427 research outputs found

    Identification of a TPX2-Like Microtubule-Associated Protein in Drosophila

    Get PDF
    Chromosome segregation during mitosis and meiosis relies on the spindle and the functions of numerous microtubule-associated proteins (MAPs). One of the best-studied spindle MAPs is the highly conserved TPX2, which has been reported to have characteristic intracellular dynamics and molecular activities, such as nuclear localisation in interphase, poleward movement in the metaphase spindle, microtubule nucleation, microtubule stabilisation, microtubule bundling, Aurora A kinase activation, kinesin-5 binding, and kinesin-12 recruitment. This protein has been shown to be essential for spindle formation in every cell type analysed so far. However, as yet, TPX2 homologues have not been found in the Drosophila genome. In this study, I found that the Drosophila protein Ssp1/Mei-38 has significant homology to TPX2. Sequence conservation was limited to the putative spindle microtubule-associated region of TPX2, and intriguingly, D-TPX2 (Ssp1/Mei-38) lacks Aurora A- and kinesin-5-binding domains, which are highly conserved in other animal and plant species, including many insects such as ants and bees. D-TPX2 uniformly localised to kinetochore microtubule-enriched regions of the metaphase spindle in the S2 cell line, and it had microtubule binding and bundling activities in vitro. In comparison with other systems, the contribution of D-TPX2 to cell division seems to be minor; live cell imaging of microtubules and chromosomes after RNAi knockdown identified significant delay in chromosome congression in only 18% of the cells. Thus, while this conserved spindle protein is present in Drosophila, other mechanisms may largely compensate for its spindle assembly and chromosome segregation functions

    HGPD: Human Gene and Protein Database, 2012 update

    Get PDF
    The Human Gene and Protein Database (HGPD; http://www.HGPD.jp/) is a unique database that stores information on a set of human Gateway entry clones in addition to protein expression and protein synthesis data. The HGPD was launched in November 2008, and 33 275 human Gateway entry clones have been constructed from the open reading frames (ORFs) of full-length cDNA, thus representing the largest collection in the world. Recently, research objectives have focused on the development of new medicines and the establishment of novel diagnostic methods and medical treatments. And, studies using proteins and protein information, which are closely related to gene function, have been undertaken. For this update, we constructed an additional 9974 human Gateway entry clones, giving a total of 43 249. This set of human Gateway entry clones was named the Human Proteome Expression Resource, known as the ‘HuPEX’. In addition, we also classified the clones into 10 groups according to protein function. Moreover, in vivo cellular localization data of proteins for 32 651 human Gateway entry clones were included for retrieval from the HGPD. In ‘Information Overview’, which presents the search results, the ORF region of each cDNA is now displayed allowing the Gateway entry clones to be searched more easily

    Optical conductivity of rattling phonons in type-I clathrate Ba8_8Ga16_{16}Ge30_{30}

    Full text link
    A series of infrared-active optical phonons have been detected in type-I clathrate Ba8_8Ga16_{16}Ge30_{30} by terahertz time-domain spectroscopy. The conductivity spectra with the lowest-lying peaks at 1.15 and 1.80 THz are identified with so-called rattling phonons, i.e., optical modes of the guest ion Ba2+(2)^{2+}(2) with T1uT_{1u} symmetry in the oversized tetrakaidecahedral cage. The temperature dependence of the spectra from these modes are totally consistent with calculations based on a one-dimensional anharmonic potential model that, with decreasing temperature, the shape becomes asymmetrically sharp associated with a softening for the weight to shift to lower frequency. These temperature dependences are determined, without any interaction effects, by the Bose-factor for optical excitations of anharmonic phonons with the nonequally spaced energy levels.Comment: 4 pages, 4 figure

    Human Gene and Protein Database (HGPD): a novel database presenting a large quantity of experiment-based results in human proteomics

    Get PDF
    Completion of human genome sequencing has greatly accelerated functional genomic research. Full-length cDNA clones are essential experimental tools for functional analysis of human genes. In one of the projects of the New Energy and Industrial Technology Development Organization (NEDO) in Japan, the full-length human cDNA sequencing project (FLJ project), nucleotide sequences of approximately 30 000 human cDNA clones have been analyzed. The Gateway system is a versatile framework to construct a variety of expression clones for various experiments. We have constructed 33 275 human Gateway entry clones from full-length cDNAs, representing to our knowledge the largest collection in the world. Utilizing these clones with a highly efficient cell-free protein synthesis system based on wheat germ extract, we have systematically and comprehensively produced and analyzed human proteins in vitro. Sequence information for both amino acids and nucleotides of open reading frames of cDNAs cloned into Gateway entry clones and in vitro expression data using those clones can be retrieved from the Human Gene and Protein Database (HGPD, http://www.HGPD.jp). HGPD is a unique database that stores the information of a set of human Gateway entry clones and protein expression data and helps the user to search the Gateway entry clones

    CAXII Is a Sero-Diagnostic Marker for Lung Cancer

    Get PDF
    To develop sero-diagnostic markers for lung cancer, we generated monoclonal antibodies using pulmonary adenocarcinoma (AD)-derived A549 cells as antigens by employing the random immunization method. Hybridoma supernatants were immunohistochemically screened for antibodies with AMeX-fixed and paraffin-embedded A549 cell preparations. Positive clones were monocloned twice through limiting dilutions. From the obtained monoclonal antibodies, we selected an antibody designated as KU-Lu-5 which showed intense membrane staining of A549 cells. Based on immunoprecipitation and MADLI TOF/TOF-MS analysis, this antibody was recognized as carbonic anhydrase XII (CAXII). To evaluate the utility of this antibody as a sero-diagnostic marker for lung cancer, we performed dot blot analysis with a training set consisting of sera from 70 lung cancer patients and 30 healthy controls. The CAXII expression levels were significantly higher in lung cancer patients than in healthy controls in the training set (P<0.0001), and the area under the curve of ROC was 0.794, with 70.0% specificity and 82.9% sensitivity. In lung cancers, expression levels of CAXII were significantly higher in patients with squamous cell carcinoma (SCC) than with AD (P = 0.035). Furthermore, CAXII was significantly higher in well- and moderately differentiated SCCs than in poorly differentiated ones (P = 0.027). To further confirm the utility of serum CAXII levels as a sero-diagnostic marker, an additional set consisting of sera from 26 lung cancer patients and 30 healthy controls was also investigated by dot blot analysis as a validation study. Serum CAXII levels were also significantly higher in lung cancer patients than in healthy controls in the validation set (P = 0.030). Thus, the serum CAXII levels should be applicable markers discriminating lung cancer patients from healthy controls. To our knowledge, this is the first report providing evidence that CAXII may be a novel sero-diagnostic marker for lung cancer

    Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila

    Get PDF
    Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells

    Bias in MRI Measurements of Apparent Diffusion Coefficient and Kurtosis: Implications for Choice of Maximum Diffusion Encoding

    Get PDF
    Tissue water diffusion is non-Gaussian and the expressions used to calculate diffusion parameters are approximations which introduce systematic errors dependent on the maximum diffusion encoding, diffusion time, etc. This study aimed at characterizing biases in estimates of both apparent diffusion coefficient and kurtosis, and determines their dependence on these parameters. Similar to the approach of several previous studies, Taylor expansion of the diffusion signal was used to calculate biases. Predicted errors were compared with data from one volunteer. Predicted errors agreed well with the measured errors and also the published diffusion tensor imaging measurements. The equations derived predict biases in measured diffusion parameters and explain much of the discrepancy between measurements obtained with different acquisition protocols. The equations may also be used to choose appropriate diffusion encoding for diffusion weighted, tensor, and kurtosis imaging

    Towards the Construction of Expressed Proteomes Using a Leishmania tarentolae Based Cell-Free Expression System

    Get PDF
    The adaptation of organisms to a parasitic life style is often accompanied by the emergence of novel biochemical pathways absent in free-living organisms. As a result, the genomes of specialized parasitic organisms often code for a large number (>50%) of proteins with no detectable homology or predictable function. Although understanding the biochemical properties of these proteins and their roles in parasite biogenesis is the next challenge of molecular parasitology, analysis tools developed for free-living organisms are often inadequate for this purpose. Here we attempt to solve some of these problems by developing a methodology for the rapid production of expressed proteomes in cell-free systems based on parasitic organisms. To do so we take advantage of Species Independent Translational Sequences (SITS), which can efficiently mediate translation initiation in any organism. Using these sequences we developed a single-tube in vitro translation system based on the parasitic protozoan Leishmania tarentolae. We demonstrate that the system can be primed directly with SITS containing templates constructed by overlap extension PCR. To test the systems we simultaneously amplified 31 of L. tarentolae's putative translation initiation factors and phosphatases directly from the genomic DNA and subjected them to expression, purification and activity analysis. All of the amplified products produced soluble recombinant proteins, and putative phosphatases could be purified to at least 50% purity in one step. We further compared the ability of L. tarentolae and E. coli based cell-free systems to express a set of mammalian, L. tarentolae and Plasmodium falciparum Rab GTPases in functional form. We demonstrate that the L. tarentolae cell-free system consistently produced higher quality proteins than E. coli-based system. The differences were particularly pronounced in the case of open reading frames derived from P. falciparum. The implications of these developments are discussed

    Identification and Functional Analyses of 11 769 Full-length Human cDNAs Focused on Alternative Splicing

    Get PDF
    We analyzed diversity of mRNA produced as a result of alternative splicing in order to evaluate gene function. First, we predicted the number of human genes transcribed into protein-coding mRNAs by using the sequence information of full-length cDNAs and 5′-ESTs and obtained 23 241 of such human genes. Next, using these genes, we analyzed the mRNA diversity and consequently sequenced and identified 11 769 human full-length cDNAs whose predicted open reading frames were different from other known full-length cDNAs. Especially, 30% of the cDNAs we identified contained variation in the transcription start site (TSS). Our analysis, which particularly focused on multiple variable first exons (FEVs) formed due to the alternative utilization of TSSs, led to the identification of 261 FEVs expressed in the tissue-specific manner. Quantification of the expression profiles of 13 genes by real-time PCR analysis further confirmed the tissue-specific expression of FEVs, e.g. OXR1 had specific TSS in brain and tumor tissues, and so on. Finally, based on the results of our mRNA diversity analysis, we have created the FLJ Human cDNA Database. From our result, it has been understood mechanisms that one gene produces suitable protein-coding transcripts responding to the situation and the environment

    Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas

    Get PDF
    Management of nanosize powder particles via control of plasma parameters in a low-pressure SiH4 discharge for silicon microfabrication technologies is considered. The spatial profiles of electron and positive/negative ion number densities, electron temperature, and charge of the fine particles are obtained using a self-consistent fluid model of the electronegative plasmas in the parallel plate reactor geometry. The model accounts for variable powder size and number density, powder-charge distribution, local plasma nonuniformity, as well as UV photodetachment of electrons from the nanoparticles. The relations between the equilibrium discharge state and powder properties and the input power and neutral gas pressure are studied. Methods for controlling the electron temperature and SiH3- anion (here assumed to be the powder precursor) density, and hence the powder growth process, are proposed. It is shown that by controlling the neutral gas pressure, input power, and powder size and density, plasma density profiles with high levels of uniformity can be achieved. Management of powder charge distribution is also possible through control of the external parameters
    corecore