335 research outputs found

    [11C]-l-Methionine positron emission tomography in the management of children and young adults with brain tumors

    Get PDF
    Only a few Methyl-[11C]-l-methionine (MET) positron emission tomography (PET) studies have focused on children and young adults with brain neoplasm. Due to radiation exposure, long scan acquisition time, and the need for sedation in young children MET-PET studies should be restricted to this group of patients when a decision for further therapy is not possible from routine diagnostic procedures alone, e.g., structural imaging. We investigated the diagnostic accuracy of MET-PET for the differentiation between tumorous and non-tumorous lesions in this group of patients. Forty eight MET-PET scans from 39 patients aged from 2 to 21 years (mean 15 ± 5.0 years) were analyzed. The MET tumor-uptake relative to a corresponding control region was calculated. A receiver operating characteristic (ROC) was performed to determine the MET-uptake value that best distinguishes tumorous from non-tumorous brain lesions. A differentiation between tumorous (n = 39) and non-tumorous brain lesions (n = 9) was possible at a threshold of 1.48 of relative MET-uptake with a sensitivity of 83% and a specificity of 92%, respectively. A differentiation between high grade malignant lesions (mean MET-uptake = 2.00 ± 0.46) and low grade tumors (mean MET-uptake = 1.84 ± 0.31) was not possible. There was a significant difference in MET-uptake between the histologically homogeneous subgroups of astrocytoma WHO grade II and anaplastic astrocytoma WHO grade III (P = 0.02). MET-PET might be a useful tool to differentiate tumorous from non-tumorous lesions in children and young adults when a decision for further therapy is difficult or impossible from routine structural imaging procedures alone

    Gender balance and suitable positive actions to promote gender equality among healthcare professionals in neuro-oncology:The EANO positive action initiative

    Get PDF
    Background:The proportion of women among healthcare and biomedical research professionals in neuro-oncology is growing. With changes in cultural expectations and work-life balance considerations, more men aspire to nonfull-time jobs, yet, leadership positions remain dominated by men.Methods:The European Association of Neuro-Oncology (EANO) disparity committee carried out a digital survey to explore gender balance and actions suitable to promote gender equality. The survey was distributed among EANO members in 2021, with responses analyzed descriptively.Results:In total, 262 participants completed the survey (141 women, 53.8%; median age 43). Respondents were neurosurgeons (68, 26.0%); neurologists (67, 25.6%), medical oncologists (43, 16.4%), or other healthcare or research professionals; 208 participants (79.4%) worked full-time. Positive action to enforce the role of women in neuro-oncology was deemed necessary by 180 participants (68.7%), but only 28 participants (10.7%) agreed that women only should be promoted until gender balance is reached. A majority of respondents (162, 61.8%) felt that women with an equivalent CV should be prioritized over men to reach gender balance. If in the future the balance favored women at higher positions, 112 respondents (42.7%) agreed to apply positive action for men. The top indicators considered relevant to measure gender balance were: salary for similar positions (183/228, 80.3%), paid overtime (176/228, 77.2%), number of permanent positions (164/228, 71.9%), protected time for research (161/227, 70.9%), and training opportunities (157/227, 69.2%).Conclusions:Specific indicators may help to measure and promote gender balance and should be considered for implementation among healthcare professionals in neuro-oncology

    Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [¹⁸F]FDG: version 1.0

    Get PDF
    Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible

    Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme

    Get PDF
    We investigated the relationship between three-dimensional volumetric data of the metabolically active tumour volume assessed using [(11)C]-methionine positron emission tomography (MET-PET) and the area of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) enhancement assessed using magnetic resonance imaging (MRI) in patients with recurrent glioblastoma (GBM).MET-PET and contrast-enhanced MRI with Gd-DTPA were performed in 12 uniformly pretreated patients with recurrent GBM. To calculate the volumes in cubic centimetres, a threshold-based volume-of-interest (VOI) analysis of the metabolically active tumour volume (MET uptake indexes of > or = 1.3 and > or = 1.5) and of the area of Gd-DTPA enhancement was performed after coregistration of all images.In all patients, the metabolically active tumour volume as shown using a MET uptake index of > or = 1.3 was larger than the volume of Gd-DTPA enhancement (30.2 + or - 22.4 vs. 13.7 + or - 10.6 cm(3); p = 0.04). Metabolically active tumour volumes as shown using MET uptake indexes of > or =1.3 and > or = 1.5 and the volumes of Gd-DTPA enhancement showed a positive correlation (r = 0.76, p = 0.003, for an index of > or =1.3, and r = 0.74, p = 0.005, for an index of > or =1.5).The present data suggest that in patients with recurrent GBM the metabolically active tumour volume may be substantially underestimated by Gd-DTPA enhancement. The findings support the notion that complementary information derived from MET uptake and Gd-DTPA enhancement may be helpful in developing individualized, patient-tailored therapy strategies in patients with recurrent GBM

    Evaluation of factors influencing <sup>18</sup>F-FET uptake in the brain.

    Get PDF
    PET using the amino-acid O-(2- &lt;sup&gt;18&lt;/sup&gt; F-fluoroethyl)-l-tyrosine ( &lt;sup&gt;18&lt;/sup&gt; F-FET) is gaining increasing interest for brain tumour management. Semi-quantitative analysis of tracer uptake in brain tumours is based on the standardized uptake value (SUV) and the tumour-to-brain ratio (TBR). The aim of this study was to explore physiological factors that might influence the relationship of SUV of &lt;sup&gt;18&lt;/sup&gt; F-FET uptake in various brain areas, and thus affect quantification of &lt;sup&gt;18&lt;/sup&gt; F-FET uptake in brain tumours. Negative &lt;sup&gt;18&lt;/sup&gt; F-FET PET scans of 107 subjects, showing an inconspicuous brain distribution of &lt;sup&gt;18&lt;/sup&gt; F-FET, were evaluated retrospectively. Whole-brain quantitative analysis with Statistical Parametric Mapping (SPM) using parametric SUV PET images, and volumes of interest (VOIs) analysis with fronto-parietal, temporal, occipital, and cerebellar SUV background areas were performed to study the effect of age, gender, height, weight, injected activity, body mass index (BMI), and body surface area (BSA). After multivariate analysis, female gender and high BMI were found to be two independent factors associated with increased SUV of &lt;sup&gt;18&lt;/sup&gt; F-FET uptake in the brain. In women, SUV &lt;sub&gt;mean&lt;/sub&gt; of &lt;sup&gt;18&lt;/sup&gt; F-FET uptake in the brain was 23% higher than in men (p &lt; 0.01). SUV &lt;sub&gt;mean&lt;/sub&gt; of &lt;sup&gt;18&lt;/sup&gt; F-FET uptake in the brain was positively correlated with BMI (r = 0.29; p &lt; 0.01). The influence of these factors on SUV of &lt;sup&gt;18&lt;/sup&gt; F-FET was similar in all brain areas. In conclusion, SUV of &lt;sup&gt;18&lt;/sup&gt; F-FET in the normal brain is influenced by gender and weakly by BMI, but changes are similar in all brain areas

    Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI

    Get PDF
    PURPOSE: PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Currently, amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging is evaluated for brain tumour imaging. In this hybrid MR-PET study, we compared in brain tumours with 3D data derived from APT-CEST MRI and amino acid PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET). METHODS: Eight patients with gliomas were investigated simultaneously with 18F-FET PET and APT-CEST MRI using a 3T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B1 average power of 1μT. B0 field inhomogeneities were corrected and parametric images of magnetisation transfer ratio asymmetry (MTRasym) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. RESULTS: A tumour-to-brain ratio derived from APT# and 18F-FET presented no significant differences and no correlation was found between APT# and 18F-FET PET data. Distance between local hot spots APT# and 18F-FET were different (average 20 ± 13 mm, range 4 - 45 mm). CONCLUSION: For the first time CEST images were compared with 18F-FET in a simultaneous MR-PET measurement. Imaging findings derived from18F-FET PET and APT CEST MRI seems to provide different biological information. The validation of imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy

    Advances in MRI Assessment of Gliomas and Response to Anti-VEGF Therapy

    Get PDF
    Bevacizumab is thought to normalize tumor vasculature and restore the blood–brain barrier, decreasing enhancement and peritumoral edema. Conventional measurements of tumor response rely upon dimensions of enhancing tumor. After bevacizumab treatment, glioblastomas are more prone to progress as nonenhancing tumor. The RANO (Response Assessment in Neuro-Oncology) criteria for glioma response use fluid-attenuated inversion recovery (FLAIR)/T2 hyperintensity as a surrogate for nonenhancing tumor; however, nonenhancing tumor can be difficult to differentiate from other causes of FLAIR/T2 hyperintensity (eg, radiation-induced gliosis). Due to these difficulties, recent efforts have been directed toward identifying new biomarkers that either predict treatment response or accurately measure response of both enhancing and nonenhancing tumor shortly after treatment initiation. This will allow for earlier treatment decisions, saving patients from the adverse effects of ineffective therapies while allowing them to try alternative therapies sooner. An active area of research is the use of physiologic imaging, which can potentially detect treatment effects before changes in tumor size are evident
    corecore