554 research outputs found
Recommended from our members
The European Neighbourhood Policy and the Democratic Values of the EU: A Legal Analysis
This book offers a legal analysis of the European Neighbourhood Policy (the ENP) as it applies to developing relations with the EU's neighbours. It explores the legal aspects of this policy, including ENP competence matters, institutional arrangements and substantive policy issues, using international relations theory as the starting point in defining the EU's role as a political actor. The book focuses on the adequacy of the ENP legal framework for transposing the EU's democratic values and upholding its political image. In this connection, the book also features an analysis of EU democratic values as they are intended to be understood by its neighbours. The relevant legal framework of this policy and its implementation in the states of the South Caucasus (Georgia, Armenia and Azerbaijan) is evaluated, revealing the effects of the ENP in their democratic processes and the shortfalls of the ENP conditionality
Demkov-Kunike model for cold atom association: weak interaction regime
We study the nonlinear mean-field dynamics of molecule formation at coherent
photo- and magneto-association of an atomic Bose-Einstein condensate for the
case when the external field configuration is defined by the quasi-linear level
crossing Demkov-Kunike model, characterized by a bell-shaped pulse and finite
variation of the detuning. We present a general approach to construct an
approximation describing the temporal dynamics of the molecule formation in the
weak interaction regime and apply the developed method to the nonlinear
Demkov-Kunike problem. The presented approximation, written as a scaled
solution to the linear problem associated to the nonlinear one we treat,
contains fitting parameters which are determined through a variational
procedure. Assuming that the parameters involved in the solution of the linear
problem are not modified, we suggest an analytical expression for the scaling
parameter.Comment: 6 pages, 4 figure
Meso-substituted cationic 3- and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterial photodynamic therapy
Photodynamic inactivation of microorganisms known as antibacterial photodynamic therapy (APDT) is one of the most promising and innovative approaches for the destruction of pathogenic microorganisms. Among the photosensitizers (PSs), compounds based on cationic porphyrins/ metalloporphyrins are most successfully used to inactivate microorganisms. Series of meso-substituted cationic pyridylporphyrins and metalloporphyrins with various peripheral groups in the third and fourth positions of the pyrrole ring have been synthesized in Armenia. The aim of this work was to determine and test the most effective cationic porphyrins and metalloporphyrins with high photoactivity against Gram negative and Gram positive microorganisms. It was shown that the synthesized cationic pyridylporphyrins/metalloporphyrins exhibit a high degree of phototoxicity towards both types of bacteria, including the methicillin-resistant S. aureus strain. Zinc complexes of porphyrins are more phototoxic than metal-free porphyrin analogs. The effectiveness of these Zn-metalloporphyrins on bacteria is consistent with the level of singlet oxygen generation. It was found that the high antibacterial activity of the studied cationic porphyrins/metalloporphyrins depends on four factors: The presence in the porphyrin macrocycle of a positive charge (+4), a central metal atom (Zn2+) and hydrophobic peripheral functional groups as well as high values of quantum yields of singlet oxygen. The results indicate that meso-substituted cationic pyridylporphyrins/metalloporphyrins can find wider application in photoinactivation of bacteria than anionic or neutral PSs usually used in APD
Chiral photonic super-crystals based on helical van der Waals homostructures
Chirality is probably the most mysterious among all symmetry transformations.
Very readily broken in biological systems, it is practically absent in
naturally occurring inorganic materials and is very challenging to create
artificially. Chiral optical wavefronts are often used for the identification,
control and discrimination of left- and right-handed biological and other
molecules. Thus, it is crucially important to create materials capable of
chiral interaction with light, which would allow one to assign arbitrary chiral
properties to a light field. In this paper, we utilized van der Waals
technology to assemble helical homostructures with chiral properties (e. g.
circular dichroism). Because of the large range of van der Waals materials
available such helical homostructures can be assigned with very flexible
optical properties. We demonstrate our approach by creating helical
homostructures based on multilayer AsS, which offers the most
pronounced chiral properties even in thin structures due to its strong biaxial
optically anisotropy. Our work showcases that the chirality of an
electromagnetic system may emerge at an intermediate level between the
molecular and the mesoscopic one due to the tailored arrangement of non-chiral
layers of van der Waals crystals and without additional patterning
High-refractive index and mechanically cleavable non-van der Waals InGaS3
The growing families of two-dimensional crystals derived from naturally
occurring van der Waals materials offer an unprecedented platform to
investigate elusive physical phenomena and could be of use in a diverse range
of devices. Of particular interest are recently reported atomic sheets of
non-van der Waals materials, which could allow a better comprehension of the
nature of structural bonds and increase the functionality of prospective
heterostructures. Here, we study the optostructural properties of ultrathin
non-van der Waals InGaS3 sheets produced by standard mechanical cleavage. Our
ab initio calculation results suggest an emergence of authentically delicate
out-of-plane covalent bonds within its unit cell, and, as a consequence, an
artificial generation of layered structure within the material. Those yield to
singular layer isolation energies of around 50 meVA-2, which is comparable with
the conventional van der Waals material's monolayer isolation energies of 20 -
60 meVA-2. In addition, we provide a comprehensive analysis of the structural,
vibrational, and optical properties of the materials presenting that it is a
wide bandgap (2.73 eV) semiconductor with a high-refractive index (higher than
2.5) and negligible losses in the visible and infrared spectral ranges. It
makes it a perfect candidate for further establishment of visible-range
all-dielectric nanophotonics
Exploring van der Waals materials with high anisotropy: geometrical and optical approaches
The emergence of van der Waals (vdW) materials resulted in the discovery of
their giant optical, mechanical, and electronic anisotropic properties,
immediately enabling countless novel phenomena and applications. Such success
inspired an intensive search for the highest possible anisotropic properties
among vdW materials. Furthermore, the identification of the most promising
among the huge family of vdW materials is a challenging quest requiring
innovative approaches. Here, we suggest an easy-to-use method for such a survey
based on the crystallographic geometrical perspective of vdW materials followed
by their optical characterization. Using our approach, we found As2S3 as a
highly anisotropic vdW material. It demonstrates rare giant in-plane optical
anisotropy, high refractive index and transparency in the visible range,
overcoming the century-long record set by rutile. Given these benefits, As2S3
opens a pathway towards next-generation nanophotonics as demonstrated by an
ultrathin true zero-order quarter-waveplate that combines classical and the
Fabry-Perot optical phase accumulations. Hence, our approach provides an
effective and easy-to-use method to find vdW materials with the utmost
anisotropic properties.Comment: 11 pages, 5 figure
Searches at HERA for Squarks in R-Parity Violating Supersymmetry
A search for squarks in R-parity violating supersymmetry is performed in e^+p
collisions at HERA at a centre of mass energy of 300 GeV, using H1 data
corresponding to an integrated luminosity of 37 pb^(-1). The direct production
of single squarks of any generation in positron-quark fusion via a Yukawa
coupling lambda' is considered, taking into account R-parity violating and
conserving decays of the squarks. No significant deviation from the Standard
Model expectation is found. The results are interpreted in terms of constraints
within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM
and the minimal Supergravity model, and their sensitivity to the model
parameters is studied in detail. For a Yukawa coupling of electromagnetic
strength, squark masses below 260 GeV are excluded at 95% confidence level in a
large part of the parameter space. For a 100 times smaller coupling strength
masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table
- …