240 research outputs found

    A class of colliding waves in metric-affine gravity, nonmetricity and torsion shock waves

    Get PDF
    By using our recent generalization of the colliding waves concept to metric-affine gravity theories, and also our generalization of the advanced and retarded time coordinate representation in terms of Jacobi functions, we find a general class of colliding wave solutions with fourth degree polynomials in metric-affine gravity. We show that our general approach contains the standard second degree polynomials colliding wave solutions as a particular case.Comment: 13 pages, latex, to appear in J.Math.Phy

    The dynamics of vortices on S^2 near the Bradlow limit

    Get PDF
    The explicit solutions of the Bogomolny equations for N vortices on a sphere of radius R^2 > N are not known. In particular, this has prevented the use of the geodesic approximation to describe the low energy vortex dynamics. In this paper we introduce an approximate general solution of the equations, valid for R^2 close to N, which has many properties of the true solutions, including the same moduli space CP^N. Within the framework of the geodesic approximation, the metric on the moduli space is then computed to be proportional to the Fubini- Study metric, which leads to a complete description of the particle dynamics.Comment: 17 pages, 9 figure

    Transition from Diffusive to Localized Regimes in Surface Corrugated Optical Waveguides

    Full text link
    Exact calculations of the transmittance of surface corrugated optical waveguides are presented. The elastic scattering of diffuse light or other electromagnetic waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an analogy with electron conduction in nanowires, and hence, a concept analogous to that of ``resistance'' can be introduced. We show an oscillatory behavior of both the elastic mean free path and the localization length versus the wavelength.Comment: 3 pages, REVTEX, 3 PS figure

    Distributed Algorithms for Consensus and Coordination in the Presence of Packet-Dropping Communication Links - Part II: Coefficients of Ergodicity Analysis Approach

    Get PDF
    In this two-part paper, we consider multicomponent systems in which each component can iteratively exchange information with other components in its neighborhood in order to compute, in a distributed fashion, the average of the components' initial values or some other quantity of interest (i.e., some function of these initial values). In particular, we study an iterative algorithm for computing the average of the initial values of the nodes. In this algorithm, each component maintains two sets of variables that are updated via two identical linear iterations. The average of the initial values of the nodes can be asymptotically computed by each node as the ratio of two of the variables it maintains. In the first part of this paper, we show how the update rules for the two sets of variables can be enhanced so that the algorithm becomes tolerant to communication links that may drop packets, independently among them and independently between different transmission times. In this second part, by rewriting the collective dynamics of both iterations, we show that the resulting system is mathematically equivalent to a finite inhomogenous Markov chain whose transition matrix takes one of finitely many values at each step. Then, by using e a coefficients of ergodicity approach, a method commonly used for convergence analysis of Markov chains, we prove convergence of the robustified consensus scheme. The analysis suggests that similar convergence should hold under more general conditions as well.Comment: University of Illinois at Urbana-Champaign. Coordinated Sciences Laboratory technical repor

    Time-gated transillumination and reflection by biological tissues and tissuelike phantoms: simulation versus experiment

    Get PDF
    A numerical method is presented to solve exactly the time-dependent diffusion equation that describes light transport in turbid media. The simulation takes into account spatial variations of the scattering and absorption factors of the medium and the objects as well as random fluctuations of these quantities. The technique is employed to explore the possibility of locating millimeter-sized objects immersed in turbid media from time-gated measurements of the transmitted or reflected (near-infrared) light. The simulation results for tissue-like phantoms are compared with experimental transillumination data, and excellent agreement is found. Simulations of time-gated reflection experiments indicate that it may be possible to detect objects of 1-mm radius.

    Growth and optical characterization of indirect-gap AlxGa1−xAs alloys

    Get PDF
    Nonintentionally doped AlxGa1−xAs layers with 0.38 x 0.84 were grown on (100) GaAs substrates by liquid phase epitaxy (LPE) under near-equilibrium conditions. The crystalline quality of the samples was studied by photoluminescence at 2 K and room temperature Raman spectroscopy. The peculiar behavior in the photoluminescence intensities of the indirect bound exciton line and the donor–acceptor pair transition is explained from the evolution of the silicon donor binding energy according to the aluminum composition. It was also possible to observe the excitonic transition corresponding to the AlxGa1−xAs/GaAs interface, despite the disorder and other factors which are normally involved when growing high-aluminum-content layers by this technique. Furthermore, Raman measurements show the quadratic variations of longitudinal optical phonon frequencies with aluminum concentration in good agreement with previous experimental results. In this work we show that high quality indirect-gap AlxGa1−xAs samples can be grown by LPE under near-equilibrium [email protected]

    The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout

    Get PDF
    A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built as a shashlik lead-scintillator calorimeter with wave length shifter fiber readout. Before installation it was tested and calibrated using the X5 test beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in the momentum range of 10 to 100 GeV/c were used. Results of these measurements are presented as well as a calibration monitoring system based on a 60^{60}Co source.Comment: 38 pages (Latex); 26 figures (ps

    Complex dynamics in a simple model of pulsations for Super-Asymptotic Giant Branch Stars

    Get PDF
    When intermediate mass stars reach their last stages of evolution they show pronounced oscillations. This phenomenon happens when these stars reach the so-called Asymptotic Giant Branch (AGB), which is a region of the Hertzsprung-Russell diagram located at about the same region of effective temperatures but at larger luminosities than those of regular giant stars. The period of these oscillations depends on the mass of the star. There is growing evidence that these oscillations are highly correlated with mass loss and that, as the mass loss increases, the pulsations become more chaotic. In this paper we study a simple oscillator which accounts for the observed properties of this kind of stars. This oscillator was first proposed and studied by Icke et al. [Astron.Astrophys. 258, 341 (1992)] and we extend their study to the region of more massive and luminous stars - the region of Super-AGB stars. The oscillator consists of a periodic nonlinear perturbation of a linear Hamiltonian system. The formalism of dynamical systems theory has been used to explore the associated Poincare map for the range of parameters typical of those stars. We have studied and characterized the dynamical behaviour of the oscillator as the parameters of the model are varied, leading us to explore a sequence of local and global bifurcations. Among these, a tripling bifurcation is remarkable, which allows us to show that the Poincare map is a nontwist area preserving map. Meandering curves, hierarchical-islands traps and sticky orbits also show up. We discuss the implications of the stickiness phenomenon in the evolution and stability of the Super-AGB stars.Comment: 13 pages, 9 figure

    Investigation on the aerosol performance of dry powder inhalation hypromellose capsules with different lubricant levels

    Get PDF
    HPMC capsules are made by a dipping process and a surface lubricant for the mould pins is an essential processing aid for removing dried capsules shells. For the purpose of this study, the level was determined by quantifying methyloleate (MO) a component found in the lubricant but not in the hypromellose capsules. Here we investigated the influence of the lubricant, low (10.81 μg/capsule = 60 mg/kg MO), medium (15.97 μg/capsule = 90 mg/kg MO) and high (23.23 μg/capsule = 127 mg/kg MO) content on powder (binary mixture of salbutamol: lactose, 1:50 w/w) aerosolization properties was investigated. Results indicated significantly lower emitted dose from capsules with 60 mg/kg MO. Furthermore, the 90 and 127 mg/kg MO level of lubricant capsules produced almost double the Fine Particle Dose & Fine Particle Fraction compared with the low level of lubricant. The data indicates that lubricant level within capsules has an influence on deposition profiles and amount of drug remaining in capsule and inhaler device after actuation. It is suggested lubricant levels greater than 60 mg/kg MO per capsule are required to minimise powder retention within capsules and maximise deposition profiles. AFM (atomic force microscopy) data suggest that internal surface roughness may be related with this phenomena

    Universal scaling of magnetoconductance in magnetic nanocontacts (Invited)

    Get PDF
    We present results of half-metallic ferromagnets formed by atomic nanocontact of CrO2– CrO2 and CrO2–Ni that show as much as 400% magnetoconductance. Analysis of the magnetoconductance versus conductance data for all materials known to exhibit so-called ballistic magnetoresistance strongly suggests that the magnetoconductance of nanocontacts follows universal scaling. If the maximum magnetoconductance is normalized to unity and the conductance is scaled to the resistivity of the material, then all data points fall into a universal curve that is independent of the contact material and the transport mechanism. The analysis was applied to all available magnetoconductance data of magnetic nanocontacts in the literature, and the results agree with theory that takes into account the spin scattering within a magnetic domain wall
    corecore