2,655 research outputs found

    Analysis of the Lee-Yang zeros in a dynamical mass generation model in three dimensions

    Full text link
    We investigate a strongly U(1) gauge theory with fermions and scalars on a three dimensional lattice and analyze whether the cintinuum limit might be a renormalizable theory with dynamical mass generation. Most attention is paid to the weak coupling region where a possible new dynamical mass generation mechanism might exist. There we investigate the mass of the composite fermion, the chiral condensate and the scaling of the Lee-Yang zeros.Comment: 3 pages,4 figures,talk presented at Lattice97(Edinburgh

    A two-state model for helicase translocation and unwinding of nucleic acids

    Get PDF
    Helicases are molecular motors that unwind double-stranded nucleic acids (dsNA), such as DNA and RNA). Typically a helicase translocates along one of the NA single strands while unwinding and uses adenosine triphosphate (ATP) hydrolysis as an energy source. Here we model of a helicase motor that can switch between two states, which could represent two different points in the ATP hydrolysis cycle. Our model is an extension of the earlier Betterton-J\"ulicher model of helicases to incorporate switching between two states. The main predictions of the model are the speed of unwinding of the dsNA and fluctuations around the average unwinding velocity. Motivated by a recent claim that the NS3 helicase of Hepatitis C virus follows a flashing ratchet mechanism, we have compared the experimental results for the NS3 helicase with a special limit of our model which corresponds to the flashing ratchet scenario. Our model accounts for one key feature of the experimental data on NS3 helicase. However, contradictory observations in experiments carried out under different conditions limit the ability to compare the model to experiments.Comment: minor modification

    Resummation of fermionic in-medium ladder diagrams to all orders

    Full text link
    A system of fermions with a short-range interaction proportional to the scattering length aa is studied at finite density. At any order ana^n, we evaluate the complete contributions to the energy per particle Eˉ(kf)\bar E(k_f) arising from combined (multiple) particle-particle and hole-hole rescatterings in the medium. This novel result is achieved by simply decomposing the particle-hole propagator into the vacuum propagator plus a medium-insertion and correcting for certain symmetry factors in the (n−1)(n-1)-th power of the in-medium loop. Known results for the low-density expansion up to and including order a4a^4 are accurately reproduced. The emerging series in akfa k_f can be summed to all orders in the form of a double-integral over an arctangent function. In that representation the unitary limit a→∞a\to \infty can be taken and one obtains the value ξ=0.5067\xi= 0.5067 for the universal Bertsch parameter. We discuss also applications to the equation of state of neutron matter at low densities and mention further extensions of the resummation method.Comment: 12 pages, 7 figures, submitted to Nuclear Physics

    Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering

    Full text link
    We investigated the low energy excitations in the parent compound NdFeAsO of the Fe-pnictide superconductor in the μ\mueV range by a back scattering neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed inelastic peaks at E = 1.600 ±0.003μ \pm 0.003 \mueV at T = 0.055 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at about 6 K. We interpret the inelastic peaks to be due to the transition between hyperfine-split nuclear level of the 143^{143}Nd and 145^{145}Nd isotopes with spin I=7/2I = 7/2. The hyperfine field is produced by the ordering of the electronic magnetic moment of Nd at low temperature and thus the present investigation gives direct evidence of the ordering of the Nd magnetic sublattice of NdFeAsO at low temperature

    Optimization of Safeguards Effort

    Get PDF

    The model of dynamo with small number of modes and magnetic activity of T Tauri stars

    Full text link
    The model that describes operation of dynamo in fully convective stars is presented. It is based on representation of stellar magnetic field as a superposition of finite number of poloidal and toroidal free damping modes. In the frame of adopted low of stellar differential rotation we estimated minimal value of dynamo number D, starting from which generation of cyclic magnetic field in stars without radiative core is possible. We also derived expression for period of the cycle. It was found that dynamo cycles of fully convective stars and stars with thin convective envelopes differ in a qualitative way: 1) distribution of spots over latitude during the cycle is different in these stars; 2) the model predicts that spot formation in fully convective stars should be strongly suppressed at some phases of the cycle. We have analyzed historical lightcurve of WTTS star V410 Tau and found that long term activity of the star is not periodic process. Rather one can speak about quasi cyclic activity with characteristic time of ∼4\sim 4 yr and chaotic component over imposed. We concluded also that redistribution of cool spots over longitude is the reason of long term variations of V410 Tau brightness. It means that one can not compare directly results of photometric observations with predictions of our axially symmetric (for simplicity) model which allows to investigate time evolution of spot's distribution over latitude. We then discuss what kind of observations and in which way could be used to check predictions of the dynamo theory.Comment: 18 pages, 5 figures, accepted to Astron. Let

    On The Power of Tree Projections: Structural Tractability of Enumerating CSP Solutions

    Full text link
    The problem of deciding whether CSP instances admit solutions has been deeply studied in the literature, and several structural tractability results have been derived so far. However, constraint satisfaction comes in practice as a computation problem where the focus is either on finding one solution, or on enumerating all solutions, possibly projected to some given set of output variables. The paper investigates the structural tractability of the problem of enumerating (possibly projected) solutions, where tractability means here computable with polynomial delay (WPD), since in general exponentially many solutions may be computed. A general framework based on the notion of tree projection of hypergraphs is considered, which generalizes all known decomposition methods. Tractability results have been obtained both for classes of structures where output variables are part of their specification, and for classes of structures where computability WPD must be ensured for any possible set of output variables. These results are shown to be tight, by exhibiting dichotomies for classes of structures having bounded arity and where the tree decomposition method is considered
    • …
    corecore