27 research outputs found

    TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    Get PDF
    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.This work was supported by funding from the Medical Research Council and the European Research Council (ERC, 281847) (A.P.J.), the Lister Institute for Preventative Medicine (A.P.J. and G.S.S.), Medical Research Scotland (L.S.B.), German Federal Ministry of Education and Research (BMBF, 01GM1404) and E-RARE network EuroMicro (B.W), Wellcome Trust (M. Hurles), CMMC (P.N.), Cancer Research UK (C17183/A13030) (G.S.S. and M.R.H), Swiss National Science Foundation (P2ZHP3_158709) (O.M.), AIRC (12710) and ERC/EU FP7 (CIG_303806) (S.S.), Cancer Research UK (C6/A11224) and ERC/EU FP7 (HEALTH-F2- 2010-259893) (A.N.B. and S.P.J.).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.345

    Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation

    Get PDF
    The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript

    Whole Genome Sequencing of “Mutation-Negative” Individuals With Cornelia de Lange Syndrome

    Get PDF
    This study was aimed at assessing the diagnostic utility of whole genome sequence analysis in a well-characterised research cohort of individuals referred with a clinical suspicion of Cornelia de Lange syndrome (CdLS) in whom prior genetic testing had not identified a causative variant. Short-read whole genome sequencing was performed on 195 individuals from 105 families, 108 of whom were affected. 100/108 of the affected individuals had prior relevant genetic testing, with no pathogenic variant being identified. The study group comprised 42 trios in which both parental samples were available for testing (42 affected individuals and 126 unaffected parents), 61 singletons (unrelated affected individuals), and two families with more than one affected individual. The results showed that 32 unrelated probands from 105 families (30.5%) had likely causative coding region-disrupting variants. Four loci were identified in > 1 proband: NIPBL (10), ANKRD11 (6), EP300 (3), and EHMT1 (2). Single variants were detected in the remaining genes (EBF3, KMT2A, MED13L, NLGN3, NR2F1, PHIP, PUF60, SET, SETD5, SMC1A, and TBL1XR1). Possibly causative variants in noncoding regions of NIPBL were identified in four individuals. Single de novo variants were identified in five genes not previously reported to be associated with any developmental disorder: ARID3A, PIK3C3, MCM7, MIS18BP1, and WDR18. The clustering of de novo noncoding variants implicates a single upstream open reading frame (uORF) and a small region in Intron 21 in NIPBL regulation. Causative variants in genes encoding chromatin-associated proteins, with no defined influence on cohesin function, appear to result in CdLS-like clinical features. This study demonstrates the clinical utility of whole genome sequencing as a diagnostic test in individuals presenting with CdLS or CdLS-like phenotypes

    Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data.

    Get PDF
    Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands

    Synthesis and characterization of Hf(SO4)2(H2O)4 and Hf(SeO3)(SeO4)(H2O)4

    Full text link
    corecore