215 research outputs found

    Translational regulation shapes the molecular landscape of complex disease phenotypes.

    Get PDF
    The extent of translational control of gene expression in mammalian tissues remains largely unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart and liver tissues to investigate strain-specific translational regulation in the spontaneously hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at the translational level and there is limited evidence of translational buffering. Remarkably, we observe hundreds of strain-specific differences in translation, almost doubling the number of differentially expressed genes. The integration of genetic, transcriptional and translational data sets reveals distinct signatures in 3'UTR variation, RNA-binding protein motifs and miRNA expression associated with translational regulation of gene expression. We show that a large number of genes associated with heart and liver traits in human genome-wide association studies are primarily translationally regulated. Capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease phenotypes

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU

    Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films

    Full text link
    Low-angle grain boundaries with misorientation angles theta < 5 degrees in optimally doped thin films of YBCO are investigated by magnetooptical imaging. By using a numerical inversion scheme of Biot-Savart's law the critical current density across the grain boundary can be determined with a spatial resolution of about 5 micrometers. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies with varying local flux density. Combining the corresponding flux and current pattern it is found that there exists a universal dependency of the grain boundary current on the local flux density. A change in the local flux density means a variation in the flux line-flux line distance. With this knowledge a model is developped that explains the flux-current relation by means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure

    High salt reduces the activation of IL-4- and IL-13-stimulated macrophages

    Get PDF
    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis

    Dried blood spot UHPLC-MS/MS analysis of oseltamivir and oseltamivircarboxylate—a validated assay for the clinic

    Get PDF
    The neuraminidase inhibitor oseltamivir (Tamiflu®) is currently the first-line therapy for patients with influenza virus infection. Common analysis of the prodrug and its active metabolite oseltamivircarboxylate is determined via extraction from plasma. Compared with these assays, dried blood spot (DBS) analysis provides several advantages, including a minimum sample volume required for the measurement of drugs in whole blood. Samples can easily be obtained via a simple, non-invasive finger or heel prick. Mainly, these characteristics make DBS an ideal tool for pediatrics and to measure multiple time points such as those needed in therapeutic drug monitoring or pharmacokinetic studies. Additionally, DBS sample preparation, stability, and storage are usually most convenient. In the present work, we developed and fully validated a DBS assay for the simultaneous determination of oseltamivir and oseltamivircarboxylate concentrations in human whole blood. We demonstrate the simplicity of DBS sample preparation, and a fast, accurate and reproducible analysis using ultra high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer. A thorough validation on the basis of the most recent FDA guidelines for bioanalytical method validation showed that the method is selective, precise, and accurate (≤15% RSD), and sensitive over the relevant clinical range of 5–1,500 ng/mL for oseltamivir and 20–1,500 ng/mL for the oseltamivircarboxylate metabolite. As a proof of concept, oseltamivir and oseltamivircarboxylate levels were determined in DBS obtained from healthy volunteers who received a single oral dose of Tamiflu®

    A common root for coevolution and substitution rate variability in protein sequence evolution

    Get PDF
    We introduce a simple model that describes the average occurrence of point variations in a generic protein sequence. This model is based on the idea that mutations are more likely to be fixed at sites in contact with others that have mutated in the recent past. Therefore, we extend the usual assumptions made in protein coevolution by introducing a time dumping on the effect of a substitution on its surrounding and makes correlated substitutions happen in avalanches localized in space and time. The model correctly predicts the average correlation of substitutions as a function of their distance along the sequence. At the same time, it predicts an among-site distribution of the number of substitutions per site highly compatible with a negative binomial, consistently with experimental data. The promising outcomes achieved with this model encourage the application of the same ideas in the field of pairwise and multiple sequence alignment

    Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1

    Get PDF
    Susceptibility to obesity is linked to genes regulating neurotransmission, pancreatic beta-cell function and energy homeostasis. Genome-wide association studies have identified associations between body mass index and two loci near cell adhesion molecule 1 (CADM1) and cell adhesion molecule 2 (CADM2), which encode membrane proteins that mediate synaptic assembly. We found that these respective risk variants associate with increased CADM1 and CADM2 expression in the hypothalamus of human subjects. Expression of both genes was elevated in obese mice, and induction of Cadm1 in excitatory neurons facilitated weight gain while exacerbating energy expenditure. Loss of Cadm1 protected mice from obesity, and tract-tracing analysis revealed Cadm1-positive innervation of POMC neurons via afferent projections originating from beyond the arcuate nucleus. Reducing Cadm1 expression in the hypothalamus and hippocampus promoted a negative energy balance and weight loss. These data identify essential roles for Cadm1-mediated neuronal input in weight regulation and provide insight into the central pathways contributing to human obesity.</p

    Mutations in the SLC2A9 Gene Cause Hyperuricosuria and Hyperuricemia in the Dog

    Get PDF
    Allantoin is the end product of purine catabolism in all mammals except humans, great apes, and one breed of dog, the Dalmatian. Humans and Dalmatian dogs produce uric acid during purine degradation, which leads to elevated levels of uric acid in blood and urine and can result in significant diseases in both species. The defect in Dalmatians results from inefficient transport of uric acid in both the liver and renal proximal tubules. Hyperuricosuria and hyperuricemia (huu) is a simple autosomal recessive trait for which all Dalmatian dogs are homozygous. Therefore, in order to map the locus, an interbreed backcross was used. Linkage mapping localized the huu trait to CFA03, which excluded the obvious urate transporter 1 gene, SLC22A12. Positional cloning placed the locus in a minimal interval of 2.5 Mb with a LOD score of 17.45. A critical interval of 333 kb containing only four genes was homozygous in all Dalmatians. Sequence and expression analyses of the SLC2A9 gene indicated three possible mutations, a missense mutation (G616T;C188F) and two promoter mutations that together appear to reduce the expression levels of one of the isoforms. The missense mutation is associated with hyperuricosuria in the Dalmatian, while the promoter SNPs occur in other unaffected breeds of dog. Verification of the causative nature of these changes was obtained when hyperuricosuric dogs from several other breeds were found to possess the same combination of mutations as found in the Dalmatian. The Dalmatian dog model of hyperuricosuria and hyperuricemia underscores the importance of SLC2A9 for uric acid transport in mammals
    corecore