129 research outputs found

    Carbon nanotube array as a van der Waals two-dimensional hyperbolic material

    Get PDF
    We use an ab-initio approach to design and study a novel two-dimensional material - a planar array of carbon nanotubes separated by an optimal distance defined by the van der Waals interaction. We show that the energy spectrum for an array of quasi-metallic nanotubes is described by a strongly anisotropic hyperbolic dispersion and formulate a model low-energy Hamiltonian for its semi-analytical treatment. Periodic-potential-induced lifting of the valley degeneracy for an array of zigzag narrow-gap nanotubes leads to the band gap collapse. In contrast, the band gap is opened in an array of gapless armchair tubes. These unusual spectra, marked by pronounced van Hove singularities in the low-energy density of states, open the opportunity for interesting physical effects and prospective optoelectronic applications

    Bioinspired Multifunctional Glass Surfaces through Regenerative Secondary Mask Lithography

    Get PDF
    Nature-inspired nanopatterning offers exciting multifunctionality spanning antireflectance and the ability to repel water/fog, oils, and bacteria; strongly dependent upon nanofeature size and morphology. However, such patterning in glass is notoriously difficult, paradoxically, due to the same outstanding chemical and thermal stability that make glass so attractive. Here, regenerative secondary mask lithography is introduced and exploited to enable customized glass nanopillars through dynamic nanoscale tunability of the side-wall profile and aspect ratio (>7). The method is simple and versatile, comprising just two steps. First, sub-wavelength scalable soft etch masks (55–350 nm) are generated through an example of block copolymer micelles or nanoimprinted photoresist. Second, their inherent durability problem is addressed by an innovative cyclic etching, when the original mask becomes embedded within a protective secondary organic mask, which is tuned and regenerated, permitting dynamic nanofeature profiling with etching selectivity >1:32. It is envisioned that such structuring in glass will facilitate fundamental studies and be useful for numerous practical applications—from displays to architectural windows. To showcase the potential, glass features are tailored to achieve excellent broadband omnidirectional antireflectivity, self-cleaning, and unique antibacterial activity toward Staphylococcus aureus

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    Gain switching of an external cavity grating-coupled surface emitting laser with wide tunability

    Get PDF
    The gain-switched, single frequency operation of an external cavity grating-coupled surface emitting laser with a wavelength tuning range of 100 nm was presented. The light in the grating section was coupled out of the laser at a specific angle to the surface of the device. Analysis showed that within the driving current range, lasing in the device only occurred when the external cavity was properly aligned

    Spin-orbit terms in multi-subband electron systems: A bridge between bulk and two-dimensional Hamiltonians

    Full text link
    We analyze the spin-orbit terms in multi-subband quasi-two-dimensional electron systems, and how they descend from the bulk Hamiltonian of the conduction band. Measurements of spin-orbit terms in one subband alone are shown to give incomplete information on the spin-orbit Hamiltonian of the system. They should be complemented by measurements of inter-subband spin-orbit matrix elements. Tuning electron energy levels with a quantizing magnetic field is proposed as an experimental approach to this problem.Comment: Typos noticed in the published version have been corrected and several references added. Published in the special issue of Semiconductors in memory of V.I. Pere

    Levinson's theorem and scattering phase shift contributions to the partition function of interacting gases in two dimensions

    Get PDF
    We consider scattering state contributions to the partition function of a two-dimensional (2D) plasma in addition to the bound-state sum. A partition function continuity requirement is used to provide a statistical mechanical heuristic proof of Levinson's theorem in two dimensions. We show that a proper account of scattering eliminates singularities in thermodynamic properties of the nonideal 2D gas caused by the emergence of additional bound states as the strength of an attractive potential is increased. The bound-state contribution to the partition function of the 2D gas, with a weak short-range attraction between its particles, is found to vanish logarithmically as the binding energy decreases. A consistent treatment of bound and scattering states in a screened Coulomb potential allowed us to calculate the quantum-mechanical second virial coefficient of the dilute 2D electron-hole plasma and to establish the difference between the nearly ideal electron-hole gas in GaAs and the strongly correlated exciton/free-carrier plasma in wide-gap semiconductors such as ZnSe or GaN.Comment: 10 pages, 3 figures; new version corrects some minor typo

    Zero-energy vortices in Dirac materials

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record In this brief review, we survey the problem of electrostatic confinement of massless Dirac particles, via a number of exactly solvable one- and two-body models. By considering bound states at zero energy, we present a route to obtain truly discrete states of massless Dirac particles in scalar potentials, circumventing the celebrated Klein tunnelling phenomenon. We also show how the coupling of two ultrarelativistic particles can arise, and discuss its implications for cutting-edge experiments with two-dimensional Dirac materials. Finally, we report an analytic solution of the two-body Dirac-Kepler problem, which may be envisaged to bring about a deeper understanding of critical charge and atomic collapse in mesoscopic Dirac systems.European Union Horizon 202

    Levinson's Theorem for the Klein-Gordon Equation in Two Dimensions

    Full text link
    The two-dimensional Levinson theorem for the Klein-Gordon equation with a cylindrically symmetric potential V(r)V(r) is established. It is shown that Nmπ=π(nm+nm)=[δm(M)+β1][δm(M)+β2]N_{m}\pi=\pi (n_{m}^{+}-n_{m}^{-})= [\delta_{m}(M)+\beta_{1}]-[\delta_{m}(-M)+\beta_{2}], where NmN_{m} denotes the difference between the number of bound states of the particle nm+n_{m}^{+} and the ones of antiparticle nmn_{m}^{-} with a fixed angular momentum mm, and the δm\delta_{m} is named phase shifts. The constants β1\beta_{1} and β2\beta_{2} are introduced to symbol the critical cases where the half bound states occur at E=±ME=\pm M.Comment: Revtex file 14 pages, submitted to Phys. Rev.

    Electron-phonon scattering at the intersection of two Landau levels

    Get PDF
    We predict a double-resonant feature in the magnetic field dependence of the phonon-mediated longitudinal conductivity σxx\sigma_{xx} of a two-subband quasi-two-dimensional electron system in a quantizing magnetic field. The two sharp peaks in σxx\sigma_{xx} appear when the energy separation between two Landau levels belonging to different size-quantization subbands is favorable for acoustic-phonon transitions. One-phonon and two-phonon mechanisms of electron conductivity are calculated and mutually compared. The phonon-mediated interaction between the intersecting Landau levels is considered and no avoided crossing is found at thermal equilibrium.Comment: 13 pages, 8 figure

    Theory of anyon excitons: Relation to excitons of nu=1/3 and nu=2/3 incompressible liquids

    Get PDF
    Elementary excitations of incompressible quantum liquids (IQL's) are anyons, i.e., quasiparticles carrying fractional charges and obeying fractional statistics. To find out how the properties of these quasiparticles manifest themselves in the optical spectra, we have developed the anyon exciton model (AEM) and compared the results with the finite-size data for excitons of nu=1/3 and nu=2/3 IQL's. The model considers an exciton as a neutral composite consisting of three quasielectrons and a single hole. The AEM works well when the separation between electron and hole confinement planes, h, is larger than the magnetic length l. In the framework of the AEM an exciton possesses momentum k and two internal quantum numbers, one of which can be chosen as the angular momentum, L, of the k=0 state. Existence of the internal degrees of freedom results in the multiple branch energy spectrum, crater-like electron density shape and 120 degrees density correlations for k=0 excitons, and the splitting of the electron shell into bunches for non-zero k excitons. For h larger than 2l the bottom states obey the superselection rule L=3m (m are integers starting from 2), all of them are hard core states. For h nearly 2l there is one-to-one correspondence between the low-energy spectra found for the AEM and the many- electron exciton spectra of the nu=2/3 IQL, whereas some states are absent from the many-electron spectra of the nu=1/3 IQL. We argue that this striking difference in the spectra originates from the different populational statistics of the quasielectrons of charge conjugate IQL's and show that the proper account of the statistical requirements eliminates excessive states from the spectrum. Apparently, this phenomenon is the first manifestation of the exclusion statistics in the anyon bound states.Comment: 26 pages with 9 figures, typos correcte
    corecore