More than colour attraction: behavioural functions of flower patterns

Natalie Hempel de Ibarra ${ }^{1}{ }^{*}$, Keri V. Langridge ${ }^{1}$, Misha Vorobyev ${ }^{2}$
1 University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK

2 University of Auckland, Department of Optometry and Vision Research, Auckland, NZ

Corresponding author:
N. Hempel de Ibarra

Email: N.Hempel@exeter.ac.uk
Address: University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Washington Singer Labs, Perry Road, Exeter, EX4 4QG, UK

Phone: 0044-1392-724610 / Fax: 0044-1392-724610

Abstract

Flower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landing or search for reward on the flower. From further away flower displays jointly form largersized patterns within the visual scene that will guide an insect's flight behaviour. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.

Highlights

1. Insects perceive separately chromatic and achromatic aspects of colour patterns.
2. Flowers present colour patterns as individual or shared displays.
3. Visual appearance of flowers changes considerably with viewing distance.
4. Pollinators use close-up views for landing and handling of flowers.
5. Further away shared displays within the visual scene guide approach trajectories.

Introduction

Visual information is indispensable for insect pollinators to locate, choose and interact with flowers. However, insect vision is constrained by the poor optical resolution of their small compound eyes, which is about a hundred times lower than that of our single-lens eye [1]. Unlike single-lens eyes, which are able to focus on objects at different distances, insect eyes have the same angular resolution at far and close distances. Therefore, insects are unable to resolve spatial details of distant objects, however they can use vision at extremely close distances. Theoretical analysis of the optical resolution of insect eyes demonstrates that most flower patterns can be resolved only when the insect is millimeters away [2](Fig.1). Hence small-sized flower patterns do not play a role during approach to the flowers, as spatial details simply cannot be optically resolved. Resolution of chromatic vision is predicted to be lower than the eye's optical resolution. Different spectral types of photoreceptors that contribute to colour coding are randomly located across the eye [3]. Hence, chromatic vision requires that signals from more than one ommatidium are integrated which reduces the resolution beyond the limits set by the optics of the eye [4].

Under dim light conditions the spatial and temporal resolution of insect vision is decreased further in order to increase contrast sensitivity. Many nocturnal insects, such as moths and beetles, have light-sensitive compound eyes with
superposition optics and therefore lower spatial resolution than diurnal insects. Several species of bees, however, have the less sensitive diurnal-type apposition eyes and are nevertheless able to forage in dim light, during twilight or even during the night [5**]. The contrast sensitivity of such eyes can be enhanced by neural mechanisms, and anatomical evidence suggests that nocturnal bees sum signals from many ommatidia [6]. Consequently this also reduces the spatial resolution of their eyes. Furthermore, due to temporal summation of receptor and neural signals that can occur in both types of eyes, vision becomes slower as light levels decrease, which affects the insect's flight speed and trajectories [7,8, $9^{* *}$]. Interestingly, some nocturnal insects have not sacrificed colour vision in order to increase their visual sensitivity and can identify flowers on the basis of their colours even during moonless nights [10,11].

Insect views of flowers differ fundamentally from ours, and human observers usually overestimate the signalling distance range and functions of floral displays [e.g. 12]. The low spatial resolution of insect eyes defines their perception of flower colours, shapes and patterns. Behavioural experiments confirm that insects cannot resolve small objects or small-scaled variations of shapes and patterns over long distances. For instance, the detection limit for single-coloured discs is 5° of angular size in honeybees, around 2° in large-sized bumblebees and 1° in swallowtail butterflies, which can be related to differences in eye size $\left[13,14,15^{*}\right]$. For a 1 cm flower, this corresponds to a viewing distance of 11 to 57 cm , respectively. Dissectedness of the outline shape in flower-like targets impairs the detection range [16], as predicted by the optical model of the honeybee eye. The behavioural resolution of chromatic vision is even worse honeybees cannot detect and discriminate targets on the basis of chromatic cues if they subtend a visual angle less than $13-15^{\circ}[17,18]$. As an insect moves, the appearance of flowers will change considerably, and consequently the insect must be able to rely on different visual cues when foraging and navigating in flower patches. To evaluate the functions of floral displays it is therefore not only important to know how they are resolved and processed by the visual system but to also consider an insect's flight trajectory at different distances from flowers.

Why are flower patterns so widespread and diverse?

It is usually assumed that flower patterns increase the diversity of floral displays and help pollinators to discriminate between flowers and to identify the bestrewarding ones. However, when taking into account the poor resolution of compound eyes and typically small sizes of individual floral displays, it is evident that flower patterns can be seen by an insect and influence its behaviour only when it is already close to the flower, initiating a sequence of motor actions that lead up to landing and interactions with the flower. In that phase flowers can use patterns to exploit visuo-motor responses guiding an insect's movement [19,20] to optimise pollen transfer and reduce potential damage from handling of the flower by the insect.

To communicate with insect pollinators over a distance, flowers must increase individual display sizes considerably or contribute to shared displays in inflorescences, mass displays or multi-species patches (Fig.2). Shared displays in
a scene can produce effective signals with variable features, suited to influence the insect's approach behaviour when it moves through the environment, deciding where to go and which flowers to inspect and visit. Foraging decisions are not limited to the final stage of a floral visit. As the insect moves between flowers, the success of its foraging efforts is influenced by spatial memory processes and the cost of flight and interactions with flowers [21-23], and thus also by the effective visual guidance of the pollinator's movements. It is therefore important to consider the spatial scales, over which flower signals engage with visual and learning mechanisms, to understand the selective pressures that insect behaviour exerts on colour and pattern features of floral displays.

Chromatic and achromatic processing in insect vision

The perception of colour patterns depends on the spatial distribution of contrast edges in an individual or shared display. These are processed by colour-blind edge detection and pattern discrimination mechanisms [24] that are segregated from a low-resolution chromatic system in insect vision [25,26**,27]. Achromatic and chromatic neural pathways operate in parallel and process, respectively, high and low-frequency components of visual scenes and objects.

Repetitive elements in pattern design found across angiosperms [28] point towards evolutionary selection of feature-dependent functions that target visually-guided behaviours of insects. Such behaviours are mediated in different ways by chromatic and achromatic visual mechanisms. For example, many flowers display a concentric (or 'bulls-eye') pattern that consists of a central disc surrounded by a contrasting outer ring. Patterns that have a bright (for bees) outer ring surrounding a dim disc can be detected from further distances than those having a bright disc surrounded by an outer dim ring. It appears that flowers with a bright outer ring are more common and tend to be smaller than those having a bright central disc and dim outer ring, suggesting that this arrangement may have been selected by insect vision [29]. Nevertheless, the overall detectability of both types of concentric patterns is worse than that of single-coloured discs (see Box 1), which suggests that these patterns have not evolved to simply attract pollinators. Instead they may be effective for flight control and stabilisation during landing and at the same time direct the insect towards the centre of the flower that contains the nectar and pollen rewards.

It is well known that insects discriminate a wide range of patterns and shapes, from simple to complex, artificial and naturalistic patterns in objects or visual scenes [e.g. 24,30,31]. After extensive training, bees can learn to perform difficult tasks such as pattern grouping and categorisation [32]. Pattern vision is predominantly mediated by achromatic mechanisms; in bees by the L (longwavelength sensitive or 'green') photoreceptor [e.g. 24]. Motion vision in insects is also colour-blind. Movement-derived visual information helps the insect to avoid collisions, negotiate narrow gaps, land on a surface, or locate the nest and foraging sites [recently viewed by 33]. Motion parallax and looming cues can improve the detection range for an object placed in front of a background [34], facilitate landing manoeuvres at flowers with shapes of distinct depths, or positioning of the proboscis [35].

Movement causes motion blur, but its effect on pattern vision is negligible in visual systems that acquire visual information by fixating on objects. Although theoretically, it is plausible that insects reconstruct the image from temporal variations of the signal caused by motion, insects, such as flies and bees, fixate on objects, i.e. acquire visual information in a similar way to vertebrates. To stabilize gaze they control the orientation of their body, which sometimes can deviate from their flight direction, and display saccadic movements which include fast body turns when changing the direction of gaze. Gaze stabilization is supported by head movements [36,37]; however, these are minute and extremely fast as the mobility of the head is limited by the insect's morphology.

Flight trajectories influence foraging responses and learning

Since gaze direction is closely coupled with body orientation in insects, the viewing conditions, e.g. distances and directions, during approach and landing on flowers will strongly depend upon the flight behaviour and navigational decisions. Thus, flight trajectories influence the perception and learning of sensory information by insects. When foraging insects navigate, their routes and approach trajectories are largely determined by the availability of suitable visual cues $[38,39]$. Insects can, to some degree, flexibly adjust their flight behaviour for solving navigational and spatial orientation tasks by actively acquiring specific visual cues for spatial learning [40,41]. This flexibility is influenced by the cost of efficiently executing flight and landing movements. Flying insects obey the laws of aerodynamics, hence approach and landing manoeuvres during a flower visit require a number of well-coordinated actions [42*]. To initiate a landing sequence at short distance from the flower the flying insect has to adjust the height of the flight trajectory and reduce its speed significantly. It has to maintain a good balance of its body to withstand aerodynamic drag downwards [43]. Sophisticated motor mechanisms rely on visual guidance allowing the insect to land elegantly [44**], rather than to crash into a flower, which is not a trivial task as flowers often move [45].

Flowers exploit the tight connection between vision and flight trajectory throughout the different phases of the approach flight and landing sequence. For example, field observations commonly describe the strong directionality of bumblebees foraging on vertical inflorescences, starting at the bottom and moving upwards [22,46]. Flower orientation varies, and vertically-presented flowers on slopes tend to adaptively face down-slope, receiving more visitation as they offer convenient petal orientation for landing of bees moving preferentially upwards [47]. Observations on flowers reveal that flower orientation influences the landing behaviour of pollinators [48]. It is beneficial for flowers to guide pollinator movement in a way that enhances pollen transfer [49**], and field observations suggest that small patterns ('nectar-guides') help pollinators to orient on flowers [50-52].

Colour and multimodal learning at the flower

The presence of colour in flower patterns is often suggested to attract insects towards the flower based on innate colour preferences and reflexive feeding responses [e.g. 52,53]. However, experience may be equally if not more important: insect pollinators quickly learn positive associations between food rewards and colour cues [for reviews see 54,55,56]. The ability to memorise and discriminate diverse colour and pattern cues is well established for many insect pollinators, and consequently flower choices are strongly influenced by the sensory experience acquired during foraging and previous flower visits [e.g. $57,58-62$]. Once the insect arrives at the flower and is able to see and recognise the contrasting colours of pattern elements, chromatic cues are likely to reinforce the decision to finalise a landing sequence or to follow contrast contours. Some colour elements in flower patterns may however present little or no chromatic contrast to the insect eye (Fig.1), and examples are best found among orchids which evolved an extreme diversity of colour patterns to accurately manipulate the insect's movements at the flower for a single opportunity to deposit pollinia on a specific body part of the insect.

Whilst at the flower, insects may combine cues for multimodal guidance, such as sensory information provided by the shape of the surface, texture, odours, and electrostatic forces [e.g. 63*,64-66]. As visual patterns help to make landing and reward localisation on a flower easier (alone or in combination with multimodal cues), the perceived reward value will be enhanced and learning improved; and consequently pollinators will show preferences for flowers with patterns.

Conclusions

Pollinating insects forage in a three-dimensional environment and look at flowers from different distances and directions. What they see depends on the spatial resolution of the compound eye and visual mechanisms that process object information, however, it is also influenced by their flight trajectories and viewing conditions. What they choose depends on their vision and visual learning capabilities and is strongly influenced by navigation and spatial learning mechanisms. It remains to be understood how decisions are made and behavioural responses coordinated at far and near distances, as a pollinator moves between flowers, approaches and visits them. The underlying neural mechanisms involve basic sensory and motor systems that are shared across different taxonomic groups of insects. A wide range of flower search and choice behaviours adopted by insects can be explained by mechanistic models that take into account constraints imposed by the optics of insect eyes and aerodynamics of insect flight, rather than by models based on the assumptions of higher order cognitive processing of visual information.

Box 1

Bees use colour (chromatic cues) to discriminate single-coloured discs and twocoloured concentric patterns, but only from close viewing distances (Fig.3). Bees are colour-blind while detecting and discriminating objects from further away, when those subtend small visual angles [13,17,18,67]. In this case they rely on achromatic (brightness) cues, the signals of the L receptor alone. However, the
detection threshold does not depend on the magnitude of L-receptor contrast. A critical parameter for the detectability of patterns is the distribution of Lreceptor contrasts within the target $[17,67]$ (Fig.3). An outer ring with a strong L-receptor contrast (bright) surrounding a central disc with weak contrast (dim) is detected over a shorter distance than a single-coloured disc of the same colour and diameter. The detection distance is even shorter for patterns composed of a dim ring surrounding a bright disc [67]. When viewed through bee eyes such pattern has blurred edges; the impaired detectability is therefore likely to be a consequence of processing visual information by detector neurons with centresurround organisation of their receptive fields [67]. Such neurons are found in visual pathways of many animals. The consequences of detecting objects through such detectors vary for flowers of different sizes. Plants with smaller-sized flowers could have evolved compensatory strategies by sharing displays, without necessarily growing dense inflorescences or high densities of conspecific flowers. Sharing displays can also occur when different species grow in mixed patches next to each other (Fig.2), by offering large-sized visual features that inform an insect's navigational decisions and guide it towards a reward location with several flowers. In detection experiments honeybees and bumblebees showed a slightly improved detectability for groups of three discs that were placed at sufficiently large inter-disc distances to prevent optical merging when seen from a long distance [68]. This suggests that detector neurons interact in various ways to evoke differential responses towards extended distributions of objects across the visual scene.

Acknowledgments

We gratefully acknowledge funding support by the BBSRC (BB/I009329/1).
N.H.I. and M.V. are grateful to R.Menzel for support and discussions, to A.Cocucci, A.Sersic, W.Kreisch and M.Weigend for advice on flowers. We thank T.S.Collett and M.Collett for discussions.

Figure captions

Figure 1: Flowers through bee eyes. Shown are pattern displays of small flowers (1 cm scale) in human colours (first row) and 'bee colours' (second row, high spatial resolution) [for methods see 2,29]. From left to right: Traunsteinera globosa, Viola biflora, Helianthemum nummularia, Geranium robertianum. Spectral sensitivities of the S, M and L-receptors of honeybees (peak sensitivities $344 \mathrm{~nm}, 436 \mathrm{~nm}, 556 \mathrm{~nm}$) were used to calculate quantum catches in each pixel of the multispectral images. To show 'bee colours' (second row) quantum catches were converted into RGB values for the three primary monitor colours (see inset). The third row shows the images of single flowers projected onto the ommatidial lattice of the honeybee eye at a close distance (2 cm). Images in the fourth and lowest row simulate views at distances where the flower subtends a visual angle of 16°, which is above the chromatic threshold, or 7°, which is below the chromatic threshold and approximately at the detection limit within the range of the achromatic (brightness) visual system. Note that above the chromatic threshold, at short distances, only larger-sized patterns are optically resolved. Visually contrasting small ornaments or flower parts are visible when
the insect is on the flower. They are invisible during its approach flight, shown here for a distance of 2 cm at which a bee prepares for landing.

Figure 2: Shared floral displays through bee eyes. Shown is a simulated flower patch. The single-coloured target flower (1 cm in diameter) is in the centre. When the bee views the target flower from a distance of 11.4 cm it subtends a visual angle of 5°, the minimum angle for it to be detected. Its individual colour cannot be resolved at this distance. At a distance of 32 cm the target flower and other individual flowers in this patch are to small to be individually detected, but the whole group forms a shared display which subtends a visual angle of 15°. The colour of this shared display will be visible to the approaching bee. From further away, at a distance of 50 cm , the colour of this shared display cannot be resolved. It is integrated with surrounding groups of flowers in the visual scene contributing to chromatic and brightness pattern cues that the bee can use.

Figure 3 (to be placed in Box 1): Spatial resolution of the honeybee's chromatic and achromatic visual system. Two parallel visual systems in the honeybee are tuned to objects of different sizes [13,17,18,67]. At short distances when coloured discs subtend large visual angles, bees predominantly use chromatic cues to detect and discriminate coloured targets. The colour vision system receives input from all three receptor types (S, M, L). At longer distances, the achromatic visual system mediates detection and discrimination through the L-receptor contrast (achromatic or brightness contrast). The detection limit for a single-coloured disc presented individually is 5°. It does not vary with contrast strength. Signals from several adjacent ommatidia are processed, presumably by detector units with centre-surround receptive fields [68]. When the bee approaches the target, the angular size increases; above the chromatic threshold of $13-15^{\circ}$ the target's colour will be resolved and chromatic cues determine the visual perception of bees. There is sensitivity for achromatic L-contrast but it is low; from short distances bees are able to detect very bright [69], but not less bright [68] achromatic discs. The detection range for concentric patterns is lower than for single-coloured discs and varies depending on the spatial arrangement of the pattern elements with different brightness contrast.

Reference annotations

[^0]```
* Goyret J, Raguso RA: The role of mechanosensory input in flower handling
 efficiency and learning by Manduca sexta. J Exp Biol 2006, 209:1585-
 1593.
 This study demonstrates the importance of mechanosensory information
 for reward-directed movements on the flower. By decoupling visual and
 mechanosensory information it is shown that surface area and tactile
 features, such as grooves, influence how quickly Manduca learns to find
 the nectar reward in a flower.
** Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W: The
 processing of color, motion, and stimulus timing are anatomically
 segregated in the bumblebee brain. J Neurosci 2008, 28:6319-6332.
 Systematic electrophysiological recordings of more than hundred
 interneurons in the lobula of the optic lobes in Bombus impatiens provide
 an impressively detailed picture of the anatomical and functional
 segregation of the chromatic and achromatic visual systems in the bee
 brain.
** Somanathan H, Warrant EJ, Borges RM, Wallen R, Kelber A: Resolution and
 sensitivity of the eyes of the Asian honeybees Apis florea, Apis
 cerana and Apis dorsata. J Exp Biol 2009, 212:2448-2453.
 It is shown in closely related bee species how resolution and sensitivity
 varies with body size and eye morphology in adaptation to diurnal and
 nocturnal foraging.
** Sponberg S, Dyhr JP, Hall RW, Daniel TL: Insect flight. Luminance-
 dependent visual processing enables moth flight in low light. Science
 2015, 348:1245-1248.
 This study examines the accuracy with which the dusk-active hawkmoth
 Manduca sexta tracks a moving robotic flower to keep its flight
 movements in synchrony with the flower movements whilst imbibing
 nectar. Response times are increased under dim light conditions, but not
 to an extent that would seriously interfere with the moth's ability to feed
 on typically slow-moving flowers in its habitat.
* Takeuchi Y, Arikawa K, Kinoshita M: Color discrimination at the spatial
 resolution limit in a swallowtail butterfly, Papilio xuthus. J Exp Biol
 2006, 209:2873-2879.
 Training butterflies in a Y-maze to perform accurate choices is an
 extremely difficult experimental task, nevertheless it is achieved in this
 study. The measured discrimination thresholds suggest that the spatial
 resolution of colour vision in butterflies might be close to the limits of
 spatial resolution, presumably due to the more complex structure of
 ommatidia and spectrally more diverse retina found in Papilio xuthus.
** Ushimaru A, Hyodo F: Why do bilaterally symmetrical flowers orient
 vertically? Flower orientation influences pollinator landing
 behaviour. Evolutionary Ecology Research 2005, 7:151-160.
```

This study shows that presenting Commelina communis flowers in a horizontal orientation changes how pollinators land and move on the flower. Stigmas and anthers were not touched, whilst nectar rewards were collected, which suggests that in the flower's natural vertical orientation the pattern helps to guide the insect properly in order to achieve pollination.

* Vance JT, Altshuler DL, Dickson WB, Dickinson MH, Roberts SP: Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces. Physiological and Biochemical Zoology 2014, 87:870-881. Multicamera high-speed video recording reveal subtle variations of wing movements that allow honeybees to accomplish a number of different vertical flight manouvres.


## References

1. Kirschfeld K: The resolution of lens and compound eyes. . In Neural principles in vision. Edited by Zettler F, Weiler R: Springer; 1976:354-370.
2. Vorobyev M, Gumbert A, Kunze J, Giurfa M, Menzel R: Flowers through insect eyes. Isr J Plant Sci 1997, 45:93-101.
3. Wakakuwa M, Stavenga DG, Arikawa K: Spectral organization of ommatidia in flower-visiting insects. Photochem Photobiol 2007, 83:27-34.
4. Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R: Colour thresholds and receptor noise: behaviour and physiology compared. Vision Res 2001, 41:639-653.
5. Somanathan H, Warrant EJ, Borges RM, Wallen R, Kelber A: Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata. J Exp Biol 2009, 212:2448-2453.
6. Greiner B, Ribi WA, Wcislo WT, Warrant EJ: Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res 2004, 318:429-437.
7. Theobald JC, Coates MM, Wcislo WT, Warrant EJ: Flight performance in nightflying sweat bees suffers at low light levels. J Exp Biol 2007, 210:40344042.
8. Reber T, Vahakainu A, Baird E, Weckstrom M, Warrant E, Dacke M: Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees. J Exp Biol 2015, 218:1339-1346.
9. Sponberg S, Dyhr JP, Hall RW, Daniel TL: Insect flight. Luminance-dependent visual processing enables moth flight in low light. Science 2015, 348:1245-1248.
10. Johnsen S, Kelber A, Warrant E, Sweeney AM, Widder EA, Lee RL, HernándezAndrés J: Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J Exp Biol 2006, 209:789-800.
11. Somanathan H, Borges RM, Warrant EJ, Kelber A: Nocturnal bees learn landmark colours in starlight. Curr Biol 2008, 18:R996-997.
12. Dafni A, Lehrer M, Kevan PG: Spatial flower parameters and insect spatial vision. Biol Rev Camb Philos Soc 1997, 72:239-282.
13. Giurfa M, Vorobyev M, Kevan P, Menzel R: Detection of coloured stimuli by honeybees: Minimum visual angles and receptor specific contrasts. $J$ Comp Physiol A 1996, 178:699-709.
14. Wertlen AM, Niggebrugge C, Vorobyev M, Hempel de Ibarra N: Detection of patches of coloured discs by bees. J Exp Biol 2008, 211:2101-2104.
15. Takeuchi Y, Arikawa K, Kinoshita M: Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus. J Exp Biol 2006, 209:2873-2879.
16. Ne'eman G, Kevan PG: The effect of shape parameters on maximal detection distance of model targets by honeybee workers. J Comp Physiol A 2001, 187:653-660.
17. Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R: Discrimination of coloured stimuli by honeybees: Alternative use of achromatic and chromatic signals. J Comp Physiol A 1997, 180:235-243.
18. Hempel de Ibarra N, Giurfa M, Vorobyev M: Discrimination of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 2002, 188:503-512.
19. Daumer K: Blumenfarben, Wie Sie Die Bienen Sehen. Z Vergl Physiol 1958, 41:49-110.
20. Lunau K, Unseld K, Wolter F: Visual detection of diminutive floral guides in the bumblebee Bombus terrestris and in the honeybee Apis mellifera. $J$ Comp Physiol A 2009, 195:1121-1130.
21. Heinrich B: Energetics of Pollination. Ann Rev Ecol System 1975, 6:139-170.
22. Pyke GH: Optimal Foraging in Bumblebees and Coevolution with Their Plants. Oecologia 1978, 36:281-293.
23. Collett TS, Collett M: Memory use in insect visual navigation. Nat Rev Neurosci 2002, 3:542-552.
24. Lehrer M: Honeybee's use of spatial parameters for flower discrimination. Isr J Plant Sci 1997, 45:157-167.
25. Anderson JC, Laughlin SB: Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system. Vision Res 2000, 40:13-31.
26. Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W: The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 2008, 28:6319-6332.
27. Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K: Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc R Soc B 2008, 275:947-954.
28. Dafni A, Kevan PG: Floral symmetry and nectar guides: Ontogenetic constraints from floral development, colour pattern rules and functional significance. Bot J Linn Soc 1996, 120:371-377.
29. Hempel de Ibarra N, Vorobyev M: Flower patterns are adapted for detection by bees. J Comp Physiol A 2009, 195:319-323.
30. Zhang S, Srinivasan MV, Zhu H, Wong J: Grouping of visual objects by honeybees. J Exp Biol 2004, 207:3289-3298.
31. Dyer AG, Rosa MGP, Reser DH: Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 2008, 211:11801186.
32. Stach S, Giurfa M: The influence of training length on generalization of visual feature assemblies in honeybees. Behav Brain Res 2005, 161:8-17.
33. Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP: Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front Neural Circuits 2012, 6.
34. Kapustjansky A, Chittka L, Spaethe J: Bees use three-dimensional information to improve target detection. Naturwiss 2010, 97:229-233.
35. Wicklein M, Strausfeld NJ: Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta. J Comp Neurol 2000, 424:356-376.
36. Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M: The fine structure of honeybee head and body yaw movements in a homing task. Proc Biol Sci 2010, 277:1899-1906.
37. Riabinina 0, Hempel de Ibarra N, Philippides A, Collett TS: Head movements and the optic flow generated during the learning flights of bumblebees. J Exp Biol 2014, 217:2633-2642.
38. Collett M: How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci U S A 2010, 107:11638-11643.
39. Wystrach A, Graham P: What can we learn from studies of insect navigation? Anim Behav 2012, 84:13-20.
40. Lehrer M: Small-scale navigation in the honeybee: Active acquisition of visual information about the goal. J Exp Biol 1996, 199:253-261.
41. Collett TS, Land MF: Visual spatial memory in a hoverfly. J Comp Physiol 1975, 100:59-84.
42. Vance JT, Altshuler DL, Dickson WB, Dickinson MH, Roberts SP: Hovering Flight in the Honeybee Apis mellifera: Kinematic Mechanisms for Varying Aerodynamic Forces. Physiol Biochem Zool 2014, 87:870-881.
43. Luu T, Cheung A, Ball D, Srinivasan MV: Honeybee flight: a novel 'streamlining' response. J Exp Biol 2011, 214:2215-2225.
44. Baird E, Boeddeker N, Ibbotson MR, Srinivasan MV: A universal strategy for visually guided landing. Proc Natl Acad Sci U S A 2013, 110:18686-18691.
45. Whitney HM, Federle W: Biomechanics of plant-insect interactions. Curr Opin Plant Biol 2013, 16:105-111.
46. Waddington KD, Heinrich B: Foraging Movements of Bumblebees on Vertical Inflorescences - Experimental-Analysis. J Comp Physiol 1979, 134:113117.
47. Ushimaru A, Kawase D, Imamura A: Flowers adaptively face down-slope in 10 forest-floor herbs. Funct Ecol 2006, 20:585-591.
48. Ushimaru A, Hyodo F: Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evol Ecol Res 2005, 7:151-160.
49. Ushimaru A, Dohzono I, Takami Y, Hyodo F: Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia 2009, 160:667-674.
50. Jersakova J, Jurgens A, Smilauer P, Johnson SD: The evolution of floral mimicry: identifying traits that visually attract pollinators. Funct Ecol 2012, 26:1381-1389.
51. Hansen DM, Van der Niet T, Johnson SD: Floral signposts: testing the significance of visual 'nectar guides' for pollinator behaviour and plant fitness. Proc R Soc B 2012, 279:634-639.
52. Koski MH, Ashman TL: Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct Ecol 2014, 28:868-877.
53. Brito VL, Weynans K, Sazima M, Lunau K: Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Front Plant Sci 2015, 6:362.
54. Kelber A, Vorobyev M, Osorio D: Animal colour vision--behavioural tests and physiological concepts. Biol Rev Camb Philos Soc 2003, 78:81-118.
55. Hempel de Ibarra N, Vorobyev M, Menzel R: Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 2014, 200:411433.
56. Kinoshita M, Arikawa K: Color and polarization vision in foraging Papilio. J Comp Physiol A 2014, 200:513-526.
57. Goyret J, Pfaff M, Raguso R, Kelber A: Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth. Naturwiss 2008, 95:569-576.
58. Gumbert A, Kunze J: Colour similarity to rewarding model plants affects pollination in a food deceptive orchid, Orchis boryi. Biol J Linn Soc 2001, 72:419-433.
59. Kelber A: Pattern discrimination in a hawkmoth: innate preferences, learning performance and ecology. Proc $R$ Soc B 2002, 269:2573-2577.
60. Amaya-Márquez M, Hill PSM, Barthell JF, Pham LL, Doty DR, Wells H: Learning and memory during foraging of the blue orchard bee, Osmia lignaria (Hymenoptera: Megachilidae). J Kansas Entomol Soc 2008, 81:315-327.
61. Blackiston D, Briscoe AD, Weiss MR: Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J Exp Biol 2011, 214:509-520.
62. Schiestl FP, Johnson SD: Pollinator-mediated evolution of floral signals. Trends Ecol Evol 2013, 28:307-315.
63. Goyret J, Raguso RA: The role of mechanosensory input in flower handling efficiency and learning by Manduca sexta. J Exp Biol 2006, 209:15851593.
64. Balkenius A, Hansson B: Discrimination training with multimodal stimuli changes activity in the mushroom body of the hawkmoth Manduca sexta. PLoS ONE 2012, 7:e32133.
65. Clarke D, Whitney H, Sutton G, Robert D: Detection and learning of floral electric fields by bumblebees. Science 2013, 340:66-69.
66. Campos EO, Bradshaw HD, Daniel TL: Shape matters: corolla curvature improves nectar discovery in the hawkmoth Manduca sexta. Funct Ecol 2015, 29:462-468.
67. Hempel de Ibarra N, Giurfa M, Vorobyev M: Detection of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 2001, 187:215-224.
68. Giurfa M, Vorobyev M: The angular range of achromatic target detection by honey bees. J Comp Physiol A 1998, 183:101-110.
69. Niggebrugge C, Hempel de Ibarra N: Colour-dependent target detection by bees. J Comp Physiol A 2003, 189:915-918.



Distance


11 cm


32 cm


50 cm



[^0]:    ** Baird E, Boeddeker N, Ibbotson MR, Srinivasan MV: A universal strategy for visually guided landing. Proc Natl Acad Sci U S A 2013, 110:1868618691. This paper presents behavioural data and a theoretical model to demonstrate how bees land safely on vertical surfaces without knowing their absolute distance to the surface or speed. When approaching a vertically oriented target bees reduce their speed using the rate of expansion of the viewed image.

