309 research outputs found

    Hadronic interactions of primary cosmic rays with the FLUKA code

    Get PDF
    The measured fluxes of secondary particles produced by the interactions of cosmic rays with the astronomical environment represent a powerful tool to infer some properties of primary cosmic rays. In this work we investigate the production of secondary particles in inelastic hadronic interactions between several cosmic rays species of projectiles and different target nuclei of the interstellar medium. The yields of secondary particles have been calculated with the FLUKA simulation package, that provides with very good accuracy the energy distributions of secondary products in a large energy range. An application to the propagation and production of secondaries in the Galaxy is presented.Comment: 8 pages, 4 figures; Contribution to the 34th International Cosmic Ray Conference, July 30 to August 6, The Hague, Netherlands; fixing a typo in the y-axis label of Fig.

    A consistent interpretation of recent CR nuclei and electron spectra

    Get PDF
    We try to interpret the recently updated measurement of the cosmic ray electron (CRE) spectrum observed by Fermi-LAT, together with PAMELA data on positron fraction, in a single-component scenario adopting different propagation setups; we find that the model is not adequate to reproduce the two datasets, so the evidence of an extra primary component of electrons and positrons is strengthened. Instead, a double component scenario computed in a Kraichnan-like diffusion setup (which is suggested by B/C and pˉ\bar{p} data) gives a satisfactory fit of all exisiting measurements. We confirm that nearby pulsars are good source candidates for the required e±e^\pm extra-component and we show that the predicted CRE anisotropy in our scenario is compatible with Fermi-LAT recently published constraints.Comment: Accepted for the publication in the proceedings of the ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo (Como), Oct. 201

    Underwater Sound Characteristics of a Ship with Controllable Pitch Propeller

    Get PDF
    The time-dependent spectral characteristics of underwater sound radiated by an oceanic vessel have complex dependencies on ship machinery, propeller dynamics, and the hydrodynamics of the ship exhaust and motion, as well as onboard activities. Here, the underwater sound radiated by a ship equipped with a controllable pitch propeller (CPP) is analyzed and quantified via its (i) power spectral density for signal energetics, (ii) temporal coherence for machinery tonal sound, and (iii) spectral coherence for propeller amplitude-modulated cavitation noise. Frequency-modulated (FM) tonal signals are also characterized in terms of their frequency variations. These characteristics are compared for different propeller pitch ratios, ranging from 20% to 82% at a fixed number of propeller revolutions per minute (RPM). The efficacy and robustness of ship parameter estimation at different pitches are discussed. Finally, an analysis of one special measurement is provided: propeller pitch and RPM over the duration of the measurement when the ship changes speed. The 50% pitch was found to be a crucial point for this ship, around which the tonal characteristics of its underwater radiated sound attain their peak values while broadband sound and associated spectral coherences are at a minimum. The findings here elucidate the effects of pitch variation on underwater sound radiated by ships with controllable pitch propellers and has applications in ship design and underwater noise mitigation

    An overview on the N-heterocyclic carbene-catalyzed Aza-Benzoin condensation reaction

    Get PDF
    The N-heterocyclic carbene(NHCs)-catalyzed aza-benzoin condensation reaction is an efficient, single step strategy which employs easily available substrates, such as aldehydes and imines, to provide \u3b1-amino ketones. The multifunctionality and high reactivity of \u3b1-amino ketones makes these structures attractive for medicinal chemistry and as precursors of a variety of amine derivatives. The different electrophilic characteristics of aldehydes and imines ensure a high regioselective reaction. Enantiomerically-enriched \u3b1-amino ketones have been synthesized through stereoselective couplings promoted by chiral N-heterocyclic carbenes. One-pot domino procedures, including an aza-benzoin step, allow valuable complex molecules to be accessed

    A practical synthesis of 2,3-dihydro-1,5-benzothiazepines

    Get PDF
    2,3-Dihydro-1,5-benzothiazepines have been obtained through a domino process involving a Michael addition of 2-aminothiophenols to chalcones, followed by in situ cyclization. Up to 98% chemical yields have been obtained at room temperature under essentially neutral conditions by using hexafluoro-2-propanol as an efficient medium

    2-Carboxythioester-1,3-dithiane: a functionalized masked carbonyl nucleophile for the organocatalytic enantioselective Michael addition to enones

    Get PDF
    An S-(2,2,2-trifluoroethyl) 1,3-dithiane-2-carbothioate has been successfully employed as acyl anion synthon in the organocatalytic enantioselective addition to enones promoted by quinine- and quinidine-derived tertiary/primary diamines. By proper selection of a co-catalyst and by optimization of the reaction parameters, convenient experimental conditions were found that allowed to obtain the highly functionalized products in up to 90% yield and 98% ee in short reaction times. These compounds, featuring selectively removable functionalities, proved to be versatile synthetic intermediates, which could be transformed into different derivatives without any erosion of the stereochemical integrity of the molecules

    Superconducting parallel nanowire detector with photon number resolving functionality

    Full text link
    We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise

    On possible interpretations of the high energy electron-positron spectrum measured by the Fermi Large Area Telescope

    Full text link
    The Fermi-LAT experiment recently reported high precision measurements of the spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. Here we discuss several interpretations of the Fermi results based either on a single large scale Galactic CRE component or by invoking additional electron-positron primary sources, e.g. nearby pulsars or particle Dark Matter annihilation. We show that while the reported Fermi-LAT data alone can be interpreted in terms of a single component scenario, when combined with other complementary experimental results, specifically the CRE spectrum measured by H.E.S.S. and especially the positron fraction reported by PAMELA between 1 and 100 GeV, that class of models fails to provide a consistent interpretation. Rather, we find that several combinations of parameters, involving both the pulsar and dark matter scenarios, allow a consistent description of those results. We also briefly discuss the possibility of discriminating between the pulsar and dark matter interpretations by looking for a possible anisotropy in the CRE flux.Comment: 29 pages, 12 figures. Final version accepted for publication in Astroparticle Physic

    Dark Stars and Boosted Dark Matter Annihilation Rates

    Full text link
    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate dependence on the cross section and concentration parameter. Our basic results are that the final stellar properties, once the star enters the main sequence, are always roughly the same, regardless of the value of boosted annihilation or concentration parameter in the range between c=2 and c=5: stellar mass ~ 1000M\odot, luminosity ~ 10^7 L\odot, lifetime ~ 10^6 yrs (for the minimal DM models considered here; additional DM would lead to more massive dark stars). However, the lifetime, final mass, and final luminosity of the DS show some dependence on boost factor and concentration parameter as discussed in the paper.Comment: 37 pages, 11 figure
    • …
    corecore