 35 (2002)
- [20] N L Owen and R E Hester Spectrochim Acta 25A 343 (1969)
- [21] R Zwarich, J Smolarek and L Goodman J. Mol Spectrosc 38 336 (1971)
- [22] H Konschin, H Tylli and B Weatermark J Mol Struct 102 279 (1983)

- [23] K M Singh PhD Thesis (Banaras Hindu University, Varanasi India) (1987)
- [24] B Lakshmaiah and G Ramana Rao J. Raman Spectrosc 20 439 (1989)
- [25] D Vijaya Kumar and G Raman Rao Vib. Spectrosc. 4 59 (1997)
- [26] B Lakshmaiah and G Ramana Rao Indian J. Pure Appl. Phys 29 370 (1991)
- [27] B Lakshmaiah and G Ramana Rao Indian J. Pure. Phys 30 351 (1992)
- [28] B Vekkatram Reddy and G Ramana Rao Vib. Spectrosc 6 231 (1994)
- [29] D N Singh and R A Yadav Asian Chem. Letts. 2 65 (1998)
- [30] L D Pietila, B Mannfors and K Palmo Spectrochim. Acta 44A 141 (1988)
- [31] G Varsanyi Vibrational Spectra of Benzene Derivatives (New York : Academic) (1969)
- [32] D N Singh and R A Yadav Asian J. Phys. 6 369 (1997)
- [33] D N Singh, J S Singh and R A Yadav J. Raman Spectrosc 28 355 (1997)
- [34] N B Colthup, L H Daly and S E Wiberley Introduction to Infrared and Raman Spectroscopy (New York : Academic) (1964)
- [35] G E Campagnaro and J L Wood J. Mol. Struct 6 117 (1970)