3,507 research outputs found

    Letter from N. Hempel

    Get PDF
    Letter concerning a position in athletic department at Utah Agricultural College

    The Star Cluster Population in the Tidal Tails of NGC 6872

    Full text link
    We present a photometric analysis of the rich star cluster population in the tidal tails of NGC 6872. We find star clusters with ages between 1 - 100 Myr distributed in the tidal tails, while the tails themselves have an age of less than 150 Myr. Most of the young massive (104M/M10710^{4} \le M/M_{\odot} \le 10^{7}) clusters are found in the outer regions of the galactic disk or the tidal tails. The mass distribution of the cluster population can be well described by power-law of the form N(m)mαN(m) \propto m^{-\alpha}, where α=1.85±0.11\alpha = 1.85 \pm 0.11, in very good agreement with other young cluster populations found in a variety of different environments. We estimate the star formation rate for three separate regions of the galaxy, and find that the eastern tail is forming stars at 2\sim 2 times the rate of the western tail and 5\sim 5 times the rate of the main body of the galaxy. By comparing our observations with published N-body models of the fate of material in tidal tails in a galaxy cluster potential, we see that many of these young clusters will be lost into the intergalactic medium. We speculate that this mechanism may also be at work in larger galaxy clusters such as Fornax, and suggest that the so-called ultra-compact dwarf galaxies could be the most massive star clusters that have formed in the tidal tails of an ancient galactic merger.Comment: 12 pages, 10 figures, accepted A&

    A new possible quark-hadron mixed phase in protoneutron stars

    Full text link
    The phase transition from hadronic matter to quark matter at high density might be a strong first order phase transition in presence of a large surface tension between the two phases. While this implies a constant-pressure mixed phase for cold and catalyzed matter this is not the case for the hot and lepton rich matter formed in a protoneutron star. We show that it is possible to obtain a mixed phase with non-constant pressure by considering the global conservation of lepton number during the stage of neutrino trapping. In turn, it allows for the appearance of a new kind of mixed phase as long as neutrinos are trapped and its gradual disappearance during deleptonization. This new mixed phase, being composed by two electric neutral phases, does not develop a Coulomb lattice and it is formed only by spherical structures, drops and bubbles, which can have macroscopic sizes. The disappearance of the mixed phase at the end of deleptonization might lead to a delayed collapse of the star into a more compact configuration containing a core of pure quark phase. In this scenario, a significant emission of neutrinos and, possibly, gravitational waves are expected.Comment: 4 pages, 4 figure

    Human SULT1A genes: Cloning and activity assays of the SULT1A promoters

    Get PDF
    The three human SULT1A sulfotransferase enzymes are closely related in amino acid sequence (>90%), yet differ in their substrate preference and tissue distribution. SULT1A1 has a broad tissue distribution and metabolizes a range of xenobiotics as well as endogenous substrates such as estrogens and iodothyronines. While the localization of SULT1A2 is poorly understood, it has been shown to metabolize a number of aromatic amines. SULT1A3 is the major catecholamine sulfonating form, which is consistent with it being expressed principally in the gastrointestinal tract. SULT1A proteins are encoded by three separate genes, located in close proximity to each other on chromosome 16. The presence of differential 5′-untranslated regions identified upon cloning of the SULT1A cDNAs suggested the utilization of differential transcriptional start sites and/or differential splicing. This chapter describes the methods utilized by our laboratory to clone and assay the activity of the promoters flanking these different untranslated regions found on SULT1A genes. These techniques will assist investigators in further elucidating the differential mechanisms that control regulation of the human SULT1A genes. They will also help reveal how different cellular environments and polymorphisms affect the activity of SULT1A gene promoters

    More than colour attraction: behavioural functions of flower patterns

    Get PDF
    ReviewFlower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landing or search for reward on the flower. From further away flower displays jointly form largersized patterns within the visual scene that will guide an insect’s flight behaviour. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.BBSR

    Differences in colour learning between pollen- and sucrose-rewarded bees

    Get PDF
    Rapid Communication"This is an Accepted Manuscript of an article published by Taylor & Francis in Communicative & Integrative Biology on 08 August 2015, available online: http://wwww.tandfonline.com/10.1080/19420889.2015.1052921]."Open access articleWhat bees learn during pollen collection, and how they might discriminate between flowers on the basis of the quality of this reward, is not well understood. Recently we showed that bees learn to associate colours with differences in pollen rewards. Extending these findings, we present here additional evidence to suggest that the strength and time-course of memory formation may differ between pollen- and sucrose-rewarded bees. Colour-naïve honeybees, trained with pollen or sucrose rewards to discriminate coloured stimuli, were found to differ in their responses when recalling learnt information after reversal training. Such differences could affect the decision-making and foraging dynamics of individual bees when collecting different types of floral rewards

    A comparative analysis of colour preferences in temperate and tropical social bees

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.The spontaneous occurrence of colour preferences without learning has been demonstrated in several insect species; however, the underlying mechanisms are still not understood. Here, we use a comparative approach to investigate spontaneous and learned colour preferences in foraging bees of two tropical and one temperate species. We hypothesised that tropical bees utilise different sets of plants and therefore might differ in their spontaneous colour preferences. We tested colour-naive bees and foragers from colonies that had been enclosed in large flight cages for a long time. Bees were shortly trained with triplets of neutral, UV-grey stimuli placed randomly at eight locations on a black training disk to induce foraging motivation. During unrewarded tests, the bees’ responses to eight colours were video-recorded. Bees explored all colours and displayed an overall preference for colours dominated by long or short wavelengths, rather than a single colour stimulus. Naive Apis cerana and Bombus terrestris showed similar choices. Both inspected long-wavelength stimuli more than short-wavelength stimuli, whilst responses of the tropical stingless bee Tetragonula iridipennis differed, suggesting that resource partitioning could be a determinant of spontaneous colour preferences. Reward on an unsaturated yellow colour shifted the bees’ preference curves as predicted, which is in line with previous findings that brief colour experience overrides the expression of spontaneous preferences. We conclude that rather than determining foraging behaviour in inflexible ways, spontaneous colour preferences vary depending on experimental settings and reflect potential biases in mechanisms of learning and decision-making in pollinating insects.We acknowledge research grant funding provided by the Royal Society for International Joint Projects and UKIERI (DST-2014-15-041). B.G.S. was funded by a PhD studentship award from MHRD, Govt. of India

    How to stay perfect: the role of memory and behavioural traits in an experienced problem and a similar problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.When animals encounter a task they have solved previously, or the same problem appears in a different apparatus, how does memory, alongside behavioural traits such as persistence, selectivity and flexibility, enhance problem-solving efficiency? We examined this question by first presenting grey squirrels with a puzzle 22 months after their last experience of it (the recall task). Squirrels were then given the same problem presented in a physically different apparatus (the generalisation task) to test whether they would apply the previously learnt tactics to solve the same problem but in a different apparatus. The mean latency to success in the first trial of the recall task was significantly different from the first exposure but not different from the last exposure of the original task, showing retention of the task. A neophobia test in the generalisation task suggested squirrels perceived the different apparatus as a different problem, but they quickly came to apply the same effective tactics as before to solve the task. Greater selectivity (the proportion of effective behaviours) and flexibility (the rate of switching between tactics) both enhanced efficiency in the recall task, but only selectivity enhanced efficiency in the generalisation task. These results support the interaction between memory and behavioural traits in problem-solving, in particular memory of task-specific tactics that could enhance efficiency. Squirrels remembered and emitted task-effective tactics more than ineffective tactics. As a result, they consistently changed from ineffective to effective behaviours after failed attempts at problem-solving

    Reporting of thermography parameters in biology: a systematic review of thermal imaging literature

    Get PDF
    This is the final version. Available from the Royal Society via the DOI in this record. Data accessibility: All data are available in the electronic supplementary material.Infrared (IR) thermography, where temperature measurements are made with IR cameras, has proven to be a very useful and widely used tool in biological science. Several thermography parameters are critical to the proper operation of thermal cameras and the accuracy of measurements, and these must usually be provided to the camera. Failure to account for these parameters may lead to less accurate measurements. Furthermore, the failure to provide information of parameter choices in reports may compromise appraisal of accuracy and replicate studies. In this review, we investigate how well biologists report thermography parameters. This is done through a systematic review of biological thermography literature that included articles published between years 2007 and 2017. We found that in primary biological thermography papers, which make some kind of quantitative temperature measurement, 48% fail to report values used for emissivity (an object's capacity to emit thermal radiation relative to a black body radiator), which is the minimum level of reporting that should take place. This finding highlights the need for life scientists to take into account and report key parameter information when carrying out thermography, in the future.Natural Environment Research Counci

    Inhibitory control and memory in the search process for a modified problem in grey squirrels, Sciurus carolinensis

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordInhibiting learned behaviours when they become unproductive and searching for an alternative solution to solve a familiar but different problem are two indicators of flexibility in problem solving. A wide range of animals show these tendencies spontaneously, but what kind of search process is at play behind their problem-solving success? Here, we investigated how Eastern grey squirrels, Sciurus carolinensis, solved a modified mechanical problem that required them to abandon their preferred and learned solution and search for alternative solutions to retrieve out-of-reach food rewards. Squirrels could solve the problem by engaging in either an exhaustive search (i.e., using trial-and-error to access the reward) or a ‘backup’ solution search (i.e., recalling a previously successful but non-preferred solution). We found that all squirrels successfully solved the modified problem on their first trial and showed solving durations comparable to their last experience of using their preferred solution. Their success and high efficiency could be explained by their high level of inhibitory control as the squirrels did not persistently emit the learned and preferred, but now ineffective, pushing behaviour. Although the squirrels had minimal experience in using the alternative (non-preferred) successful solution, they used it directly or after one or two failed attempts to achieve success. Thus, the squirrels were using the ‘backup’ solution search process. Such a process is likely a form of generalisation which involves retrieving related information of an experienced problem and applying previous successful experience during problem solving. Overall, our results provide information regarding the search process underlying the flexibility observable in problem-solving success
    corecore